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A polynomial time algorithm

for bounded directed pathwidth

Hisao Tamaki†1

We give a polynomial time algorithm for bounded directed pathwidth. Given
a positive integer k and a digraph G with n vertices and m edges, it runs in
O(mnk+1) time and constructs a directed path-decomposition of G of width at
most k if one exists and otherwise reports the non-existence.

1. Introduction

According to Barát3), the notion of directed pathwidth of digraphs was intro-

duced by Reed, Thomas, and Seymour around 1995. It is a generalization of

pathwidth18), which is defined for undirected graphs, in the sense that if G is an

undirected graph and G′ is a digraph obtained from G by replacing each edge

by a pair of directed edges in both directions, then the directed pathwidth of G′

equals the pathwidth of G.

Following the tremendous success of the notion of treewidth19) of undirected

graphs, as a key tool for the graph minor theory20) and for designing efficient

algorithm2), several authors have proposed extensions of this notion to digraphs.

Johnson, Robertson, Seymour, and Thomas introduced directed treewidth12),

and showed that some NP-hard problems on digraphs including the directed

Hamilton cycle problem can be solved in polynomial time if the given digraph

has bounded directed treewidth. Since then, several variants of directed treewidth

have been proposed: D-width21), DAG-width7),17), and Kelly-width11). It is the

subject of ongoing active research to compare respective power of these variants

and other related digraph measures10).

†1 明治大学
Meiji University

In contrast, the extension of the notion of pathwidth to digraphs seems stable.

Only one parameter, the directed pathwidth, has been proposed, which enjoys

several equivalent formulations just as undirected treewidth and pathwidth do.

Although the applicability of these digraph parameters in designing efficient

algorithms is provably limited in the sense that directed graph counterparts of

some fixed parameter tractable problems on undirected graphs are hard to solve

when parameterized by these width parameters15), they are nonetheless funda-

mental digraph parameters that deserve further explorations for algorithmic ap-

plications. For example, in22), the present author used directed pathwidth in a

heuristic algorithm for exactly identifying the set of attractors of a given boolean

network and experimentally showed the effectiveness of the approach.

Since it is NP-complete to decide, given a positive integer k and an undirected

graph G, whether the pathwidth of G is at most k13), the same holds for the

directed pathwidth. The situation is quite different between these problems if

k is fixed. In this case, the problem of deciding if an undirected graph G has

pathwidth at most k (and of constructing the associated path-decomposition)

can be solved in linear time5),6). In contrast, no polynomial time algorithm for

fixed k (even for k = 2) was previously known, that decides whether the directed

pathwidth of a given digraph is at most k.

In the undirected case, the fact that there is a polynomial time algorithm for

fixed k that decides whether a given graph has pathwidth at most k is an imme-

diate consequence of the graph minor theorem due to Robertson and Seymour20):

since the class of graphs with pathwidth k or smaller is closed under taking mi-

nors, that class is characterized by a fixed set of forbidden minors and therefore

the membership to that class can be tested by checking if the given graph con-

tains any of the forbidden minors. This does not hold for the directed case.

Although the class of digraphs with directed pathwidth at most k, for any fixed

k, is closed under taking minors, with a suitable definition of digraph minors12),

no counterpart of the graph minor theorem is known for digraphs.

The standard algorithmic approach for undirected pathwidth for fixed k that

leads to the linear time algorithm mentioned above is to first obtain a tree-

decomposition of width O(k) of the given graph and then perform a dynamic

programming on this tree-decomposition to optimally solve the problem. There
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are again difficulties in extending this approach to the directed case. Although

there is a fast approximation algorithm12) to obtain a directed tree-decomposition

of G of width O(k), given that G has directed pathwidth at most k, directed tree-

decompositions do not seem to support dynamic programming solutions to the

problem of exactly determining the directed pathwidth. We may try to use a

tree-decomposition of the underlying undirected graph, but since the treewidth

of the underlying undirected graph is not bounded by any function of the di-

rected pathwidth of the original digraph, we do not obtain a time bound that is

polynomial in the size of the digraph even if the directed pathwidth is bounded.

In this paper, we show that the directed pathwidth problem for fixed k can be

solved in polynomial time. We denote the directed pathwidth of digraph G by

dpw(G).

Theorem 1.1 Given a positive integer k and a digraph G of n vertices and

m edges, it can be decided in O(mnk+1) time whether dpw(G) ≤ k. More-

over, if dpw(G) ≤ k, a directed path-decomposition of width at most k can be

constructed in the same amount of time.

Our algorithm is based on a lemma (Lemma 3.1), which enables us to prune

the natural search tree of factorial size into one of polynomial size. This lemma,

which we call the commitment lemma, asserts that if a descendant of a node

satisfies certain conditions then all other descendants of the node in the same

generation can be safely removed from the search tree.

Our algorithm is extremely simple and easy to implement. We remark that even

for undirected pathwidth, for which a fixed parameter linear-time algorithm is

known6), our algorithm is a strong alternative for practical use, as the linear-time

algorithm depends exponentially on k3 and is considered highly impractical. To

the best of the present author’s knowledge, an explicit and implementable nO(k)

time algorithm has been known for treewidth1) but not for pathwidth for general

fixed k. We also remark that, even for the ranges of n and k where the time

bound in Theorem 1.1 is practically useless, the commitment lemma would be

useful in designing heuristic algorithms.

The rest of this paper is organized as follows. After some preliminaries in

Section 2, we describe some basic ideas underlying the pruning of search trees in

Section 3, assuming the commitment lemma. The proof of this lemma is given in

Section 4. Section 5 provides some details of the algorithm which are necessary

to establish the exact running time bound stated in Theorem 1.1.

This work was originally reported in23).

2. Preliminaries

Let G be a digraph. For each subset U of V (G), we denote by N−
G (U) the set

of in-neighbors of U , i.e., N−
G (U) = {v ∈ V (G) \ U | ∃u ∈ U : (v, u) ∈ E(G)},

and d−G(U) = |N−
G (U)| the number of in-neighbors of U .

Rather than giving the standard definition of the directed pathwidth, we use

an alternative formulation called the directed vertex separation number, defined

below.

We call a sequence σ of vertices of G non-duplicating if each vertex of G occurs

at most once in σ. We denote by Σ(G) the set of all non-duplicating sequences of

vertices of G. For each sequence σ ∈ Σ(G), we denote by V (σ) the set of vertices

constituting σ and by |σ| = |V (σ)| the length of σ. For brevity, we write d−G(σ)

and N−
G (σ) for d−G(V (σ)) and N−

G (V (σ)), respectively.

For each pair of sequences σ, τ ∈ Σ(G) such that V (σ) ∩ V (τ) = ∅, we denote

by στ the sequence in Σ(G) that is σ followed by τ . If σ′ = στ for some τ , then

we say that σ is a prefix of σ′ and that σ′ is an extension of (or extends) σ; we

say that σ is a proper prefix of σ′ and that σ′ is a proper extension of σ if τ is

nonempty. For each non-empty sequence σ ∈ Σ(G), we denote by π(σ) the prefix

of σ with length |σ| − 1.

For σ, τ ∈ Σ(G), we say σ is a subsequence of τ if V (σ) ⊆ V (τ) and, for each

pair of distinct vertices u and v in V (σ), u occurs before v in σ if and only if u

occurs before v in τ .

Let G be a digraph and k a positive integer. We say σ ∈ Σ(G) is k-feasible for

G if d−G(σ
′) ≤ k for every prefix σ′ of σ. We may drop the reference to G and

say σ is k-feasible when G is clear from the context.

Definition 2.1 The directed vertex separation number of digraph G, denoted

by dvsn(G), is the minimum integer k such that there is a k-feasible sequence

σ ∈ Σ(G) with V (σ) = V (G).

Note that, because of the equivalence of the directed vertex separation number

to the directed pathwidth stated below, this parameter is invariant under the
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simultaneous reversal of all the edges.

It is known that dvsn(G) = dpw(G) for every digraph G24) (see also14) for

the undirected case) and the conversions between the sequences achieving the

directed vertex separation number and the optimal directed path decompositions

are simple. In particular, the conversion from the former to the latter can be

done in O(m+kn) time, where n = |V (G)|, m = |E(G)|, and k = dpw(G). Based

on these equivalence and conversion, we focus on computing the directed vertex

separation number and the corresponding sequence in the following sections.

3. Search tree pruning

Let digraph G be fixed and let n = |V (G)|. A straightforward exponential

time algorithm for deciding if dvsn(G) ≤ k constructs a search tree in which each

node at level i of the tree is a k-feasible sequence of length i and the parent of a

non-empty sequence σ is π(σ), the prefix of σ with length |σ| − 1. We show that

this search tree can be pruned into one with O(nk+1) nodes.

The key to this pruning is the notion of non-expanding extensions. We say that

an extension τ of σ ∈ Σ(G) is non-expanding if τ is a proper extension of σ and

d−G(τ) ≤ d−G(σ). Suppose σ is k-feasible and has an immediate non-expanding

extension σv, where v ∈ V (G) \ V (σ). Then it appears plausible to hope that

committing to this child of σ in the search tree, discarding all the other children,

is safe in the sense that if σ has a k-feasible extension of length n then so does σv

and therefore we do not lose completeness of the search through this commitment.

The following lemma states that this hope is true in a more general manner: we

may safely commit not only to an immediate non-expanding extension but also

to any shortest non-expanding extension. We say that an element of Σ(G) is

strongly k-feasible if it has a k-feasible extension of length n.

Lemma 3.1 (Commitment Lemma) Let σ be a strongly k-feasible sequence

in Σ(G) and let τ be a shortest non-expanding k-feasible extension of σ, that is,

( 1 ) d−G(τ) ≤ d−G(σ), and

( 2 ) d−G(τ
′) > d−G(σ) for every k-feasible proper extension τ ′ of σ with |τ ′| < |τ |.

Then, τ is strongly k-feasible.

The proof of this lemma is given in the next section.

In the following, we assume a fixed total ordering < on V (G) and use a standard

lexicographic ordering < on Σ(G) based on this total ordering. Let σ and τ be

sequences of equal length in Σ(G). We say that σ is preferable to τ , if either

d−G(σ) < d−G(τ) or d
−
G(σ) = d−G(τ) and σ < τ . Clearly, this preferable-to relation

is a total ordering on the subset of Σ(G) consisting of sequences of length i, for

each 0 ≤ i ≤ n.

Let σ and τ be k-feasible sequences of equal length. We say that σ suppresses

τ , if σ and τ has a common prefix σ′ such that σ is a shortest non-expanding

k-feasible extension of σ′ and σ is preferable to τ .

Proposition 3.1 Let σ, τ , and η be k-feasible sequences of equal length. If

σ suppresses τ and τ suppresses η, then σ suppresses η.

Proof: Under the assumptions of the lemma, σ is preferable to η, since σ is

preferable to τ and τ is preferable to η. Therefore, it suffices to show that σ

and η has a common prefix α such that σ is a shortest non-expanding k-feasible

extension of α.

Since σ suppresses τ , there is a common prefix β of σ and τ such that σ is a

shortest non-expanding k-feasible extension of β. Similarly, there is a common

prefix γ of τ and η such that τ is a shortest non-expanding k-feasible extension

of γ. Since both β and γ are prefixes of τ , one is a prefix of the other. If β is

a prefix of γ, then we are done with α = β. If γ is a prefix of β, then γ is a

common prefix of σ and η. Since σ is preferable to τ , we have d−G(σ) ≤ d−G(τ).

This, together with the assumption that τ is a shortest non-expanding k-feasible

extension of γ implies that σ is also a shortest non-expanding k-feasible extension

of γ. We are done with α = γ. []

It should be intuitively clear that suppressed sequences are not necessary in

the search tree, as a consequence of the commitment lemma. To formalize this

intuition, we define the set Si of unsuppressed k-feasible sequences of length i,

for each 0 ≤ i ≤ n, inductively as follows.

( 1 ) S0 consists of the empty sequence.

( 2 ) A k-feasible sequence σ of length i > 0 is in Si if and only if π(σ) ∈ Si−1

and there is no k-feasible sequence τ of length i such that π(τ) ∈ Si−1 and

τ suppresses σ.

Lemma 3.2 If there is a k-feasible sequence of length n in Σ(G), then there
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is at least one such sequence in Sn.

Proof: For each k-feasible sequence σ of length n, let iσ denote the largest i,

0 ≤ i ≤ n, such that the prefix of σ of length i is in Si. If there is some k-feasible

σ of length n with iσ = n, then we are done. So, suppose otherwise and fix

k-feasible σ of length n so that iσ is the largest over all choices of σ. Let σ′ be

the prefix of σ of length iσ + 1. Then, since σ′ ̸∈ Siσ+1 and π(σ′) ∈ Siσ , σ
′ must

be suppressed by some k-feasible sequence τ of length iσ+1 such that π(τ) ∈ Siσ .

Choose τ so that it is the most preferable among all the candidates. Then, τ is

not suppressed by any τ ′ with π(τ ′) ∈ Siσ , since otherwise τ ′ suppresses σ′ by

Proposition 3.1 and is preferable to τ , contradicting the choice of τ . Therefore

τ ∈ Siσ+1. But since τ is a shortest non-expanding k-feasible extension of some

prefix of σ′, which is strongly k-feasible because of its extension σ, τ is strongly

k-feasible by Lemma 3.1. This contradicts the choice of σ, since iη ≥ iσ + 1,

where η is a k-feasible extension of τ with length n. []

Thus, in our pruned search, we need only to generate k-feasible sequences in

Si, for 1 ≤ i ≤ n.

To analyze the size of each set Si, we assign a signature sgn(σ) ∈ Σ(G) to

each k-feasible sequence σ ∈ Σ(G) as follows. Call a non-expanding k-feasible

extension τ of σ locally shortest, if no proper prefix of τ is a non-expanding

extension of σ. We define sgn(σ) inductively as follows.

( 1 ) If σ is empty then sgn(σ) is empty.

( 2 ) If σ is non-empty and is a locally shortest non-expanding extension of some

prefix of σ, then sgn(σ) = sgn(τ), where τ is the shortest prefix of σ such

that σ is a locally shortest non-expanding k-feasible extension of τ .

( 3 ) Otherwise sgn(σ) = sgn(π(σ))v, where v is the last vertex of σ (and hence

σ = π(σ)v).

Proposition 3.2 For each k-feasible sequence σ ∈ Σ(G), we have |sgn(σ)| ≤
d−G(σ).

Proof: The proof is by induction on the length of σ. The base case where

σ is empty is trivial. Suppose rule 2 of the definition of signatures applies to

σ: sgn(σ) = sgn(τ), where τ is the shortest prefix of σ such that σ is a locally

shortest non-expanding k-feasible extension of τ . If d−G(τ) = d−G(σ) then we are

done, since we have |sgn(σ)| = |sgn(τ)| ≤ d−G(τ) by the induction hypothesis. So

suppose d−G(τ) > d−G(σ). Let τ ′ be the shortest prefix of τ such that d−G(τ
′′) =

d−G(τ) for every prefix τ ′′ of τ that is an extension of τ ′, including τ ′ itself.

Then, we have sgn(σ) = sgn(τ) = sgn(τ ′) by a repeated application of rule

2. Since d−G(τ
′) > 0, τ ′ is non-empty and we have d−G(π(τ

′)) < d−G(σ) since σ

is not a locally shortest non-expanding extension of π(τ ′) by the choice of τ .

In this case, τ ′ cannot be a locally shortest non-expanding extension of any of

its prefixes because d−G(π(τ
′)) < d−G(τ). Therefore, rule 3 applies to τ ′ and we

have |sgn(τ ′)| = |sgn(π(τ ′))| + 1 ≤ d−G(π(τ
′)) + 1 by the induction hypothesis

and therefore |sgn(σ)| = |sgn(τ ′)| ≤ d−G(σ). Finally suppose that rule 3 applies

to σ: sgn(σ) = sgn(π(σ))v, where v is the last vertex of σ. Since σ is not

a non-expanding extension of π(σ), we have d−G(σ) > d−G(π(σ)) and therefore

|sgn(σ)| ≤ d−G(σ) follows from the induction hypothesis on π(σ). []

The following observation is straightforward.

Proposition 3.3 Let σ be a k-feasible sequence of length i that belongs to

Si. Then v ∈ V (σ) does not appear in sgn(σ) if and only if there are prefixes

σ1 and σ2 of σ such that v ̸∈ V (σ1), v ∈ V (σ2), and σ2 is a locally shortest

non-expanding k-feasible extension of σ1.

Lemma 3.3 Let i, 1 ≤ i ≤ n, be arbitrary. If σ and τ are distinct elements

of Si then neither sgn(σ) nor sgn(τ) is a prefix of the other.

Proof: Let σ, τ ∈ Si be distinct. For each j, 0 ≤ j ≤ i, let σj (τj , resp.) denote

the prefix of σ (τ , resp.) of length j. Let j0 be the smallest integer such that

σj0 ̸= τj0 . Let u0 be the last vertex of σj0 and v0 the last vertex of τj0 . We claim

that there is no pair of integers j1 and j2 such that 0 ≤ j1 < j0 ≤ j2 ≤ i and σj2

is a locally shortest non-expanding extension of σj1 . To see this, suppose such a

pair of integers j1 and j2 exists. If there is a non-expanding k-feasible extension of

σj1 shorter than σj2 then this extension is not a prefix of σj2 since σj2 is a locally

shortest non-expanding k-feasible extension of σj1 . But this is impossible because

then a prefix of σ would be suppressed and σ would not be in Si. Therefore, σj2

is a shortest non-expanding k-feasible extension of σj1 . Since σj1 is a common

prefix of σj2 and τj2 , τj2 is suppressed by σj2 if σj2 is preferable to τj2 . On the

other hand, if τj2 is preferable to σj2 , then d−G(τj2) ≤ d−G(σj2) ≤ d−G(σj1) and,

c⃝ 2012 Information Processing Society of Japan4

Vol.2012-AL-138 No.6
2012/1/28



IPSJ SIG Technical Report

noting that σj1 = τj1 because j1 < j0, we see that τj2 is also a shortest non-

expanding k-feasible extension of σj1 and hence suppresses σj2 . In either case,

we have a contradiction to the fact that both σj2 and τj2 are in Sj2 . This verifies

the claim that there is no such pair j1, j2.

It follows from this claim and Proposition 3.3 that:

( 1 ) u0 appears in sgn(σ) and

( 2 ) each vertex in V (σj0−1) appears in sgn(σ) if and only if it appears in

sgn(σj0−1).

Similarly, we have:

( 1 ) v0 appears in sgn(τ) and

( 2 ) each vertex in V (τj0−1) appears in sgn(τ) if and only if it appears in

sgn(τj0−1).

Thus, sgn(σ) and sgn(τ) have a common prefix sgn(σj0−1) = sgn(τj0−1), which

is followed by u0 in sgn(σ) and by v0 in sgn(τ). Since u0 ̸= v0, neither sgn(σ)

nor sgn(τ) is a prefix of the other. [] Our desired bound on |Si| immediately

follows from this lemma and Proposition 3.2.

Corollary 3.1 |Si| ≤ nk holds for 0 ≤ i ≤ n.

From this corollary, it is clear that the directed pathwidth problem can be

solved in nk+O(1) time. Some implementation details needed to obtain the specific

time bound stated in Theorem 1.1 are given in Section 5.

4. Proof of the commitment lemma

The following observation that the function d−G is submodular is straightfor-

ward. For self-containedness, we include a proof.

Proposition 4.1 Let G be a digraph and let X and Y be two arbitrary

subsets of V (G). Then, we have

d−G(X) + d−G(Y ) ≥ d−G(X ∩ Y ) + d−G(X ∪ Y ). (1)

Proof: For each vertex v ∈ V (G), we show that the number of times v is counted

in the right-hand side of (1) does not exceed the number of times it is counted

in the left-hand side of (1). If v is counted both in d−G(X ∩ Y ) and d−G(X ∪ Y )

then v ̸∈ X ∪ Y and v has an out-neighbor in X ∩ Y and, therefore, v is counted

both in d−G(X) and d−G(Y ). If v is counted in d−G(X ∪ Y ) then v ̸∈ X ∪ Y and v

has an out-neighbor in X ∪ Y and, therefore, v is counted either in d−G(X) or in

d−G(Y ). If v is counted in d−G(X ∩ Y ) then either v ̸∈ X or v ̸∈ Y and v has an

out-neighbor in X ∩ Y and, therefore, v is counted either in d−G(X) or in d−G(Y ).

[]

Lemma 3.1 is a direct consequence of the following two lemmas.

Lemma 4.1 Let G be a directed graph and k a positive integer. Let σ be a

strongly k-feasible sequence in Σ(G) and τ a k-feasible proper extension of σ such

that d−G(X) ≥ d−G(τ) for every X with V (σ) ⊆ X ⊆ V (τ). Then, τ is strongly

k-feasible.

Proof: Let σ and τ be as in the statement of the lemma and σ′ a k-feasible

extension of σ of length n. Let α be the subsequence of σ′ such that V (α) =

V (G) \ V (τ). Let τ ′ = τα. Note that τ ′ ∈ Σ(G) and V (τ ′) = V (G). We claim

that τ ′ is k-feasible and therefore τ is strongly k-feasible.

Since the prefix τ of τ ′ is k-feasible, we only need to show that, for 1 ≤ i ≤ |α|,
d−G(V (τ) ∪ Vi(α)) ≤ k, where we denote by Vi(α) the set of first i vertices of α.

For each i, 1 ≤ i ≤ |α|, let σi denote the minimal prefix of σ′ such that

V (σi) \ V (τ) = Vi(α). Since each member of σ precedes each member of α in σ′,

σ is a prefix of σi for 1 ≤ i ≤ |α|. Fix i, 1 ≤ i ≤ |α|. By the submodularity of

d−G, we have

d−G(τ) + d−G(σi) ≥ d−G(V (τ) ∩ V (σi)) + d−G(V (τ) ∪ V (σi)).

Since σ′ is k-feasible, we have d−G(σi) ≤ k. By the assumption on τ in the

statement of the lemma, we also have d−G(V (τ)∩V (σi)) ≥ d−G(τ) as V (σ) ⊆ V (τ)∩
V (σi) ⊆ V (τ). Therefore we have d−G(V (τ) ∪ Vi(α)) = d−G(V (τ) ∪ V (σi)) ≤ k,

which proves the claim. []

Lemma 4.2 Let G be a directed graph and k a positive integer. Let σ be a

k-feasible sequence in Σ(G) and τ a shortest non-expanding k-feasible extension

of σ. Then, for every X such that V (σ) ⊆ X ⊆ V (τ), we have d−G(X) ≥ d−G(τ).

Proof: Suppose to the contrary that there is some X, V (σ) ⊆ X ⊆ V (τ), such

that d−G(X) < d−G(τ). Since d−G(σ) ≥ d−G(τ), we have V (σ) ( X ( V (τ). We

show that there is some non-expanding k-feasible extension η of σ that is shorter

than τ . This contradicts the assumption that τ is a shortest such extension, and

therefore we will be done.
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Let α be the subsequence of τ such that V (α) = X. Note that α extends σ

since V (σ) ⊆ X. Let h be an integer, |σ| < h ≤ |X|, such that d−G(Vh(α)) is the

largest, where we denote by Vh(α) the set of first h vertices of α. If d−G(Vh(α)) ≤ k

then α is k-feasible and we are done with η = α: |α| < |τ | holds since V (α) = X

is a proper subset of V (τ).

Suppose d−G(Vh(α)) > k. Since d−G(X) < k, we have h < |X|. For each i,

0 ≤ i ≤ X, let τi denote the minimal prefix of τ such that V (τi) ∩ X = Vi(α).

Since V (σ) ⊆ X, we have τ|σ| = σ.

We set η = τhα
′, where α′ is the subsequence of α consisting of its last |X| −h

elements, and verify that η is a non-expanding k-feasible extension of σ and is

shorter than τ . Let i be an integer, h ≤ i ≤ |X|. By the submodularity of d−G,

we have

d−G(τh) + d−G(Vi(α)) ≥ d−G(Vh(α)) + d−G(V (τh) ∪ Vi(α)), (2)

where we have used V (τh) ∩ Vi(α) = Vh(α). We have d−G(Vi(α)) ≤ d−G(Vh(α)) by

the choice of h and moreover d−G(τh) ≤ k since τ is k-feasible. Therefore, we have

d−G(V (τh) ∪ Vi(α)) ≤ k. Since this holds for every i, h ≤ i ≤ |X|, η is k-feasible.

Since d−G(τh) ≤ k < d−G(Vh(α)), (2) also implies d−G(V (τh) ∪ Vi(α)) < d−G(Vi(α)).

Letting i = |X|, we have d−G(η) = d−G(V (τh) ∪ V (α)) < d−G(α) = d−G(X) <

d−G(τ) ≤ d−G(σ). Thus, η is a non-expanding extension of σ. Finally, the inclusion

V (η) ⊆ V (τ) and the strict inequality d−G(η) < d−G(τ) imply that η is shorter

than τ . []

Proof: (of Lemma 3.1.) Let σ be a strongly k-feasible sequence in Σ(G) and τ a

shortest non-expanding k-feasible extension of σ. Then, by Lemma 4.2, we have

d−G(X) ≥ d−G(τ) for every X such that V (σ) ⊆ X ⊆ V (τ). Lemma 4.1 applies

and τ is strongly k-feasible. []

5. Implementation details

In this section, we verify that our algorithm can be implemented to run in

the time bound of O(mnk+1) stated in Theorem 1.1, where n = |V (G)| and
m = |E(G)|. We assume that G is strongly connected and hence m ≥ n.

Data structures

We represent each nonempty sequence σ ∈ Σ(G) by a pair consisting of the

last vertex of σ and a pointer to the prefix π(σ) of σ of length |σ| − 1. Thus,

the elements of the sets Si, 0 ≤ i ≤ i, naturally form a rooted tree in which the

parent of each non-root node σ is π(σ) and the set of nodes at the ith level is Si.

In addition, we represent the set Si, for each 0 ≤ i ≤ n, as a list sorted in the

lexicographic ordering.

We assume the input digraph G is given in the in-neighbor list representation:

each vertex v has a list in(v) of its in-neighbors ordered in the assumed total

ordering < on V (G).

Constructing immediate extensions

In this step, we generate k-feasible extensions of each element of Si−1 and let

the set of all those extensions be Ti. Let σ be an element of Si−1 being processed.

We first construct the bit-vector representation of N−
G (σ) in O(n) time. Then,

we iterate through all the vertices in V (G). If v ∈ V (G) is not in σ, we compute

d−G(σv) in O(d−G(v)) time, using the bit-vector for N−
G (σ). If d−G(σv) ≤ k then

we add σv to our list of feasible extensions. Doing this for all elements of Si−1

in the sorted order, we obtain the set Ti in the form of a sorted list. The time

required for this step is O(mnk).

Identifying shortest non-expanding k-feasible extensions and inheri-

tors

In this step, for each pair (τ, σ) such that σ ∈ Ti and σ is the most preferable

shortest non-expanding k-feasible extension of τ , we register σ as the inheritor

of τ .

We first observe that σ ∈ Ti can be a shortest non-expanding k-feasible ex-

tension of some proper prefix of σ only if d−G(σ) ≤ d−G(π(σ)). Moreover, for

each η ∈ Si−1, among the extensions of η in Ti satisfying d−G(σ) ≤ d−G(η), only

the most preferable one can be the most preferable shortest non-expanding k-

feasible extension of some sequence. Based on this observation, we collect, for

each η ∈ Si−1, at most one extension σ ∈ Ti of η: σ satisfies d−G(σ) ≤ d−G(η) and

is the most-preferable over all extensions of η in Ti. We let the resulting set T ′
i

and scan its elements in the lexicographic ordering.

Let σ be an element of T ′
i . For each proper prefix τ of σ, σ is a shortest

non-expanding k-feasible extension of τ if and only if σ is a locally shortest non-

expanding k-feasible extension of τ . The “only if” part is obvious. For the “if”
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part, suppose τ has a non-expanding k-feasible extension τ ′ that is shorter than

σ but is not a prefix of σ. We assume τ ′ is the shortest among such and hence

is a shortest non-expanding k-feasible extension of τ . Let τ ′′ be a prefix of σ of

length |τ ′|. Since the presence of π(σ) in Si−1 implies that τ ′ does not suppress

τ ′′, it must hold that d−G(τ
′′) ≤ d−G(τ

′) ≤ d−G(τ) and therefore σ is not a locally

shortest non-expanding k-feasible extension of τ . Since d−G(τ) has been calculated

for every τ ∈
∪

j≤i Sj , the above condition can be tested in O(n) total time for

all prefixes τ of σ.

When we find a prefix τ of σ such that σ is a shortest k-feasible non-expanding

extension of τ , we check whether the inheritor of τ is already registered. If

not, then register σ as such. Otherwise, let σ′ be the registered extension. If

d−G(σ) < d−G(σ
′) then we replace σ′ with σ; otherwise we retain σ′. Since we are

processing the elements of T ′
i in the lexicographic order, the registered inheritor

is correctly the most-preferable shortest k-feasible non-expanding extension after

all the elements of T ′
i are processed. The time required for this registering process

is also O(n) for each σ ∈ T ′
i . The overall processing time for this step is O(nk+1).

Filtering out suppressed elements

In this step, we collect those elements of Ti that are not suppressed, obtaining

the set Si.

Let η ∈ Si−1. Suppose first that η does not have an extension in T ′
i , that is,

d−G(σ) > d−G(η) for every extension σ of η in Ti. In this case, if some prefix of η has

some inheritor registered then all extensions of η in Ti are suppressed; otherwise,

no prefix of η has a non-expanding k-feasible extension in Ti and therefore none

of the extensions of η in Ti is suppressed. Suppose next that η has an extension

σ in T ′
i (which is unique). Then all extensions of η in Ti but σ are suppressed by

σ. This extension σ is suppressed if and only if some prefix of η has an inheritor

other than σ registered.

In either case, the processing time for each η ∈ Si−1 is O(n) and therefore the

total time for this step is O(nk+1).

Overall running time

We repeat the above construction of Si for i = 1, 2, . . . , n in O(mnk+1) total

time. Checking whether Sn is empty is trivial. If it is not empty, any element of

Sn achieves the directed vertex separation number at most k.

6. Concluding remarks

In the terminology of parameterized complexity theory8),9),16), the result of this

paper puts the problem of deciding the directed pathwidth in class XP. It is open

whether it is in FPT, that is, if there is an algorithm that, given positive integer k

and digraph G, decides if dpw(G) ≤ k in time f(k)nO(1) where f is some function

independent of n.

It was pointed out by Sang-il Oum and by Hiroshi Nagamochi that the com-

mitment lemma holds in a more general setting, where the in-degree function d−G
is replaced by an arbitrary submodular function, and thus may be useful in other

contexts. Exploring such applications of the lemma and the techniques in this

work is also an attractive avenue of future research.
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