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A Compact Encoding of Rooted Trees

Katsuhisa Yamanaka†1

In this paper, we give compact codes for (unordered) rooted trees. We show
that the codes are compact experimentally. For instance, the code occupies
1.556n bits per a rooted tree with n = 24 vertices on average. While an
ordered tree of n vertices is encoded with 2n bits, which coincide with the
information-theoretically optimal bound, our scheme is more compact.

1. Introduction

Trees are one of most important structures in computer science, and frequently

used as models in various areas including searching, program parsing and mining

semi-structured data such as XML. These days, we face a huge tree structure.

In this paper we focus on a compact representation of an unordered tree. We

design a binary code that represents an unordered tree compactly.

For some class C, how many bits are needed to encode an element in C into

a binary string S so that S can be decoded to reconstruct the original element?

For any coding scheme the average length of S is at most log |C|⋆1 bits, which is

called the information-theoretically optimal bound.

The number of ordered trees with n vertices is about c12
n/n

3
2 , e.g. [10], where

c1 = 1/4
√
π ≈ 0.1410. Hence the information-theoretically optimal bound is

2n bits (ignoring logarithmic terms). The number of rooted unordered trees

with n vertices is about c2α
n/n

3
2 , e.g. [10], where c2 = 0.5350 and α ≈ 2.9558.

Hence, the information-theoretically optimal bound is 1.564n bits asymptotically

(ignoring logarithmic terms).

For ordered trees, there are many results on compact representations [1, 4, 6, 7].

For free trees, Farzan and Munro [3] proposed a succinct representation taking
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⋆1 Log denotes logarithm to the base 2

1.564n+o(n) bits, where n is the number of vertices. Their method can be applied

for rooted trees by specifying the root vertex with logn bits. The representation

attains information-theoretically optimal bound by using auxiliary tables with

o(n) space. Their result is theoretically nice, however the size of the tables would

be huge.

On the other hand, for unordered-rooted binary tree with n vertices, Iwata et

al.[5] proposed a compact code with 1.4n + 4 bits without an auxiliary table.

The information-theoretically optimal bound for such trees is 1.312n bits [2, 11].

Their result is near to the optimal length.

Is there a coding scheme for rooted trees which attains information-theoretically

optimal bound without an auxiliary table? In this paper, we design a coding

method for rooted trees with n vertices without an auxiliary table. We exper-

imentally show that an average length of our code is compact. For the case of

n = 24, our method encodes a rooted trees into 1.556n bits per a rooted tree on

average.

2. Definitions

In this section, we give some definitions.

Let G be a connected graph with n vertices. A path is a sequence of distinct

vertices (v1, v2, . . . , vp) such that (vi−1, vi) is an edge for i = 2, 3, . . . , p. The

length of a path is the number of edges in the path.

A tree is a connected graph with no cycle. A rooted tree is a tree with one

vertex r chosen as its root vertex. For each vertex v in a rooted tree, let UP(v)

be the unique path from v to r. The parent of v ̸= r is its neighbour on UP(v),

and the ancestors of v ̸= r are the vertices on UP(v) except v. The parent of r

and the ancestors of r are not defined. We say if v is the parent of u then u is

a child of v, and if v is an ancestor of u then u is a descendant of v. A leaf is a

vertex having no child. If a vertex is not a leaf, then it is called an inner vertex.

The degree of a vertex v, denoted by d(v), is the number of children of v.

An ordered tree is a rooted tree with a left-to-right ordering specified for the

children of each vertex. We denote by T (v) the subtree of an ordered tree T

consisting of a vertex v and all descendants of v that preserve the left-to-right

ordering for the children of each vertex. Let CS(v) = (c1, c2, . . . , cd(v)) be the
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(a) (c)(b)
Fig. 1 Three different ordered trees which are isomorphic as rooted tree.

sequence of the children of v from left-to-right. We call it the child sequence of

v. Each ci is called the next sibling of ci−1 for i = 2, 3, . . . , d(v) and the previous

sibling of ci+1 for i = 1, 2, . . . , d(v)−1. Three trees in Fig. 1 are different ordered

trees, but are isomorphic as rooted trees.

3. Depth-first Unary Degree Sequence

In this section we briefly introduce a DFUDS (Depth-First Unary Degree Se-

quence) for an ordered tree [1]. DFUDS is a binary code for an ordered tree. It

can represent an ordered tree with n vertices in 2n− 1 bits

Let T be an ordered tree with n vertices, and v be a vertex of T . We define

a block for v as follows. A block, denoted by B(v), for v is d(v) consecutive ‘0’s

followed by one ‘1’. We traverse T with depth-first manner. If we visit v first,

then output B(v). The obtained binary code is DFUDS for T . DFUDS consists

of n blocks. The length of DFUDS is 2n − 1 bits, For instance, DFUDS for the

tree in Fig. 1(a) is 00010001001110101100111.

Decoding for DFUDS is a simple algorithm based on depth-first search of a

tree using a stack. Here we carefully explain decoding for DFUDS, since it helps

to understand how to decode our code explained later (Section 5).

Let S1 be a DFUDS for an ordered tree. The first zero or more ‘0’s followed by

one ‘1’ consist of the block for the root vertex r. By reading the first block, we

know the degree d(r). For the block, we create a new vertex for r, then we push

d(r) copies of r to a stack. Now, we explain how to decode vertices except r.

We reconstruct each vertex in preorder. First we read a block B(v) consisting of

d(v) ‘0’s followed by one ‘1’. Second we create a new vertex for v, then connect

v to the vertex poped from the stack as the parent of v. Finally we push d(v)

copies of v into the stack. We repeat this process for each vertex in preorder.

4. Canonical Representation of Rooted Trees

Let R be a rooted tree. We can observe that R corresponds to many non-

isomorphic ordered trees, since we can choose many left-to-right orderings for

the children of each vertex in T . If we uniquely define a “canonical” ordered

tree among ordered trees corresponding to R, then encoding canonical ordered

trees means an algorithm that encodes rooted trees. This idea is also adopted

for enumerating some classes of trees [8, 9]. However how to choose a canonical

tree is slightly different from our method.

Let T be an ordered tree with n vertices, and (v1, v2, . . . , vn) be the list of the

vertices of T in preorder. Then, a sequence DF (T ) = (d(v1), d(v2), . . . , d(vn))

is called the DF degree sequence of T . Let T1 and T2 be two ordered trees, and

DF (T1) = (a1, a2, . . . , an) and DF (T2) = (b1, b2, . . . , bm) be their DF degree

sequences. If either (1) ai = bi for each i = 1, 2, . . . , j − 1 and aj < bj , or (2)

ai = bi for each i = 1, . . . , n and n < m, then we say that T1 is smaller than T2,

and write T1 ≺ T2.

For example, DF degree sequences of trees in Figs. 1(a), (b) and (c) are

(3,3,2,0,0,0,0,1,1,0,2,0,0), (3,1,1,0,2,0,0,3,0,2,0,0,0) and (3,1,1,0,2,0,0,3,0,0,2,0,0),

respectively.

Now, we define a canonical representation of R as follows. The ordered tree

T is a canonical tree of R if (1) T is isomorphic to R as a rooted tree and (2)

DF (T ) is smallest among all ordered trees corresponding to R. For example, the

ordered tree in Fig. 1(c) is the canonical tree, however the trees in Figs. 1(a) and

(b) are not.

We have the following two lemmas.

Lemma 4.1 The canonical tree of a rooted tree is unique.

Lemma 4.2 Let T be a canonical tree and CS(v) = (c1, c2, . . . , cd(v)) be the

child sequence for any inner vertex v of T . Then we have d(ci) ≤ d(ci+1) for

i = 1, 2, . . . , d(v)− 1.

Proof. We assume otherwise for a contradiction. Let (v1, v2, . . . , vn) be the

sequence of vertices of T in preorder. We choose the minimum i such that CS(vi)

destroys the above condition. More precisely, i is the minimum (1 ≤ i ≤ n) such
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that d(cj) > d(cj+1) holds for some j in CS(vi). If we exchange cj and cj+1,

then we obtain a smaller tree than T , which is a contradiction. □
We also have the following lemma.

Lemma 4.3 An ordered tree T is canonical tree if T (u) ≺ T (v) or T (u) ∼= T (v)

for every u and its next sibling v.

Proof. By contradiction. □

5. Compact Codings and Decodings

In this section we design compact codes for a rooted tree. Our idea is to encode

the canonical tree of a rooted tree. If we encode the canonical tree of a rooted

tree, then it also means that we can encode a rooted tree by Lemma 4.1. Given a

rooted tree R, we construct a canonical tree T of R, then we encode a canonical

tree with a binary code. The obtained code is the code for R.

Our encoding method is based on DFUDS for an ordered tree. By modifying

DFUDS, we design a compact code for a canonical tree. In this section, we

introduce three ideas for improvements. From now on, we denote by S1 DFUDS

for T .

Difference

The first idea for improvements is to store the number of children of each vertex

as a difference from its previous sibling. Let u, v be a vertex and its previous

sibling. A difference block D(u) is equal to B(u) if u is the first child of its parent,

and D(u) is a code consisting of d(u) − d(v) ‘0’s followed by ‘1’ if u is not the

first child of its parent. We define S2 a binary code obtained by arranging all

difference blocks in preorder of vertices.

Decoding the original rooted tree from S2 is almost same as decoding of

DFUDS. If the first i vertices in preorder are decoded, then we can compute

d(vi+1) from D(vi+1), which is (i + 1)the block in S2, and the degree of the

previous sibling of vi+1. Therefore we can decode S2.

Now we estimate the length of S2. Clearly we have |S0| ≤ |S1|. Are there trees

that satisfy |S0| = |S1|? For instance, if T is a path, S2 needs 2n − 1 bits. So

we can observe that, if T includes many paths as its subgraphs, then |S2| comes

up to |S1|. From this observation, we have an idea which is to compress path

structures in a tree ⋆1.

Path Compression

We give a formal definition of subpath. Let (v1, v2, . . . , vn), (v1 ̸= r), be the

sequence of vertices of T in preorder. A maximal subgraph induced by consecutive

vertices vi, vi+1, . . . , vj(i ≤ j) is an inner subpath if d(vk) = 1 for k = i, i+1, . . . , j.

During a depth-first search of T , if the current v has one child and the parent of

v is not (or v is the root vertex with degree 1), then v may be the start vertex of

an inner subpath in T . For such vertex, we store the length of the path starting

from the child of v (or v) by an unary code.

Now we explain our coding more formally. Assume that vi, vi+1 . . . , vj consist

an inner subpath. After D(vi), we encode a subpath vi+1, . . . , vj of the inner

subpath with j − i ‘0’s followed by one ‘1’.

We can observe that vj+1 is a leaf or has two or more children. Then we encode

vj+1 with ‘1’ if vj+1 is a leaf, otherwise with d(vj+1)− 1 ‘0’s followed by ‘1’. In

B(vj+1), we can save one bits for a code of vj+1 if vj+1 has two or more children.

However, if vi = vj , then we require one bit to represent a inner subpath with

“length zero”. So, such case needs one more bit than S2.

We denoted by S3 obtained by adapting the above idea to S2.

Saving for Root Edges and Right Leaves

The last idea is as follows. Let r be the root vertex of T . If we omit D(r) in

S1 (similarly S2 and S3), S1 represents “d(r) trees”. Let S
′

1 be a code obtained

by omitting D(r) in S1. By the decoding of S1, we can obtain d(r) trees from

S
′

1. Then we insert the root vertex with an edge to each tree. The resulting tree

is T .

In addition, we can omit blocks for “right” leaves.

A vertex v is the rightmost vertex of T if v is the last vertex in preorder. Let

v be the rightmost vertex of T , and assume that the parent of v is not r. All the

siblings of v are leaves. A leaf ℓ is right leaf if ℓ is the rightmost vertex or ℓ is a

sibling of the rightmost vertex. Since the number of right leaves can be compute

⋆1 If T is a star, S2 satisfies 2n− 1 bits too. However, in our coding, we focus on compressing
a path structure.
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Fig. 2 A canonical tree for examples.

from the block for the parent of v, we can omit blocks for the right leaves. Note

that if v is a child of r, we cannot omit.

Also we can save the last ‘1’, which is the last ‘1’ in the block for the parent

of v, in the code, since the last bit is always ‘1’. This idea can be adopted even

if the parent of v is the root.

We denoted by S4 and S5 obtained by omitting root edges, right leaves and

the last ‘1’ in S2 and S3, respectively.

Examples

For example, S1, S2, S3, S4 and S5 for the canonical tree in Fig. 2 are:

S1 = 000011001011010101000111100110100111000111000011111,

S2 = 0000110010111010100011111101001110111000011111,

S3 = 00001100101111001011111101101110111000011111,

S4 = 100101110101000111111010011101110000,

S5 = 1001011110010111111011011101110000.

We have the following theorem.

Theorem 5.1 We can encode a canonical tree with S1, S2, S3, S4, S5 in O(n)

time, and a decoding for each code can be done in O(n) time using a stack.

6. Experimental Results

In this section, we show experimental results of the five codes S1, S2, S3, S4

and S5 explained in the previous section.

An environment for our experiment is as follows. (1) OS: FreeBSD 8.2-

RELEASE, (2) CPU: AMD Phenom(tm) II X6 1065T Processor (2909.62-MHz

K8-class CPU), (3) Main memory: 4GB and (4) Programming language: C.

Table 1 shows the average length of each code per a rooted tree with n vertices.

Each column means S1 (DFUDS), S2 (DFUDS + difference), S3 (DFUDS +

difference + path compression), S4 (DFUDS + difference + saving root edges

and right leaves) and S5 (DFUDS + difference + path compression + saving

root edges and right leaves), respectively. “Optimal” means the optimal average

length of a code. Let Tn be a set of rooted trees with n vertices. The optimal

average length per tree can be obtained by calculating log |Tn|. For instance, for
n = 24, S4 needs 1.556n bits per a rooted tree with 24 vertices on the average.

This also means S4 needs 1.556 bits per a vertex in a rooted tree with 24 vertices.

Since there is only one tree with n vertices for n = 1 or n = 2, we did not deal

with the two cases here.

In this experiment, first, we enumerate all canonical trees with n vertices, then

encode all the trees by each coding method, and then we calculate the average

length of each code per tree.

All factors in Table 1 are plotted in Fig. 3 for each code. Fig. 3 shows that S4

is the most compact among our codes. Comparing S4 with the optimal length

of code, S4 is near to the optimal length. S4 needs 1.556n bits per a rooted tree

with n = 24 vertices on the average, and the optimal average length of code is

1.228n bits for the same tree. So, we conclude that S4 is a compact code from

this experimental results.

Unfortunately, path compression did not improve the average length. The two

codes S3, S5 which perform path compressions are slightly larger than S2 and

S4, respectively.

7. Conclusion

We have designed four new codes for a rooted tree. By coding canonical

trees, we designed codes for (unordered) rooted trees. Our codes are based on

DFUDS [1] which is a codes for an ordered tree. By improving DFUDS, we pro-

pose compact code for a rooted tree. Then, we have shown that our codes are

compact by experiments.
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# of |S1| |S2| |S3| |S4| |S5| Optimal

vertices (bits/tree) (bits/tree) (bits/tree) (bits/tree) (bits/tree) (bits/tree)

n = 1 - - - - - -

n = 2 - - - - - -

n = 3 1.667n 1.667n 1.667n 0.333n 0.500n 0.333n

n = 4 1.750n 1.750n 1.750n 0.562n 0.625n 0.500n

n = 5 1.800n 1.778n 1.800n 0.733n 0.800n 0.634n

n = 6 1.833n 1.800n 1.817n 0.883n 0.933n 0.720n

n = 7 1.857n 1.804n 1.821n 0.994n 1.039n 0.798n

n = 8 1.875n 1.810n 1.826n 1.090n 1.128n 0.856n

n = 9 1.889n 1.811n 1.827n 1.164n 1.199n 0.907n

n = 10 1.900n 1.812n 1.827n 1.226n 1.258n 0.949n

n = 11 1.909n 1.812n 1.827n 1.277n 1.306n 0.986n

n = 12 1.917n 1.812n 1.827n 1.320n 1.347n 1.018n

n = 13 1.923n 1.812n 1.826n 1.356n 1.382n 1.047n

n = 14 1.929n 1.811n 1.826n 1.387n 1.412n 1.072n

n = 15 1.933n 1.811n 1.825n 1.414n 1.437n 1.095n

n = 16 1.938n 1.810n 1.824n 1.437n 1.460n 1.115n

n = 17 1.941n 1.810n 1.824n 1.458n 1.480n 1.134n

n = 18 1.944n 1.809n 1.823n 1.477n 1.498n 1.151n

n = 19 1.947n 1.809n 1.823n 1.493n 1.514n 1.166n

n = 20 1.950n 1.809n 1.822n 1.508n 1.529n 1.181n

n = 21 1.952n 1.808n 1.822n 1.522n 1.542n 1.194n

n = 22 1.955n 1.808n 1.821n 1.534n 1.554n 1.206n

n = 23 1.957n 1.807n 1.821n 1.545n 1.564n 1.217n

n = 24 1.958n 1.807n 1.820n 1.556n 1.574n 1.228n

Table 1 The average lengths of our codes. S1: DFUDS, S2: DFUDS + difference, S3:
DFUDS + difference + path compression, S4: DFUDS + difference + saving root
edges and right leaves, S5: DFUDS + difference + path compression + saving root
edges and right leaves.
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Fig. 3 The average lengths of each code.

The experimental results show that S4 is compact, but the optimal average

length seems to be properly smaller than the average length of S4. So, we want

to know asymptotic behaviors of the two length. The optimal average length

converges 1.564n bits asymptotically. Now, how many bits are required for S4

asymptotically?

Other future tasks are to (1) design a more compact code for a rooted tree, and

(2) design compact codes for other graph classes so that it attains (or is near to)

the information-theoretically optimal bounds without an auxiliary table.
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