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確率的な枝重みつき無向グラフ上の

二点間最短路長さ分布の近似計算手法

Ei Ando †1 Joseph Peters†2

本稿では，無向グラフ G における二点間の確率的な最短路長さの分布関数 BG(x)

に対する近似アルゴリズムを提案する．確率的な最短路問題は厳密に解く事が困難な

ことが多く，枝長さが二つの離散的な値を取り得るような場合，最短路長さの確率分

布を求める問題は #P -完全である．一方で，枝長さの分布とグラフの構造の両方に良

い性質がある場合には確率分布関数 BG(x) を効率的に計算できる．本稿では，二点

間の確率的な最短路問題の分布関数を求める問題について，まず枝長さが二値分布に

従う場合にこの問題が #P -完全であることを示す．次に，連続的な分布に従う枝長さ

を考え，それらがある自然な条件を満たし，かつグラフ G の treewidth が定数 k 以

下である場合を考える．このとき x の多項式 B̃G(x) として BG(x) を近似すること

を考え，ある正の実数 ε, w が与えられるとき，|BG(x)− B̃G(x)| ≤ ε を 0 ≤ x ≤ w

の範囲で満たすような x を，x の上限 w，枝の数 m，許容誤差の逆数 1/ε の多項式

時間で BG(x) を計算できる事を示す．

Approximating the Stochastic Shortest Path Length
Between Two Vertices

Ei Ando †1 and Joseph Peters†2

In this paper, we propose an approximation algorithm for computing the
distribution function BG(x) of the stochastic shortest path length between two
vertices in undirected graph G. The stochastic shortest path problem is hard to
solve; computing the exact stochastic shortest path lengths’ distribution func-
tion is #P -complete if we assume that the edge lengths can take two discrete
values. We show that, however, if we consider some continuously distributed
edge lengths satisfying some natural conditions, we can approximately com-
pute the distribution function BG(x) of the stochastic shortest path length of
G. Our approximation algorithm outputs a polynomial B̃G(x) that approxi-
mates BG(x) for 0 ≤ x ≤ w and satisfies that |BG(x) − B̃G(x)| ≤ ε, where w
and ε are positive values. The running time of our algorithm is polynomial in
the graph size, w and 1/ε if G has a constant treewidth k.

1. Introduction

Let G = (V,E) be a graph with vertex set V = {v0, . . . , vn−1} and edge set

E ⊆ {{u, v}|u, v ∈ V }. We associate an edge length Xe for each edge e ∈ E; here

we assume that Xe’s are mutually independent random variables. We consider the

problem of computing the shortest path length between two vertices s, t ∈ V in G; here

we use the random edge lengths Xe for each e ∈ E. Note that any s− t path between

G can be the shortest path because the shortest path can vary depending on the real-

ization of the random edge lengths. Since we cannot determine the shortest path as a

single path in the stochastic version of the problem, there can be at least two kinds of

approaches: (1) By re-defining the shortest path including the probability, try to find

a single shortest path; or (2) we do not specify which is the shortest path but consider

the ‘shortest path length’ as a random variable and compute its distribution function.

We take the latter approach, that is, we are to compute the distribution function BG(x)

of the shortest path length.

The problem of computing the distribution function of this kind is, however, usually

hard to solve. Hagstrom8) proved, using the transportation graph, that the problem of

computing the stochastic longest path length in directed acyclic graphs is #P -complete

if the edge lengths can take 0 or 1. Ball et al. writes about the same problem in3) that

the problem is NP -hard for series-parallel graphs when the edge lengths can take two

different values. In this paper, we give a simple #P -completeness proof for comput-

ing the distribution function of the sum of the mutually independent random variables

that can take 0 or a positive integer. Our proof shows that if we consider a stochastic

version of the optimization problem such as the shortest path problem, the minimum

spanning tree problem, maximum matching problem, etc., the problem of computing

the distribution function of the optimal solutions’ weight is #P -complete even for a

path graph.
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On the contrary, by defining a parameter k of a graph, we showed, in1), that the

problem of computing the shortest path length’s distribution can be solved in polyno-

mial time in the graph size, if the parameter k is bounded by a constant, and the edge

lengths obey the horizontal shifts of the exponential distribution with expectation 1. In

addition, we show, in the paper, that there is an FPTAS for the problem of computing

the distribution of the shortest path length if the given graph has treewidth less than a

constant k and the random edge lengths obeys continuous distributions satisfying some

natural conditions.

Here we make some notes about the treewidth. According to7), the treewidth is

defined as follows, using the tree decomposition.

Definition1 A tree decomposition of G = (V,E) is a pair ({Ui | i ∈ I}, T ), where
{Ui | i ∈ I} is a family of subsets of V and T is a tree with vertex set I such that

( 1 )
∪

i∈I
Ui = V ,

( 2 ) for all edges (x, y) ∈ E, there is an element i ∈ I such that x, y ∈ Ui,

( 3 ) for all triples i, j, k ∈ I, if j is on the path from i to k in T , then Ui ∩ Uk ⊆ Uj .

The width of a graph decomposition ({Ui | i ∈ I}, T ) is given by maxi∈I{|Ui|−1}. The
treewidth of a graph G is defined as the minimum width taken all over tree decompo-

sitions of G.

According to Arnborg et al.2), computing the exact treewidth is an NP -hard problem

and corresponding decision problem is NP -complete. However, checking if a graph G

has treewidth less than a fixed integer k can be answered efficiently as long as k is not

included in the problem instance5). It is also shown in5) that once a graph G is known

to be treewidth k graph, we can construct a tree decomposition efficiently. There is

an approximation algorithm that is proposed by Bouchitté et al.4). Their algorithm

outputs an upper bound on the graph k and has approximation ratio O(log k) for the

treewidth k graph.

The paper is organized as follows. In Section 2, we show our proof for the #P -

completeness of the computing the distribution of the sum of discrete random variables.

In Section 3, we show our exact algorithm for computing the shortest path length’s dis-

tribution function. In Section 4, we show our approximation algorithm. The paper is

concluded in Section 5.

2. #P-Completeness of Computing a Sum’s Distribution

We here explain the #P -completeness of computing the distribution function of a

sum of discrete random variables. The arguments in this section apply to the problem

of computing the distribution function of many stochastic version of the optimization

problems. We say a random variable X obeys a two-values distribution if X can take

value 0 with probability 1/2 and value a value c ̸= 0 otherwise. Here we consider the

following problem.

Definition2 Let X1, . . . , Xn be n mutually independent random variables, where

Xi’s obey two-values distributions; Xi can take 0 or a positive integer ci with proba-

bility 1/2 for each values. In problem SUM-PDF, we are to compute the distribution

function F (x) of the sum X =
∑

i=1,...,n
Xi. That is, we compute the probability that

X is less than or equal to a given integer x.

Then we can prove the following theorem.

Theorem1 SUM-PDF is #P -complete.

To prove the theorem, we need to show the following Lemmas 1.

Lemma1 SUM-PDF is in #P .

Proof The distribution function F (x) is given by counting the number N(x) of com-

binations of X1, . . . , Xn where the sum X is less than x; we have that F (x) = N(x)/2n.

�

Lemma2 SUM-PDF is #P -hard.

Proof Let SUM-PMF be another problem in which we are to compute the probability

mass function F ′(x) of the sum X =
∑

i=1,...,n
Xi. That is, given an integer x, we

are to compute the probability that X is equal to x. Then, since the probability mass

function can be computed by F ′(x) = F (x) − F (x − 1), SUM-PMF can be solved in

polynomial time if we could solve SUM-PDF.

We can see that SUM-PMF is actually equivalent to the counting version of the follow-

ing SUBSET SUM6), which is proved to be a #P -complete problem by Simon11) using

Karp’s reduction in10). In SUBSET SUM problem, we are given a set A = {a1, . . . , an}
of positive integers and one more integer B. Since we are considering counting version of
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the problem, we are to compute the number of subsets A′ of A satisfying
∑

a∈A′ a = B.

Then, if we could solve SUM-PMF in polynomial time, we can solve SUBSET SUM.

We set all ci = ai for all i = 1, . . . , n. Then if we could compute F ′(x), we have the

answer of the counting version of SUBSET SUM, that is, F ′(x)2n.

Therefore, we can solve the counting version of SUBSET SUM, if we could solve

SUM-PDF, which proves this lemma. �

Then we have the proof of Theorem 1.

Proof Since SUM-PDF is in #P and #P -hard by Lemma 1 and 2, we have Theorem

1. �

Now let us consider another problem for comparison.

Definition3 Let X1, . . . , Xn be n mutually independent random variables. We here

assume that Xi for i = 1, . . . , n obey the horizontal shifts of the exponential distribution

with expectation 1, that is,

P (Xi ≤ x) = H(x− ci) exp(−x+ ci), (1)

where H(x− ci) is a step function satisfying H(x− ci) = 0 for x ≤ ci and H(x− ci) = 1

for x > ci. Then, SUM-PDF-EXP is a problem in which we are to compute the distri-

bution function F (x) of the sum X =
∑

i=1,...,n
Xi.

Here we can see that SUM-PDF-EXP can be solved efficiently: It is well known that

the sum of mutually independent and exponentially distributed random variables are

given as a gamma distribution. SUM-PDF-EXP can be solved in linear time in the

input size, which makes a contrast to the discrete version of the problem.

One may wonder where this difference comes from. We conjecture that the exponen-

tial distribution makes the problem easier because the distribution is given by a uniform

formula whose density has only one peak. In fact, we could consider some other discrete

distributions, including the binomial distribution, that make the problem easy. It is also

possible that the two-values distribution of SUM-PDF is one of the hardest distribution

to deal with, despite of its simple appearance.

We are now interested in a question: To what extent can the problem be easier when

we assume some well-behaved continuous distributions ? This is important because the

stochastic network analysis with continuously distributed random variables has many

applications. As for the shortest path length’s distribution function in a graph with

random edge lengths, we answer this question partly in the following.

3. Algorithm for the Case where Edge Lengths are Continuously

Distributed

In this section, we briefly introduce our algorithm SPL-PDF that computes the ex-

act distribution function of the stochastic shortest path length between s = v0 and

t = vn−1, if we could compute the integrals in SPL-PDF. In our previous work1), we

showed that SPL-PDF computes the distribution function of the stochastic shortest

path length. Although there is a slight change between the algorithm in the previous

work, the correctness of the algorithm does not be spoiled by the change: the difference

from the algorithm in1) is only in the order of processing the edges, which does not

change the output of the algorithm. As for the correctness proof of SPL-PDF, see1).

3.1 Creating the Initial Graph S0

Given an undirected graph G = (V,E) with n vertices and m edges, we construct a

graph GJ = (VJ , EJ) with vertex set VJ = V ∪ {ve, ue | e = {u, v} ∈ E and u, v ∈ V }
and edge set EJ = J1 ∪ J2, where J1 = {{u, ue}, {ve, v} | u, v ∈ V, e = {u, v} ∈ E}
and J2 = {{ue, ve} | u, v ∈ V, e = {u, v} ∈ E}. In other words, we replace each edge

e = {u, v} of G by a path {u, ue}, {ue, ve}, {ve, v} containing two new vertices ue and

ve. We assign a fixed edge length ϵ > 0 that is arbitrary close to 0 to each edge in J1.

Each edge {ue, ve} ∈ J2 is assigned the edge length of {u, v} ∈ E. We call the vertices

ue, ve ∈ VJ \ V the joint vertices. A joint vertex v ∈ VJ \ V is open in subgraph G′
J

of GJ if there is some edge e incident on v in GJ but e is missing in G′
J . Fig. 1 shows

an example of GJ generated from a graph G. We use X0 to denote the association of

each joint vertex v ∈ VJ \V with a variable xv which is the distance between the source

s = v0 and v. Thus, X0 = {(v, xv) | v ∈ VJ \ V }. The subgraph S0 of GJ is obtained

by removing the edges in J2 from GJ . Let e1, . . . , em ∈ J2 be ordered according to a

subroutine BOTTOMUP-TD that we show later. Then graph Si for i = 1, . . . ,m is a

graph which is given by adding edge e1, . . . , ei to S0. Also, we consider the correspon-

dence between the dummy variables for the distances from s to each open joint vertices

in S1, . . . , Sm. The set Xi for i = 1, . . . ,m is given by removing the pairs (v, xv) from
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図 1 An example of a graph G (left), GJ (centre), and S0 (right). Smaller circles are the joint

vertices. No joint vertices are open in GJ ; all joint vertices are open in S0.

X0 where v is a joint vertex that appears in either one of edges e1, . . . , ei.

The description of the subroutine BOTTOMUP-TD(G) is the following. The idea of

BOTTOMUP-TD is to output the edges from the leaves of the tree decomposition to

the edges that are closer to the root.

Algorithm BOTTOMUP-TD(G)

1. Compute a tree decomposition ({Ui | i ∈ I = {1, . . . , r}}, T ) of GJ so that s ∈ U1

and maxi∈I{|Ui| − 1} ≤ k ;

2. Let A be ∅;
3. For each Ui i ∈ I in the BFS order from Ui;

4. For each edge e = {u, v} ⊆ Ui;

5. Add edge e to A at the tail;

6. Output the reverse of A.

3.2 Labelling variables and Label Choosing Operations

We introduce labelling variables and label choosing operations. The labelling variables

and label choosing operations are for simplifying the description of the algorithm. For

each v ∈ V , there may be two labelling variables vo, vi and two label choosing opera-

tions Ro
v, R

i
v. The label choosing operation Ro

v (resp. Ri
v) is used in the algorithm (in

the next subsection) to compute the sum of the terms that include the labelling variable

vo (resp. vi) as a factor.

3.3 Algorithm Description

In our algorithm, we consider a probability Bi(Si,Xi, x) for i = 0, . . . ,m of the event

where each variables in Xi is greater than the the shortest path lengths between s

and the corresponding open joint vertices in Xi. The following is the definition of

B0(Si,Xi, x).

Definition4

Bs(S0,X0) =
∏
v∈Vs

voH(xu) (2)

Bt(S0,X0, x) =
∑
v∈Vt

viH(x− xv)
∏

w∈Vt\{v}

woH(xw − xv) (3)

Bu(S0,X0) =
∑
v∈V

vi
∏

w∈Vu\{v}

woH(xw − xv) (4)

B0(S0,X0, x) = Bs(S0,X0)Bt(S0,X0, x)
∏

u∈V \{s,t}

Bu(S0,X0). (5)

By Vv ⊆ V , we denote the set of vertices that are adjacent to v ∈ V . We note that

H(x) is a step function; H(x) = 0 if x ≤ 0 and H(x) = 1 x > 0. Now the following is

the description of SPL-PDF.

Algorithm SPL-PDF(G)

1. Construct S0 from G;

2. Set i:=0;

3. Compute B0(S0,X0, x) using Definition 4;

4. For each e = {u, v} ∈ J2 in order given by BOTTOMUP-TD(G) do

5. Let Si+1 be the graph that is obtained by adding e to Si;

6. Let Xi+1 = Xi \ {(u, xu), (v, xv)}, where xu and xu are the distance from u, v to

s, respectively;

7. Compute Bi+1(Si+1,Xi+1, x) by the following;
Bi+1(Si+1,Xi+1, x) = P1(Si,Xi+1, x; e) + P2(Si,Xi+1, x; e) + P3(Si,Xi+1, x; e), (6)

P1(Si,Xi+1, x; e)=

∫
R2

(
∂

∂xv
Ro

v(R
i
u(Bi(Si,Xi, x)))

)
fe(xu − xv)dxudxv, (7)

P2(Si,Xi+1, x; e)=

∫
R2

(
∂

∂xu
Ri

v(R
o
u(Bi(Si,Xi, x)))

)
fe(xv − xu)dxvdxu, (8)

P3(Si,Xi+1, x; e)=

∫
R2

(
∂

∂xu

∂

∂xv
Ro

v(R
o
u(Bi(Si,Xi, x)))

)
(1−Fe(|xv − xu|))dxudxv; (9)

8. Replace the labelling variables ui, uo, vi, and vo by 1 in Bi+1(Si+1,Xi+1, x);

9. Set i:=i+ 1;

10. Output Bm(Sm,Xm, x) as BG(x), where Sm = GJ and Xm = ∅ at this point.
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To make our algorithm SPL-PDF work, we need some implementation for executing

the integrals. In the next section, we consider approximately executing the integrals by

using Taylor approximation.

4. Approximation Algorithm for the Shortest Path Length’s Distri-

bution

In this section, we show an algorithm for approximately computing the distribution

function of the shortest path length. We give the approximation algorithm by slightly

changing SPL-PDF. The idea of our approximation algorithm is to approximately com-

pute the integrals in SPL-PDF by using the Taylor polynomials. Our approximation

algorithm can be applied if the edge lengths are mutually independent and their distri-

bution functions have the following three properties:

( 1 ) For the distribution function Fe(x) of the edge length of e is 0 if x ≤ 0;

( 2 ) the Taylor series of Fe(x) generated at x = 0 converges to Fe(x) for any x > 0;

( 3 ) given an upper bound w on x, for any nonnegative integer i satisfying 0 ≤ i ≤ p,

the i-th derivative
(

d
dx

)i
Fe(x) is less than 1 for all 0 ≤ x ≤ w.

The following is the approximation algorithm APPROX-SPL-PDF that computes the

approximating polynomial of the shortest path length’s distribution function BG(x).

The idea of APPROX-SPL-PDF is that it computes the approximation Ai(Si,Xi, x) of

Bi(Si,Xi, x) that is in algorithm SPL-PDF. APPROX-SPL-PDF accepts three inputs:

the input graph G, a positive integer p, and a real number w ≥ 0. The second input p

is the degree of Taylor polynomial with which we use to approximate the ongoing com-

putation of the integrals. To compute an approximating polynomial B̃G(x) of BG(x)

so that the difference between the BG(x) and B̃G(x) is less than ε for 0 ≤ x ≤ w, our

algorithm finishes in a polynomial time in n,m, ε and w.

Algorithm APPROX-SPL-PDF(G, p, w)

1. Construct S0 from G;

2. Set i:=0;

3. Compute A0(S0,X0, x) = B0(S0,X0, x) using Definition 4;

4. For each e = {u, v} ∈ J2 in order given by BOTTOMUP-TD(G) do

5. Let Si+1 be the graph that is obtained by adding e to Si;

6. Let Xi+1 = Xi \ {(u, xu), (v, xv)}, where xu and xu are the distance from u, v to

s, respectively;

7. Compute Ai+1(Si+1,Xi+1, x) by the following;

Ai+1(Si+1,Xi+1, x) = Q1(Si,Xi+1, x; e) +Q2(Si,Xi+1, x; e) +Q3(Si,Xi+1, x; e),

where Qj(S,X ′, x; e) is the output of APPROX-INTEGRAL(Pj(S,X , x; e), xu, xv) for

j = 1, 2, 3 and

P1(Si,Xi+1, x; e)=

∫
R2

(
∂

∂xv
Ro

v(R
i
u(Ai(Si,Xi, x)))

)
fe(xu − xv)dxudxv, (10)

P2(Si,Xi+1, x; e)=

∫
R2

(
∂

∂xu
Ri

v(R
o
u(Ai(Si,Xi, x)))

)
fe(xv − xu)dxvdxu, (11)

P3(Si,Xi+1, x; e)=

∫
R2

(
∂

∂xu

∂

∂xv
Ro

v(R
o
u(Ai(Si,Xi, x)))

)
(1−Fe(|xu − xv|))dxudxv; (12)

8. Replace the labelling variables ui, uo, vi, and vo by 1 in Ai+1(Si+1,Xi+1, x);

9. Set i:=i+ 1;

10. Output Am(Sm,Xm, x) as B̃G(x), where Sm = GJ and Xm = ∅ at this point.

The subroutine APPROX-INTEGRAL is used in step 7. of APPROX-SPL-PDF.

APPROX-INTEGRAL works for a double definite integral D(X , x) that has, as its

integrand, a product of sum-of-products-form polynomials, label removing operations,

a edge length’s distribution (or density) function Fe(xv − xu), and the differentiation

symbol ∂/∂xu, ∂/∂xv.

The basic idea of APPROX-INTEGRAL is the following 3 steps: (1) Expand a part

of the integrand into a sum of products; (2) Approximate the part of the integrand

by the Taylor polynomial of degree p; (3) Execute the integral. Note that, to keep the

integrand’s expression as short as possible, we do not expand the entire integrand in the

step (1). We say that a clause of a polynomial D(X , x) is a factor of D(X , x) that may

be a constant, a variable, a function, or a sum of products of these items. Before we

approximate the integrand, we expand the product of clauses that includes the variables

xu and xv into a sum of products, making a new clause. Note that we do not expand

the integrand any further as long as the dummy variable of the integral does not appear
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in multiple clauses. We note that any clause corresponds to a connected component of

Si throughout the execution of the algorithm APPROX-SPL-PDF when we expand the

clauses in this way. For example, at the beginning of APPROX-SPL-PDF, we consider

the factors of B0(S0,X0, x) int Definition 4 as the clauses: Bs(S0,X0), Bt(S0,X0, x),

and Bu(S0,X0, x) for each u ∈ V \ {s, t}. It is clear that these factors corresponds

to the connected components of S0. Then it is easy to see that multiplying a func-

tion that includes two variables xu and xv, and expanding the two clauses and this

function into a sum of products makes a new clause that corresponds to a connected

component in S1 given by adding edge {u, v} ∈ J2 to S0. Then we can execute the

double integral in the clause with respect to xu and xv after approximating the clause

by a Taylor polynomial including xu and xv. Also, note that the three polynomials

Q1(Si,Xi+1, x), Q2(Si,Xi+1, x) and Q3(Si,Xi+1, x) have the other clauses in common,

which means that Ai+1(Si+1,Xi+1, x) can be easily factorized into a product of clauses.

Algorithm APPROX-INTEGRAL(D(X , x), xu, xv)

1. Process the partial differentiations in the integrand of D(X , x);

2. Let U(X , x) be a polynomial that consists in the step function, the labelling vari-

ables, and variables in X satisfying

D(X , x) =

∫∫
R2

U(X , x)Fe(xu − xv)dxudxv; (13)

4. Expand the product of clauses of D(X , x) including the variables xu and xv;

5. Let D′(X , x) be given by replacing the clause including xu and xv in the integrand

of D(X , x) by Taylor approximation of degree p at the point where all variables are

equal to 0;

6. Let Q(X ′, x) be the resulting form of executing the integrals of D′(X , x) with re-

spect to xu and xv;

7. Let Q′(X ′, x) = Q(X ′, x)/τ where τ = 1 + (k + 1)pwp+2/(p+ 1)!;

8. Output the resulting form Q′(X ′, x).

We execute step 7. of APPROX-INTEGRAL in order to bound the approximation

error in the proof.

By using p as a parameter, we prove the following theorem.

Theorem2 Let G be a treewidth k graph and p be a positive integer. Algorithm

APPROX-SPL-PDF finishes in O(44(k+2)2(p+ 2)2(k+1)42km) time.

Proof We prove the running time by bounding the number of terms in the description

of Bi(Si,Xi, x). The point of the proof is that we have at most k + 1 variables (i.e., k

variables for the distances from s to k vertices and the shortest path length x) for the

distribution function of one connected component in Si.

Let us define some necessary symbols and words. We assume that the order of the

edges e1, e2, . . . , em ∈ E is given by the BOTTOMUP-TD(G). Let Ci,v be the con-

nected component of S at the i-th execution of APPROX-SPL-PDF’s loop. Remember

that we expand the clause that correspond to Ci,v into a sum of products after com-

puting the integrals at step 7. The factors of each term in the clause can be separated

into the step functions and the others; we call the earlier the step function part and the

latter the elementary function part. In the following we bound the number of possible

step function parts and elementary function parts.

Here we prove that the running time of processing the step function parts is

O(24(k+2)2) per clause.

Let us first see that the coefficients of the variables in the step functions’ arguments

may be 1, −1 and 0. At the beginning, all the coefficients of the variables that appears

in the step functions of B0(S0,X0, x) are one of 1, −1 or 0. Then, it is easy to see

that neither multiplying the step functions nor differentiating the step functions does

not make any change to none of the coefficients of the variables in the step functions’

arguments. Then, since executing an integral of a term with respect to a variable xv in

APPROX-SPL-PDF causes only the replacement of xv by another single variable, we

can see that execution of the integral does make coefficients of the variables other than

1, −1 or 0. Therefore, at any point of the loop of APPROX-SPL-PDF, the variables in

the arguments of step functions are one of 1, −1 or 0.

We next prove that there are exactly two variables in the step functions’ arguments.

It is clear that there are exactly two variables in the arguments of every step functions

of Bi(Si,Xi, x) at the beginning of APPROX-SPL-PDF. Then, again, neither multiply-

ing nor differentiating the step functions does not change the number of the variables
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in the step functions’ arguments. Let us assume that all step functions’ arguments in

Bi(Si,Xi, x) have two variables each at a i-th execution of the loop of APPROX-SPL-

PDF. Suppose that we are going to integrate a term with respect to a variable xv.

Since the step function part of a term may define the upper limit or the lower limit of

the definite integral of xv, executing an integral replaces xv by another single variable,

which means that we still have that all arguments consists of exactly two variable at

the (i+1)-th execution of the loop of APPROX-SPL-PDF. Therefore, there are exactly

two variables in any step function’s argument.

Let us see that the two variables in the step functions’ arguments are chosen from at

most k + 2 variables in each factor of Bi(Si,Xi, x). Remember that we use the output

of procedure BOTTOMUP-TD(G) as the order of edges. Since the given graph G and

its joint graph GJ has treewidth k, there are at most k open joint vertices in connected

component Ci,v. Then we have one variable x that is the broadcast time and k variables

that corresponds to the distance from s to the open joint vertices.

Now we are ready to see that there are at most 24(k+2)2 step function parts per one

clause that corresponds to a connected component of S. Since there are at most k + 2

variables, there are at most (2(k + 2))2 step function factors. Then the number of

possible combinations of the step function factors in a clause is bounded by 24(k+2)2 .

We proceed to bounding the number of elementary function part of a clause.

Let Si have ℓ open joint vertices at the i-th execution of the loop of APPROX-SPL-

PDF. Since we approximate the edge length’s distribution functions by a p-th Taylor

polynomial, the elementary function part of the terms a clause that corresponds to a

connected component can be expanded into a sum of the following form

Cxa1
1 xa2

2 . . . xaℓ
ℓ , (14)

where C is a constant that is given for each term, x1, x2, . . . , xℓ are the distance from s

to ℓ joints, a1, . . . , aℓ are nonnegative integers. Especially, we have that 0 ≤ aj ≤ p+ 2

for all j = 1, . . . , ℓ. It amounts to that there are at most (p+2)k+1 elementary function

parts in a closure that corresponds to a connected component of Si.

Since there can be 22k labelling variables’ combinations per one term, we have that

there are 24(k+2)2(p+2)k+122k combinations of step function parts elementary function

parts, and labelling variables in a closure that corresponds to a connected component

of S.

The running time of processing the product of two clauses before executing an integral

is the largest part of the running time. Since we expand the product of two clauses into

a sum of products, the running time to process the expansion may be the square of the

number of possible terms. That is, since we may have 24(k+2)2(p+2)k+122k terms in one

clause, the running time to process the product of two clauses is 44(k+2)2(p+2)2(k+1)42k.

Note that the running time of computing the Taylor approximation and executing

the integrals is relatively smaller and thus does not appear in the asymptotic evaluation

of the running time.

Now multiplying the running time of processing the product of two clauses, and the

number m of loop executions proves the theorem. �

Then, we show how large p is sufficient for having ε as the upper bound on the dif-

ference between our approximation and actual broadcast time distribution function for

0 ≤ x ≤ w.

Theorem3 Let G be a treewidth k graph. Running APPROX-SPL-PDF with

p = O(k + w + lnm + ln 1/ε) is large enough for having the difference between BG(x)

and the output B̃G(x) of APPROX-SPL-PDF less than ε for 0 ≤ x ≤ w.

Proof Here we bound the difference between BG(x) and the output B̃G(x) of

APPROX-SPL-PDF by using m,w and p.

Remember that, by assumption, the maximum value of |
(

d
dx

)p
Fe(x)| is less than 1

for 0 ≤ x ≤ w. Consider the difference between D(X , x) and D′(X , x) in APPROX-

INTEGRAL. Since G is treewidth k graph, there can be at most k open joints in the

connected component of Si that includes u and v; hence there are k+1 variables in the

corresponding clause of D(X , x). Therefore, the difference between the value of D(X , x)

and D′(X , x) can occur as the error of k + 1 variables Taylor approximation, which is

bounded by

|D(X , x)−D′(X , x)| ≤ (k + 1)pwp+2

(p+ 1)!
. (15)

Then, since we divide the resulting form by τ = 1 + (k + 1)pwp/(p+ 1)! in APPROX-

INTEGRAL, we have that our approximation Ai(Si,Xi, x) in step 7. of APPROX-SPL-
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PDF does not get larger than Bi(Si,Xi, x); however, Ai(SiXi, x) may get(
1− (k + 1)pwp+2

(p+ 1)!

)
/τ (16)

times smaller than Bi(Si,Xi, x). Then, remembering that Bi(Si,Xi, x) is less than 1

and that 1/(1 + x) ≥ 1− x for x > 0, we have that the difference between Ai(Si,Xi, x)

and Bi(Si,Xi, x) grows no more than 2(k + 1)pwp+2/(p + 1)! per one execution of the

loop of APPROX-SPL-PDF.

Now we can consider the overall error of the approximation. Since we repeat this

approximation for all edges, we have that the difference between the exact BG(x) and

the output B̃G(x) of APPROX-SPL-PDF satisfies

|BG(x)− B̃G(x)| ≤
2m(k + 1)pwp+2

(p+ 1)!
. (17)

To make this smaller than a positive value ε, we have that p = O(k+w+lnm+ln 1/ε)

is large enough. �

Now we have the following corollary.

Corollary1 The problem of computing the value of distribution function of the

stochastic shortest path length’s distribution function has an FPTAS if the given graph

G has treewidth less than a constant k.

5. Conclusions

In this paper, we proved that the problem of computing the distribution function of

the sum of the discrete random variables is #P -complete if the random variables obey

the two-values distribution. It shows that, in many optimization problem with random

weights, including the stochastic shortest path problem, computing the distribution

function of the optimal solution’s weight is #P -complete if the weights can take two

values. Then, we showed that there is an FPTAS for the problem of computing the

shortest path length’s distribution function if the given graph has treewidth less than a

constant k and the edge lengths obey the continuous distributions with some conditions

that allows us to use the Taylor approximation.
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