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Development of Explicit Eulerian Finite Difference Solver

for Large-Scale Fluid-Structure Interaction Systems
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Hiroshi Koyama,†3 Shigeho Noda,†3 Satoshi Ii,†1

Shu Takagi,†1,†3 Yoichiro Matsumoto†1 and Ryutaro Himeno†3

A scalable numerical algorithm has been reconsidered for massively parallel computations
of fluid-structure interaction systems as biological applications. A new Eulerian method
using a fixed mesh has been developed to solve the basic equation set for the incompressible
Newtonian fluid and hyperelastic material in a finite difference manner. A new artificial
compressibility method, corresponding to one of full explicit time-stepping algorithms, with
adaptive parameters is proposed. The advocated solver easily attains excellent scalability
since it makes the workload on each core equivalent and reduces the amount of node-to-node
communication required for the iterative computation. It is applied to wall-bounded flows
with biconcave particles, which replicate the shape of red blood cells. The computational
performance on a Xeon cluster is presented in terms of a weak scaling and also of a strong
scaling with O(109) grid points up to 8,192 cores.

1. Introduction

Fluid-Structure Interaction (FSI) phenomena
appear in a number of biological systems. In
general, the system (e.g. a blood flow in-
volving flexibly deformable Red Blood Cells
(RBCs)) has complexity associated with its
multi-scale/physics nature, the complicated ge-
ometry, and a large number of dispersed bod-
ies. In the biocomputing research field, techni-
cal progresses in the coupling of the fluid and
structure dynamics have been vigorously made
and large-scale computations have been per-
formed1)–4).

When dealing with moving interface prob-
lems, one has preferably employed a Lagrangian
description using a finite element mesh since
it is suited for treating an elastic constitu-
tive law. The numerical methods include
Arbitrary Lagrangian Eulerian5), Deforming-
Spatial-Domain/Stabilized Space-Time6) and
Immersed Boundary7) approaches. Once the
Lagrangian mesh is provided, the state-of-the-
art approaches are satisfactory for achieving ac-
curate predictions, and have been applied to
a wide variety of biological problems. How-
ever, in a massively parallel computation, it is
formidable to reduce a computational-load im-
balance in the mesh nodes for the system in-
volving complicated geometry of solid and/or
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a large number of objects. To release the FSI
simulation from the mesh distortion and/or the
mesh reconstruction procedure and also from
the load-balancing task, full Eulerian (fixed-
mesh) approaches8)–19) have been explored.
The authors formulated the basic equations
suited to the finite difference method, and then
demonstrated that the proposed method pro-
vided significant advances in our understanding
of the geometrical flexibility12)–17). Since a uni-
form cubic grid is used to discretize the basic
equation set, it easily makes the computational
load on each core for a rectangularly-divided
subdomain equivalent.

The full Eulerian FSI method is characterized
by the feasibility in implementing the hypere-
lastic constitutive law into the standard incom-
pressible fluid flow algorithm, in which the pres-
sure Poisson equation is implicitly solved in an
iterative way to satisfy the mass conservation.
One may expect that efficient computational
techniques cultivated in the field of the compu-
tational fluid dynamics can be utilized, which
would be an advantage in the realization of
massively parallel computation. However, the
iterative computation requires the repetitive
nearest-neighbor communications, and thus it
is more difficult to scale to a larger number
of cores. To achieve a viable compromise be-
tween the numerical consistency and the scala-
bility, a new Artificial Compressibility Method
(ACM) has been developed. Unlike the origi-
nal ACM20) for the steady flow problem or the
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implicit ACM21), we employ a full explicit time-
stepping scheme22). In contrast to the conven-
tional ACM, in which the model parameters are
fixed, we introduce an optimization procedure,
which dynamically determines the model pa-
rameters to be adapted to the flow state in a
way such as an error minimization.

In this paper, we focus on wall-bounded flows
with discoid biconcave particles, which replicate
the shape of RBC. We perform parallel simula-
tions using up to 8,192 cores on a Xeon cluster
(MPC-RICC, RIKEN), and weak and strong
scalability tests.

2. Simulation methods

2.1 Eulerian description for fluid-

structure interaction problem

The fluid and solid are assumed to be incom-
pressible and to possess the same density and
viscosity, as in many analyses for biological sys-
tems. The governing equations are comprised
of the mass and momentum conservations:

∇ · v = 0, (1)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p+∇·τ +

(

−∆P

Lx

)

ex,

(2)
where ρ denotes the density, ex the unit vector
in x direction, v the velocity vector, p the pres-
sure deviation from the driving pressure, and
τ the deviatoric Cauchy stress. To pump the
fluid and solid, the uniform pressure gradient
−∆P/Lx (here, Lx is the inlet-outlet length in
x direction of the computational domain, and
∆P is the inlet-outlet pressure drop) is applied
to the system. The deviatoric Cauchy stress
is written in a mixture form of the Newtonian
fluid and the neo-Hookean material, namely,
τ (x) = 2µD(x)

+ Gφ1/2
s (x)

(

B̃(x) − 1
3 tr(B̃(x))I

)

,
(3)

where µ denotes the viscosity, G the modu-
lus of transverse elasticity, I the unit tensor,
and D(= 1

2 (∇v + ∇v
T )) the strain rate ten-

sor. The operator tr(...) stands for the tensor
trace. The quantities φs and B̃ denote the lo-
cal volume fraction of solid and the modified
left Cauchy-Green deformation tensor14), re-
spectively, which obey the transport equations

∂tφs + v · ∇φs = 0, (4)
∂tB̃ + v · ∇B̃ = L · B̃ + B̃ · LT , (5)

where L(= ∇v) denotes the velocity gradient
tensor.

The full Eulerian FSI description is well-
suited to the voxel-based geometry. A set of the

voxel data is converted into the initial solid vol-
ume fraction φs0 (here, the subscript 0 stands
for the initial quantity). Once the φs0 field
is provided, one can carry out the FSI simu-
lation without mesh generation/reconstruction
procedure. The validity of the full Eulerian
simulation method based on the equation set
(1)–(5) has been established in various man-
ners13),14),17), including comparisons with well
validated results using a finite element method
for complicated flow/deformation.

2.2 Artificial compressibility method

with adaptive parameters

The pressure is defined to satisfy a relation
〈p〉Ω = 0, here 〈...〉Ω stands for the volume aver-
age over the whole computational domain. The
time-stepping algorithm to update the variables
at the (N +1)-th time level from the N -th time
level follows the unprojection step:
v
∗ = v

N +(∆t)ρ−1{−∇pN +F (vN , B̃N , φN
s )},
(6)

and the projection step:
pN+1 = pN + δp, (7)

v
N+1 = v

∗ − (∆t)ρ−1∇(δp), (8)
where the superscript ∗ represents the unpro-
jected quantity, and F is the summation of all
the terms except for the pressure gradient term
in the momentum equation (2). If one follows
the SMAC algorithm23), which aims at satisfy-
ing the divergence-free condition (∇ · v

N+1 =
0), the incremental pressure correction δp is
given by the solution to the Poisson equation

∇2δp = (∆t)−1D∗, (9)
where D(= ρ∇·v) is the divergence of the mass
flux. To numerically solve the partial differen-
tial equation (9) together with the boundary
conditions, the iterative method is usually em-
ployed, and then the core-to-core communica-
tion is required in the parallel computation. In
the present study, instead, we follow the pres-
sure evolution of the revived ACM22) written in
an algebraic form

δp = −β2(∆t)(γpN + D∗), (10)
where β denotes the pseudo acoustic speed,
and γ the relaxation coefficient, of which the
positive value is effective in the suppression
of the checkerboard instability. Although the
solenoidal condition (1) is not perfectly satis-
fied in the ACM, we try to approximate (1) as
exactly as possible24). The model parameters
β and γ are spatially uniform and determined
dynamically at each time step. The mass flux
divergence at the (N+1)-th time level is written
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as
DN+1 = D∗ + β2(∆t)2∇2D∗ + γβ2(∆t)2∇2pN ,

(11)
Together with a constrained condition of the
non-negative relaxation coefficient γ ≥ 0, the
mean-square of the mass flux divergence at the
(N+1)-th time level, 〈(DN+1)2〉Ω, is minimized
provided that

β =
1

(∆t)

√

A1

A2
, γ = 0 if

−(A1B2 + A2B1)

A2A3 − B2
2

< 0,

β =
1

(∆t)

√

A1A3 + B1B2

A2A3 − B2
2

, γ =
−(A1B2 + A2B1)

A1A3 + B1B2

otherwise.
(12)

where
A1 = − 〈D∗∇2D∗〉Ω, A2 = 〈(∇2D∗)2〉Ω,
A3 =〈(∇2pN)2〉Ω, B1 = 〈D∗∇2pN 〉Ω,
B2 =〈(∇2D∗)(∇2pN )〉Ω.

(13)

In the parallel computation, the advocated
ACM requires the allreduce operation only to
find A1, A2, A3, B1 and B2 in (13). Thus,
it is likely to considerably reduce the amount
of the global communication as compared with
the standard Poisson equation-based approach,
which requires the estimation of the residual er-
ror at each iteration step.

The ACM-based solution inevitably has the
pseudo compressibility since the solenoidal con-
dition (1) is more or less violated. Here, its
level is discussed. Let us introduce Umax as
the maximum velocity in the system and (∆x)
as the side length of the cubic grid. It should
be noticed that from the analytical study24),
the pseudo Mach number Ma(= Umax/β),
which indicates the level of the pseudo com-
pressibility, has the upper limit 2

√
3η, here

η = Umax(∆t)/(∆x) denotes the Courant-
Friedrichs-Lewy (CFL) number. Therefore, if
the CFL number is sufficiently smaller than
unity, the computed velocity field is guaranteed
to be nearly incompressible.

2.3 Initial and boundary conditions

We will address the three-dimensional prob-
lem of the multiple neo-Hookean particle mo-
tion in a Poiseuille flow. We shall restrict our
attention to the system bounded by the bottom
(y = 0) and top (y = Ly) plates and periodic
in x (streamwise) and z (spanwise) directions
with the periodicity of Lx and Lz, respectively.
The system is supposed in stationary equilib-
rium (i.e. v0 = p0 = 0 and B̃0 = φ

1/2
s0 I) before

the driving pressure is imposed. The initial and
neutral shape of the particle is discoid bicon-

cave. In temporally updating v, p, φs, and B̃,
we impose the no-slip condition on the plates.

2.4 General descriptions

We follow a conventional staggered grid ar-
rangement, where the velocity components are
located on the cell faces, the pressure, the
solid volume fraction and the diagonal compo-
nents of B̃ are on the cell centroid, and the
non-diagonal components of B̃ are on the the
cell sides. The spatial derivatives are approxi-
mated by the second-order central differences,
except for those of the advection terms, to
which the fifth-order Weighted Essentially Non-
Oscillating (WENO5) scheme25) is applied. To
integrate the equations in time, we employ the
first-order explicit Euler scheme.

2.5 Parallelization

The solver code is written in Fortran 77. It is
implemented into an object-oriented framework
V-Sphere26), which includes class libraries to fa-
cilitate the software development especially for
massively parallel computations. The frame-
work V-Sphere provides common functions such
as data management, parsing of various param-
eters described by XML language, and file I/O.

We utilize Massively Parallel Cluster (MPC;
Fujitsu PRIMERGY RX200S5 (1048 nodes)) of
RIKEN Integrated Cluster of Clusters (RICC)
with a theoretical peak performance of 98.2
TFlops. Each computational node has Intel
Xeon 5570 (quad SMP processor chip 2.93GHz,
memory bandwidth: 0.54Byte/Flop) ×2 with
a memory of 12GB and a harddisk of 500GB
(RAID-0, SAS). In total, there are 8,384 cores.
The system is equipped with InfiniBand: X4
DDR (Qlogic SilverStorm 9024×60 and 9120×
2) for inter-node networking via two-way com-
munication with a performance of 16Gbps per
way. The network topology is a fat-tree type
(bisection bandwidth: 240GB/s). There are 60
leaf switches connecting with 20 computational
nodes for each, and two spine switches connect-
ing with all the leaf switches.

We employ a domain decomposition method
for the whole computational domain given as a
set of regularly divided cubic cells using a MPI
library (Fujitsu MPI). Since the spatial deriva-
tive of any quantity is discretized in the finite
difference manner, a nearest-neighbor commu-
nication at the boundary of the decomposed do-
main is essential for referring to a datum at
the adjacent node. To suppress the overhead
due to the communication rise-time, we take
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the nearest-neighbor communication for all the
quantities all at once. The total amount of
the nearest-neighbor communication is depen-
dent upon the number of grid points on the in-
terfacial area of the decomposed domain and
upon the number of points of the finite differ-
ence stencils. To evaluate the volume averaged
quantities in (13) or the summation of the resid-
ual error during an iterative computation, the
global communication is required. The global
communication is efficiently controlled by the
RICC system, in which the network topology is
taken into account.

Let us estimate the amount of the nearest-
neighbor and global communications at each
time step based on the proposed ACM. For
comparison, we also consider the standard semi-
implicit algorithm, in which the pressure Pois-
son equation (9) is solved by means of a four-
color SOR method, and the deviatoric Cauchy
stress term involved in (2) is temporally approx-
imated by the second-order Crank-Nicolson
method.

2.5.1 Nearest-neighbor communication

Let Ndx × Ndy × Ndz be the number of grid
points in the decomposed domain on each core.
The number of grid points on the node bound-
ary is given by 2(NdxNdy +NdxNdz +NdyNdz).
Let Nst be the number of points of the fi-
nite difference stencil in each direction. For
the second-order central difference method and
the WENO5 scheme, Nst = 3 (for the velocity
components (×3) and the pressure (×1)) and
Nst = 7 (for the solid volume fraction (×1)
and the left Cauchy-Green deformation tensor
components (×6)), respectively. In describing
the spatial derivative, the number of nearest-
neighbor communications is estimated as (Nst−
1)(NdxNdy +NdxNdz +NdyNdz) for each quan-
tity. Hence, in the explicit ACM method, the
total number is 50(NdxNdy+NdxNdz+NdyNdz)
for all the quantities.

In the semi-implicit algorithm, repetitive
nearest-neighbor communications are addition-
ally needed in the iteration process. Let NC and
NS be the numbers of iterations for the Crank-
Nicolson and SOR methods, respectively. In de-
scribing the divergence of the Cauchy stress ten-
sor involved in (2), the number of stencil points
is Nst = 3 for the Cauchy stress tensor compo-
nents (×6) and the velocity components (×3).
Hence, the number of nearest-neighbor com-
munications in the iteration for the deviatoric
stress term is estimated as 18NC(NdxNdy +

NdxNdz + NdyNdz). In the four-color SOR
method, the decomposed domain is divided into
2 × 2 × 2 sub-domains. Hence, the number of
grid points on the boundary in each sub-domain
is (NdxNdy + NdxNdz + NdyNdz)/2. In solv-
ing the Poisson equation (9), since the num-
ber of stencil points is Nst = 3 for δp and the
number of the sub-domains is 8, the number of
nearest-neighbor communications is estimated
as 4NS(NdxNdy + NdxNdz + NdyNdz).

It should be noticed that when one applies
the multi-color SOR method, the parallel effi-
ciency can be considerably enhanced by means
of an overlapping of communication with com-
putation (i.e. a hiding communication) con-
ducted through an asynchronous communica-
tion technique. Nevertheless, in consideration
that a relation 50 � 18NC + 4NS usually
holds and its right-hand-side generally becomes
greater with increasing the system size, the
amount of the nearest-neighbor communication
in the present ACM is much less than that in
the semi-implicit algorithm.

2.5.2 Global communication

In the ACM, the number of allreduce oper-
ations is 6, corresponding to the number of
the volume averaged quantities in (13) and the
pressure to be zero when being volume aver-
aged. On the other hand, in the semi-implicit
algorithm, the allreduce operation is not in-
volved. However, the evaluation of the over-
all residual error is required unless the con-
vergence speed is known. In practical simula-
tions, although the error estimation is not al-
ways needed at each iteration step, the total
number of allreduce operations for the Crank-
Nicolson and SOR methods is likely to be more
than 6, corresponding to the number of opera-
tions in the ACM.

3. Results and discussion

3.1 Overview

In the present study, for convenience in char-
acterizing the elasticity of solid, all quanti-
ties are non-dimensionalized using the density,
the viscosity, and the driving pressure gradi-
ent. Thus, the equation set (1)–(5) in a dimen-
sional form is solved together with ρ = µ =
−∆P/Lx = 1. We exemplify simulation re-
sults involving 16 biconcave discoid particles
with the modulus of G = 50. The computa-
tional extent is Lx ×Ly ×Lz = 7.2× 7.2× 7.2,
and the number of grid points is Nx×Ny×Nz =
128×128×128. The numerical simulations are
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Fig. 1 The snapshots of discoid biconcave parti-
cles of the neo-Hookean material in a three-
dimensional Poiseuille flow. The top, middle,
and bottom panels show the particle interfaces
at t = 0, t = 5, and t = 20, respectively. The
colors on the walls indicate the shear stress dis-
tributions. The left and right panels show the
results based on the SMAC method using FFT-
TDMA and those on the present ACM, respec-
tively.

carried out using a single node. For comparison,
two kinds of simulations are performed: one is
based on the SMAC algorithm, in which the
Fast Fourier Transform (FFT) in streamwise
(x) and spanwise (z) directions and the Tri-
Diagonal Matrix Algorithm (TDMA) in wall-
normal (y) direction are applied to exactly solv-
ing the pressure Poisson equation (9) in a fi-
nite difference form27), while the other is based
on the present ACM. In both the methods, the
first-order explicit Euler scheme is applied to
integrating the equations in time with a time in-
crement of ∆t = 5× 10−4, which is determined
to fully capture the elastic wave. The Reynolds
number using a flow rate in a fully developed
state and the channel height Ly is about 10.
The CFL number based on the maximum ad-
vection speed is about 0.018, while that based

on the elastic wave speed
√

G/ρ is 0.063.
The particle position and orientation are

shown in Figure 1. The particles deform and
translate in the downstream. As the time goes
on, they rotate and tend to be more mixed, re-
vealing somehow complicated behavior. There
are no significant discrepancies in the particle
position and shape between the results based
on the SMAC algorithm and present ACM.

-0.8

-0.4

0.0

0.4

0.8

 0  5  10  15  20

B
ud

ge
t

Time

I
−εs
−εf
−dK/dt
Total

-0.8

-0.4

0.0

0.4

0.8

 0  5  10  15  20

B
ud

ge
t

Time

I
−εs
−εf
−dK/dt
Total

Fig. 2 The budget of the kinetic-energy transport in
the Poiseuille flow containing 16 neo-Hookean
particles. (a) top panel: SMAC method using
FFT-TDMA; (b) bottom panel: present ACM.

To check whether an energy conservation is
correctly captured, we examine a budget of the
overall kinetic-energy transport written as

−dK

dt
+ I − εs − εf = 0, (14)

where K(= 〈 1
2ρv · v〉Ω), I(= 〈vx(−∆P/L)〉Ω),

εs(= 〈φsGB
′ : D

′〉Ω), and εf (= 〈2µD
′ : D

′〉Ω)
denote the kinetic-energy, the energy input
rate, the strain energy rate, and the kinetic-
energy dissipation rate, respectively. Figure 2
shows the time history of each contribution in
the left hand side of (14). The temporal pro-
files of the individual terms in the present ACM
are in good agreement with those in the SMAC
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method. The double-chained curve in Figure
2 shows the summation of the left-hand-side
terms of (14). Its absolute value is much smaller
than the variation of the contributions of the
individual terms. Therefore, the system is well
conserved during the simulation in view of the
energy balance, and the energy exchange be-
tween the fluid and solid phases via the solid
deformation is reasonably guaranteed.

3.2 Weak scaling

Here, to analyze the impact of the number of
cores M on the parallel performance, we per-
form weak scaling studies. For each core, the
computational extent and the number of grid
points are fixed at Lx×Ly×Lz = 3.6×3.6×3.6
and Nx ×Ny ×Nz = 64× 64× 64, respectively.
Each decomposed domain contains two bicon-
cave discoid particles. The material properties
are the same as those in §3.1. The number of
cores utilized is an integer power of 2 ranging
from M = 1 to M = 8, 192. For comparison,
not only the simulation based on the present
ACM but also that on the SMAC algorithm us-
ing the four-color SOR method as stated in §2.5
are performed.

In the four-color SOR method, the acceler-
ation coefficient during the iteration is set to
1.6. Usually, with increasing the number of
cores, the decay of the overall residual error
becomes slower, and thus the number of itera-
tions becomes larger. However, to perform the
weak scalability test, one should fix the com-
putational cost per core. Therefore, firstly, we
perform a computation using a single core, and
monitor the ratio of the root-mean-square of
the residual error of the pressure Poisson equa-
tion at each iteration step to that at the initial
step. Then, we judge the convergence from the
ratio being smaller than a criterion ε, and de-
termine the number of iterations NS , which is
fixed for all the runs, irrespective of the number
of cores. To examine the impact of the commu-
nication in the iterative Poisson equation solver
on the performance, we vary convergence cri-
teria at ε = 10−3 and ε = 10−4. Moreover,
we apply different communication techniques,
namely, synchronous and asynchronous ones.
The decay of the residual error in the Crank-
Nicolson method is rather faster, and the num-
ber of iterations is set to NC = 20 at each time
step, at which the residual error is much less
than 10−6.

In 50(NdxNdy + NdxNdz + NdyNdz) nearest-
neighbor communications in updating the

quantities explained in §2.5.1 and the allreduce

operation in the present ACM (correspond-
ing to the remaining communication), the syn-
chronous communication is employed.

For the SOR method, the time increment
is set to (∆t) = 6.25 × 10−5, while for the
present ACM, it is set to the one fifth, namely,
(∆t) = 1.25 × 10−5, since it should be small
enough to avoid the violation of the mass con-
servation24). The simulation conditions related
to the performance are listed in Table 1. The
total numbers of iterations with the criteria
ε = 10−3 and ε = 10−4 are fixed as shown in
Table 1.

Table 1 Simulation conditions in the weak scalability
tests for the SMAC/four-color SOR method
and for the present ACM with a 64×64×64
mesh per core.

SOR
ACM

ε = 10−3 ε = 10−4

# of time steps 10 10 50
NS in total 1,000 2,200 -
NC in total 200 200 -

Table 2 Elapsed wall time TM (sec) in the weak scal-
ability tests with a 64 × 64 × 64 mesh per
core.

Cores SOR (ε = 10−3) SOR (ε = 10−4)
ACM

(M) Sync. Async. Sync. Async.

1 24.94 24.30 26.81 27.26 21.57
2 23.49 22.25 26.13 25.50 20.52
4 35.76 36.44 45.16 44.96 24.55
8 34.77 33.81 43.20 44.78 24.68

16 35.62 34.66 44.44 42.84 25.15
32 39.75 38.28 51.95 47.25 26.09
64 40.92 38.17 52.79 47.45 26.20

128 42.01 38.61 54.77 47.80 26.47
256 47.08 40.18 61.80 49.79 27.07
512 47.56 41.52 63.91 52.28 27.67

1,024 48.09 42.65 65.68 52.86 28.15
2,048 53.54 44.73 73.88 55.26 29.70
4,096 58.33 47.76 85.90 64.08 30.11
8,192 67.84 54.23 102.20 74.04 31.96

For various number of cores M , the elapsed
time TM and the relative performance to the
base one using one core M = 1 (i.e. TM=1/TM)
are reported in Table 2 and in Figure 3, re-
spectively. It is seen from Table 2 that in the
SOR method, the asynchronous communication
technique is substantially effective for reducing
the run time as compared with the results us-
ing the synchronous communication. Further
notably, for all M , the elapsed times in the
ACM are considerably shorter than those in the
SOR method tuned up with the asynchronous

158 ⓒ 2012 Information Processing Society of Japan

2012年ハイパフォーマンスコンピューティングと計算科学シンポジウム 
High Performance Computing Symposium 2012

HPCS2012
2012/1/26



communication, indicating the advantage in the
reduction of the communication overweighs the
disadvantage in excessive number of time steps.
As shown in Figure 3, the plots reveal somehow
strange behaviors for the relatively small num-
ber of cores for M ≤ 8, because the system com-
prised of multi-core processors conducts only
the core-to-core communication inside the node
without node-to-node communication. In the
SOR method, the larger number of iterations
owing to the smaller convergence criterion ε
leads to the longer run time (Table 2) and the
less weak scaling performance (Figure 3), indi-
cating that one obtains worse parallel perfor-
mance when seeking to improve the simulation
accuracy. As shown in Figure 3, the scalability
in the present ACM is remarkably better than
those in the SOR method.
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Fig. 3 The efficiency, corresponding to the inverse of
elapsed time TM normalized by that at one core
T1, versus the number of cores M , showing the
weak scaling performance with a 64 × 64 × 64
mesh per core. The filled circles indicate the
results based on the present ACM. The trian-
gles and squares indicate the results based on
the SMAC algorithm using the four-color SOR
method with the criteria ε = 10−3 (

P

NS =
1, 000) and ε = 10−4 (

P

NS = 2, 200), re-
spectively, and the filled and open symbols of
them show the results using the synchronous
and asynchronous communications in solving
the Poisson equation, respectively.

To demonstrate the communication over-
head, the ratio of the communication time
T

(comm)
M to the elapsed time TM in percent is

reported in Figure 4. The communication time
fraction T

(comm)
M /TM in the ACM is much lower

than those in the SOR method. The ACM re-
quires only 22% or less of the elapsed time for

communication up to 8,192 cores. It should
be noticed that with increasing the number of
cores M , the amount of the nearest-neighbor
communication per core is fixed in the weak
scalability test, but the increase in the amount
of the global communication detailed in §2.5.2
is inevitable for the present ACM, which may
have no small impact on the positive correlation
between T

(comm)
M /TM and M shown in Figure

4.
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Fig. 4 Weak scaling performance in terms of commu-

nication time T
(comm)
M

as a percentage of the
elapsed time TM . The meanings of the symbols
are the same as those in Figure 3.

3.3 Strong scaling

Here, we perform strong scaling studies at
a fixed problem size using thousands of cores.
The computational extent and the number of
grid points are set to Lx × Ly × Lz = 115.2 ×
57.6 × 57.6 and Nx × Ny × Nz = 2, 048 ×
1, 024 × 1, 024 (i.e. 2,147,483,648 grid points
in total), respectively. The whole domain con-
tains 16, 384 particles. The material properties
are the same as those in §3.1. Similar to the
weak scalability tests in §3.2, we make compar-
isons between the parallel performances of the
present ACM and the SMAC algorithm using
the four-color SOR method. The time incre-
ments for the SOR method and for the ACM
are respectively set to the same as those in §3.2.
The SOR process is iterated until the residual
error relative to that at the initial iteration step
becomes less than the criterion ε. The total
numbers of iterations determined thereby and
the number of time steps are listed in Table 3.

The run on 1,024 cores is used as the base to
evaluate the strong scaling performance. The
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Table 3 Simulation conditions in the strong scala-
bility tests for the SMAC/four-color SOR
method and for the present ACM with a
2, 048 × 1, 024 × 1, 024 mesh in total.

SOR
ACM

ε = 10−3 ε = 10−4

# of time steps 10 10 50
NS in total 1,058 6,128 -
NC in total 70 70 -

elapsed time TM and the speedup ratio defined
as TM=1024/TM are reported in Table 4 and in
Figure 5, respectively. Since a great effort has
been made to tune the Poisson equation solver,
the parallel performance based on the SMAC
algorithm is substantially enhanced by intro-
ducing the asynchronous communication tech-
nique even at thousands of cores as shown in
Figure 5. Further remarkably, the profile of the
present ACM exhibits more excellent scalabil-
ity, and the parallel efficiency of 82% is main-
tained up to M = 8, 192. It is seen from Table
4 that at M = 1, 024, the run time in the ACM
is longer than that in the SOR method with
the criterion ε = 10−3 using the asynchronous
communication, while at the larger number of
cores M ≥ 2, 048, the run time in the ACM be-
comes shorter, on which the better scalability
is reflected.

Table 4 Elapsed wall time TM (sec) in the strong
scalability tests with a 2, 048×1, 024×1, 024
mesh in total

Cores SOR (ε = 10−3) SOR (ε = 10−4)
ACM

(M) Sync. Async. Sync. Async.

1,024 187.60 180.87 437.05 398.11 210.86
2,048 159.83 124.05 543.48 334.10 108.87
4,096 86.94 69.09 306.38 229.73 55.37
8,192 53.02 41.05 201.40 127.16 31.96

4. Conclusion

We proposed the scalable full explicit Eule-
rian finite difference method for solving Fluid-
Structure Interaction (FSI) problems, which re-
duces the amount of core-to-core communica-
tions required for the iterative computation,
and easily makes the computational load on
each core equivalent. We performed the large-
scale FSI simulations of the channel flow with
biconcave discoid particles, which replicate the
shape of Red Blood Cells (RBCs). The present
full explicit Eulerian solver was proven to be
excellently scalable in terms of the weak scal-
ing and also of the strong scaling with O(109)
grid points up to 8,192 cores, as compared with
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Fig. 5 The speedup ratio, corresponding to the inverse
of elapsed time TM normalized by that at 1,024
cores T1024 , versus the number of cores M ,
showing the strong scaling performance with
a 2, 048 × 1, 024 × 1, 024 mesh in total. The
meanings of the symbols are the same as those
in Figure 3. The solid line indicates the linear
scaling.

the conventional solver using the multi-color
SOR method well tuned up for massively par-
allel computations.

It should be emphasized that since the multi-
color SOR method with the asynchronous com-
munication is quite scalable in view of paral-
lelization, we believe that the comparisons in
terms of the weak and strong scalings therewith
are sufficiently meaningful. However, the multi-
color SOR method is more time-consuming
than faster convergence approaches such as a
multigrid method. To further discuss the par-
allel efficiency in terms of the peak perfor-
mance ratio as well as the weak/strong scaling,
a multigrid solver is currently being tuned up
for massively parallel computations, and will be
applied to performance tests for comparison.

As a future perspective, the present numeri-
cal approach will be applied to Petascale com-
putations of blood flows involving RBCs and
platelets in order to improve the understanding
of the initial process of the thrombus formation.
For this purpose, better serial and parallel effi-
ciencies are desirable from the numerical point
of view. The OpenMP-MPI hybrid paralleliza-
tion has been implemented into the code, and
currently the performance tuning is ongoing.
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