e Ro AT e S e Vol.2012-AL-138 No.8
f AL S Se S 2012/1/78

IPSJ SIG Technical Report

MENGREADETEMI 7LD
“REREBR SIS MOEUHEFE

Ei Ando ! Joseph Petersf?

REETIE, #0777 GIZB 5 R OMENRRERRE S 03B Ba(x)
T DI RT A Y RAERET D, e/ i S R (A < S0 R e
TENEL, BRIDZOOHERINAMEE T 55 L5 RS, RERE SOy
faROLHMBUT #P-75RTHD. —HT, REOHTE 7T 7 OREDHHIZ R
WHEE D & D5 IR DA% Ba(x) 2 RMICHHAETE 5. ARMTIE,
R D e 31 70 e A RARE D 3 AR B %R 2 SR o0 BRI DWW T, P RE S8 ES RIS
WD BTRICZDMEN #P-522Th D L &2mT. WIT, ERNROAICIE ) RE S
BEZ, TNEBRHDARBREEEWHI-L, 27T 7 G O treewidth 23E% k LA
TThHHEEEZXD. 20L& o DHIARX Bg(z) &£ LT Bg(z) 2452
2EZ, HBHEOEH e,0w W52 bNDLE, |Bg(z) - Bg(z)| <e #0<z < w
OFEFATHZT LMz &, O LR w, KO m, FFRBEOYH 1/e OLEKX
I Bo(x) # 35 C& 2 a5

Approximating the Stochastic Shortest Path Length

Between Two Vertices

E1 Anpo ! and JoseEpH PETERS2

In this paper, we propose an approximation algorithm for computing the
distribution function Bg(z) of the stochastic shortest path length between two
vertices in undirected graph G. The stochastic shortest path problem is hard to
solve; computing the exact stochastic shortest path lengths’ distribution func-
tion is # P-complete if we assume that the edge lengths can take two discrete
values. We show that, however, if we consider some continuously distributed
edge lengths satisfying some natural conditions, we can approximately com-
pute the distribution function Bg(z) of the stochastic shortest path length of
G. Our approximation algorithm outputs a polynomial ﬁg(x) that approxi-
mates Bg(z) for 0 < 2 < w and satisfies that |Bg(z) — Bg(z)| < &, where w
and € are positive values. The running time of our algorithm is polynomial in
the graph size, w and 1/e if G has a constant treewidth k.

1. Introduction

Let G = (V,E) be a graph with vertex set V = {vo,...,vn—1} and edge set
E C {{u,v}u,v € V}. We associate an edge length X. for each edge e € F; here
we assume that X.’s are mutually independent random variables. We consider the
problem of computing the shortest path length between two vertices s,t € V in G; here
we use the random edge lengths X, for each e € E. Note that any s — ¢t path between
G can be the shortest path because the shortest path can vary depending on the real-
ization of the random edge lengths. Since we cannot determine the shortest path as a
single path in the stochastic version of the problem, there can be at least two kinds of
approaches: (1) By re-defining the shortest path including the probability, try to find
a single shortest path; or (2) we do not specify which is the shortest path but consider
the ‘shortest path length’ as a random variable and compute its distribution function.
We take the latter approach, that is, we are to compute the distribution function Bg(x)
of the shortest path length.

The problem of computing the distribution function of this kind is, however, usually
hard to solve. Hagstrom® proved, using the transportation graph, that the problem of
computing the stochastic longest path length in directed acyclic graphs is # P-complete
if the edge lengths can take 0 or 1. Ball et al. writes about the same problem in® that
the problem is N P-hard for series-parallel graphs when the edge lengths can take two
different values. In this paper, we give a simple # P-completeness proof for comput-
ing the distribution function of the sum of the mutually independent random variables
that can take 0 or a positive integer. Our proof shows that if we consider a stochastic
version of the optimization problem such as the shortest path problem, the minimum
spanning tree problem, maximum matching problem, etc., the problem of computing
the distribution function of the optimal solutions’ weight is # P-complete even for a

path graph.

11 Faculty of Computer and Information Science, Sojo University, 4-22-1, Ikeda, Kumamoto.
12 School of Computing Science, Simon Fraser University, Burnaby, Canada.

(© 2012 Information Processing Society of Japan



e L UB I e S

IPSJ SIG Technical Report

On the contrary, by defining a parameter k of a graph, we showed, in", that the
problem of computing the shortest path length’s distribution can be solved in polyno-
mial time in the graph size, if the parameter k is bounded by a constant, and the edge
lengths obey the horizontal shifts of the exponential distribution with expectation 1. In
addition, we show, in the paper, that there is an FPTAS for the problem of computing
the distribution of the shortest path length if the given graph has treewidth less than a
constant k£ and the random edge lengths obeys continuous distributions satisfying some
natural conditions.

Here we make some notes about the treewidth. According to7), the treewidth is
defined as follows, using the tree decomposition.

Definitionl A tree decomposition of G = (V, E) is a pair ({U; | i € I1},T), where
{U;i | i € I} is a family of subsets of V' and T is a tree with vertex set I such that
(1) UieIUi =V,

(2) for all edges (z,y) € E, there is an element ¢ € I such that z,y € Uj,

(3) for all triples ¢, 7,k € I, if j is on the path from 7 to k in T, then U; N Uy C Uj.
The width of a graph decomposition ({U; | ¢ € I},T) is given by max;er{|U;| —1}. The
treewidth of a graph G is defined as the minimum width taken all over tree decompo-
sitions of G.

According to Arnborg et al.?), computing the exact treewidth is an N P-hard problem
and corresponding decision problem is N P-complete. However, checking if a graph G
has treewidth less than a fixed integer k can be answered efficiently as long as k is not
included in the problem instance®. It is also shown in® that once a graph G is known
to be treewidth k graph, we can construct a tree decomposition efficiently. There is
an approximation algorithm that is proposed by Bouchitté et al.). Their algorithm
outputs an upper bound on the graph k and has approximation ratio O(log k) for the
treewidth k graph.

The paper is organized as follows. In Section 2, we show our proof for the #P-
completeness of the computing the distribution of the sum of discrete random variables.
In Section 3, we show our exact algorithm for computing the shortest path length’s dis-
tribution function. In Section 4, we show our approximation algorithm. The paper is

concluded in Section 5.

Vol.2012-AL-138 No.8
2012/1/28

2. #P-Completeness of Computing a Sum’s Distribution

We here explain the # P-completeness of computing the distribution function of a
sum of discrete random variables. The arguments in this section apply to the problem
of computing the distribution function of many stochastic version of the optimization
problems. We say a random variable X obeys a two-values distribution if X can take
value 0 with probability 1/2 and value a value ¢ # 0 otherwise. Here we consider the
following problem.

Definition2 Let Xi,..., X, be n mutually independent random variables, where
Xi’s obey two-values distributions; X; can take 0 or a positive integer ¢; with proba-
bility 1/2 for each values. In problem SUM-PDF, we are to compute the distribution
function F(z) of the sum X =3,

X is less than or equal to a given integer x.

X;. That is, we compute the probability that

Then we can prove the following theorem.

Theoreml SUM-PDF is # P-complete.

To prove the theorem, we need to show the following Lemmas 1.
Lemmal SUM-PDF is in #P.

Proof The distribution function F(z) is given by counting the number N(z) of com-
binations of X1, ..., X, where the sum X is less than x; we have that F(z) = N(x)/2".

O
Lemma2 SUM-PDF is # P-hard.

Proof Let SUM-PMF be another problem in which we are to compute the probability
mass function F'(z) of the sum X = Zi:l,m,n X;. That is, given an integer z, we
are to compute the probability that X is equal to . Then, since the probability mass
function can be computed by F'(z) = F(x) — F(z — 1), SUM-PMF can be solved in
polynomial time if we could solve SUM-PDF.

We can see that SUM-PMF is actually equivalent to the counting version of the follow-
ing SUBSET SUM®, which is proved to be a # P-complete problem by Simon'" using
Karp’s reduction in'®. In SUBSET SUM problem, we are given a set A = {ai,...,an}

of positive integers and one more integer B. Since we are considering counting version of

(© 2012 Information Processing Society of Japan



1 LB R T
IPSJ SIG Technical Report

the problem, we are to compute the number of subsets A" of A satisfying ZaeA, a= B.
Then, if we could solve SUM-PMF in polynomial time, we can solve SUBSET SUM.
We set all ¢; = a; for all i = 1,...,n. Then if we could compute F’(a:)7 we have the
answer of the counting version of SUBSET SUM, that is, F’(x)2".

Therefore, we can solve the counting version of SUBSET SUM, if we could solve

SUM-PDF, which proves this lemma. O
Then we have the proof of Theorem 1.

Proof Since SUM-PDF is in #P and # P-hard by Lemma 1 and 2, we have Theorem
1. O

Now let us consider another problem for comparison.

Definition3 Let Xi,..., X, be n mutually independent random variables. We here
assume that X; for i = 1,...,n obey the horizontal shifts of the exponential distribution
with expectation 1, that is,

P(X; <z)=H(x —c¢)exp(—z + ¢), (1)

where H(z — ¢;) is a step function satisfying H(z —¢;) =0 for x < ¢; and H(z —¢;) =1
for z > ¢;. Then, SUM-PDF-EXP is a problem in which we are to compute the distri-
bution function F(z) of the sum X = Zi:l,.“,n X;.
Here we can see that SUM-PDF-EXP can be solved efficiently: It is well known that
the sum of mutually independent and exponentially distributed random variables are
given as a gamma distribution. SUM-PDF-EXP can be solved in linear time in the
input size, which makes a contrast to the discrete version of the problem.

One may wonder where this difference comes from. We conjecture that the exponen-
tial distribution makes the problem easier because the distribution is given by a uniform
formula whose density has only one peak. In fact, we could consider some other discrete
distributions, including the binomial distribution, that make the problem easy. It is also
possible that the two-values distribution of SUM-PDF is one of the hardest distribution
to deal with, despite of its simple appearance.

We are now interested in a question: To what extent can the problem be easier when
we assume some well-behaved continuous distributions ? This is important because the

stochastic network analysis with continuously distributed random variables has many

Vol.2012-AL-138 No.8
2012/1/28

applications. As for the shortest path length’s distribution function in a graph with

random edge lengths, we answer this question partly in the following.

3. Algorithm for the Case where Edge Lengths are Continuously
Distributed

In this section, we briefly introduce our algorithm SPL-PDF that computes the ex-
act distribution function of the stochastic shortest path length between s = v and
t = v,_1, if we could compute the integrals in SPL-PDF. In our previous Workl)7 we
showed that SPL-PDF computes the distribution function of the stochastic shortest
path length. Although there is a slight change between the algorithm in the previous
work, the correctness of the algorithm does not be spoiled by the change: the difference
from the algorithm in') is only in the order of processing the edges, which does not
change the output of the algorithm. As for the correctness proof of SPL-PDF, seel).

3.1 Creating the Initial Graph Sy

Given an undirected graph G = (V, E) with n vertices and m edges, we construct a
graph G = (V;, Ey) with vertex set V; =V U {ve,uc | e = {u,v} € E and u,v € V}
and edge set Ey = Jiy U Ja, where J1 = {{u, uc}, {ve,v} | u,v € Ve = {u,v} € E}
and Jo = {{uc,ve} | u,v € Ve = {u,v} € E}. In other words, we replace each edge
e = {u,v} of G by a path {u,uc}, {te, ve}, {ve, v} containing two new vertices u. and
ve. We assign a fixed edge length € > 0 that is arbitrary close to 0 to each edge in J;.
Each edge {ue,v.} € Jo is assigned the edge length of {u,v} € E. We call the vertices
Ue,ve € V7 \ 'V the joint vertices. A joint vertex v € V; \ V is open in subgraph G/,
of G if there is some edge e incident on v in G; but e is missing in G;. Fig. 1 shows
an example of G; generated from a graph G. We use Xy to denote the association of
each joint vertex v € V;\ V with a variable x,, which is the distance between the source
s = wvo and v. Thus, Xo = {(v,zv) | v € Vs \ V}. The subgraph So of G is obtained
by removing the edges in J> from G ;. Let ei,..., e, € J2 be ordered according to a
subroutine BOTTOMUP-TD that we show later. Then graph S; fori=1,...,m is a
graph which is given by adding edge e1,...,e; to So. Also, we consider the correspon-
dence between the dummy variables for the distances from s to each open joint vertices

in S1,...,Sm. The set &; for ¢ = 1,...,m is given by removing the pairs (v, z,) from

(© 2012 Information Processing Society of Japan



1 LB R T
IPSJ SIG Technical Report

e={u,v} Ue o/o\o
SO
*0° &

1 An example of a graph G (left), G; (centre), and S (right). Smaller circles are the joint
vertices. No joint vertices are open in G j; all joint vertices are open in Sp.

Xo where v is a joint vertex that appears in either one of edges e, ..., e;.
The description of the subroutine BOTTOMUP-TD(G) is the following. The idea of
BOTTOMUP-TD is to output the edges from the leaves of the tree decomposition to

the edges that are closer to the root.

Algorithm BOTTOMUP-TD(G)

1. Compute a tree decomposition ({U; |t € I ={1,...,
and max;er{|U;| — 1} < k ;

2. Let A be 0;

3. For each U; i € I in the BFS order from U;;

4. For each edge e = {u,v} C Us;
5
6

r}},T) of Gy so that s € Uy

Add edge e to A at the tail;
. Output the reverse of A.

3.2 Labelling variables and Label Choosing Operations

We introduce labelling variables and label choosing operations. The labelling variables
and label choosing operations are for simplifying the description of the algorithm. For
each v € V, there may be two labelling variables v°, v* and two label choosing opera-
tions RS, R%. The label choosing operation RS (resp. R%) is used in the algorithm (in
the next subsection) to compute the sum of the terms that include the labelling variable
v° (resp. v') as a factor.

3.3 Algorithm Description

In our algorithm, we consider a probability B;(S;, X;,x) for i = 0,...,m of the event

Vol.2012-AL-138 No.8
2012/1/28

where each variables in X; is greater than the the shortest path lengths between s

and the corresponding open joint vertices in X;. The following is the definition of

Bo(Si, X, x).
Definition4
By(So, X0) = [ vH(zw) (2)
veEVs
By(So, Xo,z) = Z v H(z — ) H W H (T — o) (3)
veVR weVi\{v}
507)(0 Z H w H mw - 'u) (4)
veV  weVy\{v}
Bo(So, Xo,) = B(So, Xo)Bi(S0, X0,2)  [[  Bu(So, X0). (5)

ueV\{s,t}
By Vi, C V, we denote the set of vertices that are adjacent to v € V. We note that

H(z) is a step function; H(z) = 0if x <0 and H(z) =1 = > 0. Now the following is
the description of SPL-PDF.

Algorithm SPL-PDF(G)

1. Construct Sy from G;

2. Set i:=0;

3. Compute By(So, Xo,x) using Definition 4;

4. For each e = {u,v} € J> in order given by BOTTOMUP-TD(G) do

5 Let Si+1 be the graph that is obtained by adding e to Si;

6 Let Xit1 = X \ {(u, ), (v, )}, where z, and x, are the distance from u,v to
s, respectively;

7. Compute B;11(Si+1, Xit1, ) by the following;
Bit1(Siy1, Xig1,x) = P1(Si, Xig1, x5 €) + Po(Si, Xiy1, x;e) + Ps(Si, Xiy1,x5€),  (6)

Pl(Si,XiH,:c;e):/ (%Rﬁ(RZ(Bi(Si,Xi,x)))) ol — 20)dzudzs, (7)
(Sl,Xl-Flv'T 6 f 82 Rl (RO( (S“th))))fe(‘rv —xu)dwudxu, (8)

Py(Si, Xipn, w5 €)= - 9 Ro(Ro(B i(Si,Xi,x))))(l—Feﬂwv — za|))dwudze;  (9)

R2 Ly
8. Replace the labelling variables u?,u°, v, and v° by 1 in Bit1(Siv1, Xit1,x);

9. Set i:=i + 1;
10. Output By, (Sm, Xm,x) as Bg(z), where S, = G and X,, = 0 at this point.

(© 2012 Information Processing Society of Japan



1 LB R T
IPSJ SIG Technical Report

To make our algorithm SPL-PDF work, we need some implementation for executing
the integrals. In the next section, we consider approximately executing the integrals by

using Taylor approximation.

4. Approximation Algorithm for the Shortest Path Length’s Distri-
bution

In this section, we show an algorithm for approximately computing the distribution
function of the shortest path length. We give the approximation algorithm by slightly
changing SPL-PDF. The idea of our approximation algorithm is to approximately com-
pute the integrals in SPL-PDF by using the Taylor polynomials. Our approximation
algorithm can be applied if the edge lengths are mutually independent and their distri-
bution functions have the following three properties:

(1) For the distribution function F.(z) of the edge length of e is 0 if x < 0;

(2) the Taylor series of Fe(z) generated at = = 0 converges to Fe(z) for any = > 0;

(3) given an upper bound w on z, for any nonnegative integer 4 satisfying 0 < i < p,
the i-th derivative (%)i F.(z) is less than 1 for all 0 < z < w.

The following is the approximation algorithm APPROX-SPL-PDF that computes the
approximating polynomial of the shortest path length’s distribution function Bg(z).
The idea of APPROX-SPL-PDF is that it computes the approximation A;(S;, X;, x) of
B;(S;i, X;, x) that is in algorithm SPL-PDF. APPROX-SPL-PDF accepts three inputs:
the input graph G, a positive integer p, and a real number w > 0. The second input p
is the degree of Taylor polynomial with which we use to approximate the ongoing com-
putation of the integrals. To compute an approximating polynomial Bg (z) of Ba(x)
so that the difference between the B¢ (z) and Be(z) is less than e for 0 < z < w, our

algorithm finishes in a polynomial time in n,m,e and w.

Algorithm APPROX-SPL-PDF (G, p,w)

1. Construct Sp from Gj

2. Set i:=0;

3. Compute Ao (So, Xo,x) = Bo(So, Xo, x) using Definition 4;

Vol.2012-AL-138 No.8
2012/1/28

4. For each e = {u,v} € J> in order given by BOTTOMUP-TD(G) do
5. Let S;4+1 be the graph that is obtained by adding e to S;;
6. Let Xi+1

s, respectively;

=X\ {(u,zu), (v,zv)}, where z, and z, are the distance from u, v to

7. Compute A;+1(Sit+1, Xit1,x) by the following;
Ai1(Sit1, Xig1,x) = Q1(Si, Xit1, z;€) + Q2(Ss, Xiy1,x5€) + Q3(Ss, Xit1, x5 €),
where Q; (S, X', z; e) is the output of APPROX-INTEGRAL(P;(S, X, z;€), Tu, zy) for
7=1,2,3 and

Pi(Si, X1, 5 €)= / (5 RURL(AS: % 2)) ) foliru — 0)dzudr,, (10)
Pa(Si, Xis1, ) ? 0 Rl(RO(Az(Sz'ﬂi,r))))fe(wv—wu)dmudfvm (11)

Py(Si, Xiyr, s ) /i(axuaxv (SZ,XZ,x)))>(17F5(|:vufxu|))dmud:vv; (12)

8. Replace the labelling variables u®,u°,v¢, and v° by 1 in Ai+1(Sit1, Xiy1,);
9. Set i:=i + 1;
10. Output Ay, (Sm, Xm,z) as Ba(z), where S, = Gy and X,,, =  at this point.

The subroutine APPROX-INTEGRAL is used in step 7. of APPROX-SPL-PDF.
APPROX-INTEGRAL works for a double definite integral D(X,x) that has, as its
integrand, a product of sum-of-products-form polynomials, label removing operations,
a edge length’s distribution (or density) function Fe(z, — z.), and the differentiation
symbol 0/0z., 0/0x,.

The basic idea of APPROX-INTEGRAL is the following 3 steps: (1) Expand a part
of the integrand into a sum of products; (2) Approximate the part of the integrand
by the Taylor polynomial of degree p; (3) Execute the integral. Note that, to keep the
integrand’s expression as short as possible, we do not expand the entire integrand in the
step (1). We say that a clause of a polynomial D(X,z) is a factor of D(X,z) that may
be a constant, a variable, a function, or a sum of products of these items. Before we
approximate the integrand, we expand the product of clauses that includes the variables
x, and x, into a sum of products, making a new clause. Note that we do not expand

the integrand any further as long as the dummy variable of the integral does not appear

(© 2012 Information Processing Society of Japan



e L UB I e S

IPSJ SIG Technical Report
in multiple clauses. We note that any clause corresponds to a connected component of
S; throughout the execution of the algorithm APPROX-SPL-PDF when we expand the
clauses in this way. For example, at the beginning of APPROX-SPL-PDF, we consider
the factors of Bo(So, Xo,z) int Definition 4 as the clauses: Bs(So, Xo), Bt(So, Xo,x),
and By (So, Xp,x) for each u € V \ {s,t}. It is clear that these factors corresponds
to the connected components of Sy. Then it is easy to see that multiplying a func-
tion that includes two variables z, and z,, and expanding the two clauses and this
function into a sum of products makes a new clause that corresponds to a connected
component in S1 given by adding edge {u,v} € J2 to So. Then we can execute the
double integral in the clause with respect to x,, and z, after approximating the clause
by a Taylor polynomial including z, and z,. Also, note that the three polynomials
Q1(Ss, Xit1, ), Q2(Ss, Xit1, ) and Q3(Si, Xit1,x) have the other clauses in common,

which means that A;y1(Sit1, Xit1,2) can be easily factorized into a product of clauses.

Algorithm APPROX-INTEGRAL(D(X,z), Ty, Tv)

1. Process the partial differentiations in the integrand of D(X, z);

2. Let U(X,z) be a polynomial that consists in the step function, the labelling vari-
ables, and variables in X" satisfyin

D(X,x) = U(X,2)Fe(xy — Ty)dzyday; (13)

4. Expand the product of clauses oszD(X, z) including the variables x,, and z.;

5. Let D'(X,x) be given by replacing the clause including z,, and z, in the integrand
of D(X,z) by Taylor approximation of degree p at the point where all variables are
equal to 0;

6. Let Q(X’,z) be the resulting form of executing the integrals of D'(X,z) with re-
spect to z, and x,;

7. Let Q'(X',z) = Q(X',2) /7 where 7 = 1 + (k + 1)PwP*?/(p 4+ 1)!;

8. Output the resulting form Q'(X’, x).

We execute step 7. of APPROX-INTEGRAL in order to bound the approximation
error in the proof.

By using p as a parameter, we prove the following theorem.

Vol.2012-AL-138 No.8
2012/1/28

Theorem2 Let G be a treewidth k graph and p be a positive integer. Algorithm
APPROX-SPL-PDF finishes in O(4**+2 (p 4 2)2(+1) 4% 1) time.

Proof We prove the running time by bounding the number of terms in the description
of B;(S;, X;,x). The point of the proof is that we have at most k + 1 variables (i.e., k
variables for the distances from s to k vertices and the shortest path length z) for the
distribution function of one connected component in S;.

Let us define some necessary symbols and words. We assume that the order of the
edges e1,e2,...,em € E is given by the BOTTOMUP-TD(G). Let C;, be the con-
nected component of S at the i-th execution of APPROX-SPL-PDF’s loop. Remember
that we expand the clause that correspond to C;, into a sum of products after com-
puting the integrals at step 7. The factors of each term in the clause can be separated
into the step functions and the others; we call the earlier the step function part and the
latter the elementary function part. In the following we bound the number of possible
step function parts and elementary function parts.

Here we prove that the running time of processing the step function parts is
0(24(k+2)2) per clause.

Let us first see that the coefficients of the variables in the step functions’ arguments
may be 1, —1 and 0. At the beginning, all the coefficients of the variables that appears
in the step functions of Bo(So, Xp,z) are one of 1, —1 or 0. Then, it is easy to see
that neither multiplying the step functions nor differentiating the step functions does
not make any change to none of the coefficients of the variables in the step functions’
arguments. Then, since executing an integral of a term with respect to a variable x, in
APPROX-SPL-PDF causes only the replacement of x, by another single variable, we
can see that execution of the integral does make coefficients of the variables other than
1, —1 or 0. Therefore, at any point of the loop of APPROX-SPL-PDF, the variables in
the arguments of step functions are one of 1, —1 or 0.

We next prove that there are exactly two variables in the step functions’ arguments.
It is clear that there are exactly two variables in the arguments of every step functions
of B;(S;, Xi, z) at the beginning of APPROX-SPL-PDF. Then, again, neither multiply-

ing nor differentiating the step functions does not change the number of the variables

(© 2012 Information Processing Society of Japan



e L UB I e S

IPSJ SIG Technical Report
in the step functions’ arguments. Let us assume that all step functions’ arguments in
B;(S;, X;, ) have two variables each at a i-th execution of the loop of APPROX-SPL-
PDF. Suppose that we are going to integrate a term with respect to a variable x,.
Since the step function part of a term may define the upper limit or the lower limit of
the definite integral of z,, executing an integral replaces x, by another single variable,
which means that we still have that all arguments consists of exactly two variable at
the (74 1)-th execution of the loop of APPROX-SPL-PDF. Therefore, there are exactly
two variables in any step function’s argument.

Let us see that the two variables in the step functions’ arguments are chosen from at
most k + 2 variables in each factor of B;(S;, X;, ). Remember that we use the output
of procedure BOTTOMUP-TD(G) as the order of edges. Since the given graph G and
its joint graph G ; has treewidth k, there are at most k open joint vertices in connected
component C; ,. Then we have one variable x that is the broadcast time and k variables
that corresponds to the distance from s to the open joint vertices.

Now we are ready to see that there are at most g4(k+2)? step function parts per one
clause that corresponds to a connected component of S. Since there are at most k + 2
variables, there are at most (2(k + 2))? step function factors. Then the number of
possible combinations of the step function factors in a clause is bounded by 94(k+2)%

We proceed to bounding the number of elementary function part of a clause.

Let S; have £ open joint vertices at the i-th execution of the loop of APPROX-SPL-
PDF. Since we approximate the edge length’s distribution functions by a p-th Taylor
polynomial, the elementary function part of the terms a clause that corresponds to a

connected component can be expanded into a sum of the following form

Czilzy? ... xyt, (14)
where C is a constant that is given for each term, x1,x2,...,x, are the distance from s
to £ joints, a, ..., a¢ are nonnegative integers. Especially, we have that 0 < a; <p+ 2
forall j = 1,...,£. It amounts to that there are at most (p+ 2)*™! elementary function

parts in a closure that corresponds to a connected component of S;.
Since there can be 22* labelling variables’ combinations per one term, we have that
there are 24(k+2)* (p+ 2)’”12% combinations of step function parts elementary function

parts, and labelling variables in a closure that corresponds to a connected component

Vol.2012-AL-138 No.8
2012/1/28

of S.

The running time of processing the product of two clauses before executing an integral
is the largest part of the running time. Since we expand the product of two clauses into
a sum of products, the running time to process the expansion may be the square of the
number of possible terms. That is, since we may have 94(k+2)? (p+ 2)]”122]C terms in one
clause, the running time to process the product of two clauses is 4A(ke+2)? (p+ 2)20”1)4%.

Note that the running time of computing the Taylor approximation and executing
the integrals is relatively smaller and thus does not appear in the asymptotic evaluation
of the running time.

Now multiplying the running time of processing the product of two clauses, and the

number m of loop executions proves the theorem. O

Then, we show how large p is sufficient for having e as the upper bound on the dif-
ference between our approximation and actual broadcast time distribution function for
0<z < w.

Theorem3 Let G be a treewidth k& graph. Running APPROX-SPL-PDF with
p=0(k+w+Inm+1nl/e) is large enough for having the difference between Bg(x)
and the output Bg(z) of APPROX-SPL-PDF less than ¢ for 0 < z < w.

Proof Here we bound the difference between Bg(z) and the output Bg(z) of
APPROX-SPL-PDF by using m,w and p.

Remember that, by assumption, the maximum value of | (%)p Fe(x)] is less than 1
for 0 < x < w. Consider the difference between D(X,z) and D'(X,z) in APPROX-
INTEGRAL. Since G is treewidth k graph, there can be at most k open joints in the
connected component of S; that includes v and v; hence there are k + 1 variables in the
corresponding clause of D(X,x). Therefore, the difference between the value of D(X, x)
and D’(X,x) can occur as the error of k + 1 variables Taylor approximation, which is
bounded by (k4 1wt

ID(,a) = D'(¥,a)| < B — (15)
Then, since we divide the resulting form by 7 =1+ (k + 1)’w?/(p 4+ 1)! in APPROX-
INTEGRAL, we have that our approximation A;(S;, X;, z) in step 7. of APPROX-SPL-

(© 2012 Information Processing Society of Japan



1 LB R T
IPSJ SIG Technical Report

PDF does not get larger than B;(S;, X;, x); howi\;er, A;(S: X, ) may get
PP
- %) /7 (16)
times smaller than B;(S;, X;,z). Then, remembering that B;(S;, X;, z) is less than 1
and that 1/(1+z) > 1 —z for z > 0, we have that the difference between A;(S;, X;, z)
and B;(S;, X;, ) grows no more than 2(k + 1)PwP™2/(p + 1)! per one execution of the
loop of APPROX-SPL-PDF.

Now we can consider the overall error of the approximation. Since we repeat this
approximation for all edges, we have that the difference between the exact Bg(z) and
the output Bg(z) of APPROX-SPL-PDF satisfies ,

1Ba(s) - Bo(w)| < 2L (17)
To make this smaller than a positive value €, we hz;fve that p=0k+w+Inm+Inl/e)

is large enough. a

Now we have the following corollary.
Corollaryl The problem of computing the value of distribution function of the
stochastic shortest path length’s distribution function has an FPTAS if the given graph

G has treewidth less than a constant k.
5. Conclusions

In this paper, we proved that the problem of computing the distribution function of
the sum of the discrete random variables is # P-complete if the random variables obey
the two-values distribution. It shows that, in many optimization problem with random
weights, including the stochastic shortest path problem, computing the distribution
function of the optimal solution’s weight is # P-complete if the weights can take two
values. Then, we showed that there is an FPTAS for the problem of computing the
shortest path length’s distribution function if the given graph has treewidth less than a
constant k and the edge lengths obey the continuous distributions with some conditions

that allows us to use the Taylor approximation.

Vol.2012-AL-138 No.8
2012/1/28

Z2 F X B

1) E.Ando and J. Peters, Computing the Shortest Path Length Distribution Between
Two Vertices in Graphs with Random Edge Lengths, LA Symposium, pp.18-1 — 18-
8, Jul, 2011.

2) S. Arnborg, D. Corneil, A. Proskurowski, Complexity of Finding Embeddings in
a k-tree, SIAM Journal of Algebraic Discrete Methods, Vol. 8, No. 2, pp.277-284,
1987.

3) M. Ball, C. Colbourn, J. Provan, Network Reliability, Handbooks in Operations
Research and Management Science, Vol. 7: Network Models, M. Ball, T. Magnanti,
C. Monma, G. Nemhauser (eds.), Elsevier Science B.V., pp.673-762, 1995.

4) V. Bouchitté, D. Kratsch, H. Miiller, I. Todinca, On Treewidth Approximations,
Discrete Applied Mathematics, Vol. 136, pp.183-196, 2004.

5) H. Bodlaender, A Linear-Time Algorithm For Finding Tree-Decompositions of
Small Treewidth, SIAM Journal on Computing, Vol. 25, No. 6, pp.1305-1317, 1996.

6) M. Garey, D. Johnson, Computers and Intractability, W. H. FREEMAN AND
COMPANY, New York, 1979.

7) J. Gross, J. Yellen (eds.), Handbook of Graph Theory, CRC Press, 2003.

8) J. N. Hagstrom, Computational Complexity of PERT Problems, NETWORKS,
Vol. 18, pp.139-147, 1988.

9) M. Jerrum, A. Sinclair, Conductance and the Rapid Mixing Property for Markov
Chain: the Approximation of the Permanent Resolved, STOC’88 proc. of the twen-
tieth annual ACM symposium on Theory of computing, pp.235—244, 1988.

10) R. Karp, Reducibility Among Combinatorial Problems, in R. E. Miller and J. W.
Thatcher (eds.), Complezity of Computer Computations, Plenum Press, New York,
pp,85-103, 1972.

11) J. Simon, On the Difference Between One and Many, Lecture Notes in Computer
Science, 1977, Volume 57/1977, pp.480-491, DOI: 10.1007/3-540-08342-1_37.

(© 2012 Information Processing Society of Japan



