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Abstract: The spatio-temporal correlation analysis between visual saliency and eye movements is presented for the
estimation of the mental focus toward videos. We extract spatio-temporal dynamics patterns of saliency areas from the
videos, which we refer to as saliency-dynamics patterns, and evaluate eye movements based on their correlation with
the saliency-dynamics patterns in view. Experimental results using TV commercials demonstrate the effectiveness of
the proposed method for the mental-focus estimation.
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1. Introduction

Understanding mental states of users, who face interactive
display systems to browse various kinds of information, allows
building a smooth interaction between users and systems. Our
goal is to estimate the mental focus of users from their eye move-
ments, which indicates whether they pay attention to a specific
task. Especially in this paper, we focus on the estimation of the
mental focus while users watch general videos such as TV com-
mercials; that is, we consider the mental focus as the strength
of users’ attention toward videos, and besides, we assume the
strength can be quantified into several levels (e.g., high and low).

Eyes are a window into the mind; eye movements are often re-
garded as one of the crucial clues to estimate user states such as
the attention [1], [2], [3]. Analysis of the eye movements includes
eye blinks [1], PERCLOS (PERcentage of eyelid CLOSure) [4],
or their combination using Bayesian networks [5]. The basic con-
cept behind these studies is that eye movements can be affected by
the user states as well as contents being looked at. And there the
analysis of relationships between contents and eye movements
plays a key role. Existing work can be characterized by what kind
of relationships the method uses. For example, many studies on
interactive systems basically begin the analysis by specifying ob-
jects being looked at, and then extract the features such as the
gaze duration [6], 3-gram sequence of gaze targets [7], or the re-
action time to dynamic content updates [8]. In order to obtain the
detailed psycho-cognitive processes, the consideration of content
semantics is furthermore required [9]. Some works on driving
assistance systems investigate the correlation between eye gazes
and surrounding environments. They look for salient objects from
surrounding environments using optical flow [2] or obstacle, sign
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and pedestrian detection [3], and analyze the relationship between
gaze directions and the object positions to estimate the drivers at-
tention.

Those related works basically specify gaze-related objects or
their semantic relationships based on some heuristics about con-
tents or surrounding environments in advance. However, because
general videos contain enormous kinds of objects, it is difficult
to specify all the objects and their relationships using the heuris-
tics applied in the related works. Besides, eye movements have
a large variety of dynamics caused by contents and users’ states.
Therefore, the analysis of eye movements detailed enough to real-
ize the mental-state estimation essentially requires (1) the spatial
structure that describes gaze targets and the other surrounding ob-
jects in view, and (2) the temporal structure of dynamics between
both eye movements and the targets.

In this paper, we propose a novel method for the mental-focus
analysis that utilizes the spatio-temporal relationship of dynam-
ics in both objects and eye movements. The main contribution is
to introduce an analysis of eye-movement dynamics by catego-
rizing them from the aspect of objects’ dynamics in view. This
enables us to switch an appropriate feature set of eye movements
according to objects’ dynamics, and is expected to enhance the
accuracy of the estimation of mental focus. In order to analyze
dynamics in displayed contents without using specific semantic
heuristics, we employ the saliency map [10], which is known as a
model of a visual attention system. With consideration of the in-
fluence on eye movements, we classify the dynamics of extracted
saliency areas into several patterns called saliency-dynamics pat-

terns, which specify corresponding eye movements and their fea-
tures. Thus, once a saliency-dynamics pattern is identified from
contents data in a certain time window, we can evaluate the eye
movements to estimate the level of the mental focus.

The overview of our proposed analysis is as follows. As shown
in Fig. 1 (a), we first extract the spatio-temporal saliency volumes
S referred to as saliency flows. S are regarded as the candidates
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Fig. 1 Overview.

Fig. 2 Saliency extraction. A saliency flow S (l) is composed by temporally-continuous saliency areas
with the same id l: {s(t,n) | l(t,n) = l}.

of objects to be looked at. We also represent the flow positions by
their centroid sequences C. Then, analyzing the change of modes,
such as static and dynamic, occurred in each sequence in C, we
segment the flows into mode sequences M. And from M, we
finally achieve a sequence of saliency-dynamics patterns P (see
Section 2 for details). For eye-movement analysis (see Fig. 1 (b)),
eye-gaze data is first segmented into a gaze-target sequence G
using S, and classified into several types of eye movements us-
ing their correlation withM (see Section 3 for details). Features
that imply mental focus are then extracted from eye movements
X(1), X(1,2), . . . differently according to their types. We bundle the
features from eye movements within pn ∈ P into epn , and employ
different discriminative models of mental focus for each saliency-
dynamics pattern. In this research we discriminate two levels of
mental focus, high and low, by switching the models based on the
observed patterns (see Section 4 for details).

2. Video Saliency Extraction and Analysis

2.1 Visual Saliency in a Video
Videos have visual saliency areas which attract human eye

gazes. We employ the saliency map [10] to obtain the saliency
areas in a video, and utilize the areas as objects to be looked at.
The saliency map is a bottom-up computational model of visual
attention, which typically includes the extraction of multiple low-

level visual features such as the intensity, the color, the orientation
from an image at multiple scales, normalization and integration
of features into a 2D map with a saliency value at each pixel.
Studies on visual-attention systems such as the saliency map ba-
sically aim to evaluate their model by predicting human gaze be-
haviors [11], [12], with no consideration of mental states. On the
other hand, the proposed method aims to analyze the relationship
between gaze behaviors and the obtained saliency map, in order
to estimate the mental focus.

We extract saliency areas from a video *1; a saliency map ît
is computed from an input frame it at the time t and each pixel
c ∈ N2 is given a saliency value ît(c). ît is thresholded at πs and
the remaining pixels are segmented into a set of saliency areas
S t = {s(t,1), . . . , s(t,Nt)} by 8-connectivity labeling (see Fig. 2 (a)).

2.2 Saliency Flow Construction
As mentioned in Section 1, the spatio-temporal saliency dy-

namics is utilized for eye-movement analysis. So we extend
the visual saliency into spatio-temporal volumes referred to
as saliency flows (see Fig. 2 (b)). The saliency flows are de-
fined as simply-connected 3D volumes composed by temporally-
continuous saliency areas, and they contain the time-varying pat-

*1 The implementation of saliency extraction is in MATLAB using the
Saliency Toolbox [13].
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tern of their shape, position, and saliency value. Videos are often
expected to contain several flows, so we assign an ID to each
constructed flow. The following procedure gives an ID l(t,n) to a
saliency area s(t,n) so that we bundle a set of saliency areas into a
single flow.

For the area s(t,n), we look for a set of area Ŝ t−1 from S t−1,
the elements of which are spatio-temporally continuous to s(t,n).
Since saliency flows are defined as simply-connected, branches
in the flows should be avoided. Such branches are formed where
multiple areas are connected to s(t,n), so we assigned l(t,n) based
on the number of elements in Ŝ t−1 (denoted as Card(Ŝ t−1); the
cardinality of Ŝ t−1):
(a) If Card(Ŝ t−1) = 0; no area can be found in Ŝ t−1, s(t,n) con-

sists of the saliency flow which emerges at t. Then a new ID
number is given to l(t,n).

(b) If Card(Ŝ t−1) = 1; a single area can be found in Ŝ t−1, s(t,n) is
the following area to s(t−1,m) ∈ Ŝ t−1.
This case l(t,n) receives the ID l(t−1,m).

(c) If Card(Ŝ t−1) ≥ 2; more than one area can be found in Ŝ t−1,
s(t,n) is the area with the collision of multiple flows. For this
case l(t,n) receives the ID l(t−1,m̂) of area s(t−1,m̂) ∈ Ŝ t−1 which
locates the nearest position to s(t,n).

Once l(t,n) is assigned, we look for areas which have the same ID
number in S t = {s(t,1), . . . , s(t,Nt)}. If any area exists, s(t,n) is one of
the branches which emerges at t. In this case l(t,n) is relabeled to
a new ID number.

Let us assume that the maximum ID L is given by the above
procedure, and the ID l(t,n) ∈ {1, . . . , L} is defined for the area
s(t,n). Besides, let us define here the function that returns the ID
from a single pixel c at the time t as

SIDt(c) = l (l ∈ {1, . . . , L, ζ}) , (1)

where ζ denotes the state in which no flow exists at c. A
saliency flow labeled as l is composed by a set of saliency areas
S (l) � {s(t,n) | l(t,n) = l}. This flow exists in the temporal interval
[bl, el], and the area covered with S (l) at the time t is represented
as S (l)

t .

2.3 Saliency Dynamics Analysis
A set of saliency flows S = {S (1) . . . , S (L)} represents the

saliency dynamics. Each element of S, a saliency flow S (l), con-
tains the time varying pattern of its shape, position and saliency
value. Above all, a motion is well known as one of the important
features to enhance the saliency [14]. The motion is therefore ex-
pected to affect an attractiveness of saliency flows, and it is also
expected to affect eye-movement dynamics; the saliency flows
with or without motion cause different types of the eye move-
ments (see Section 3 for details).

So we extract motion features of saliency flows, and classify
motion patterns of saliency dynamics using their motion features
for eye-movement analysis. The flow position c(l)

t using the cen-
troid of S (l)

t is defined as follows:

c(l)
t =

1

Card(S (l)
t )

∑
c∈S (l)

t

c. (2)

A position sequene C(l) � (c(l)
t | t ∈ [bl, el]) is obtained from S (l).

Fig. 3 Saliency-flow segmentation and classification. In the top of the fig-
ure, red lines show the Euclidean norm of flow positions. In the
middle, red lines show dynamic modes and orange lines show static.
In the bottom, SS shows Single Static, SD shows Single Dynamic,
MS shows Multi Static, MSD shows Multi Static/Dynamic, and MD
shows Multi Dynamic. πc was defined as 2◦/s and ωd as 2◦ using the
size of human central visual field. ws is empirically defined as 0.1 sec
and ωp as 0.5 sec.

Table 1 Saliency-dynamics patterns and their specifications.

Saliency-dynamics pattern Specifications
Single Static (SS) Sole flow exists with static mode.

Single Dynamic (SD) Sole flow exists with dynamic mode.
Multi Static (MS) Multiple flows exist, and they are all

static.
Multi Static/Dynamic (MSD) Multiple flows exist. Some of them

are static and the others are dynamic.
Multi Dynamic (MD) Multiple flows exist, and they are all

dynamic.

The following procedures transform C(l) into a sequence of modes

(motion states) M(l), and classify saliency dynamics as several
patterns based on the modes (see Fig. 3).

Flow segmentation
Two modes: md and ms, where md represents that a flow has

a motion, and ms shows it is static, are introduced for saliency-
flow segmentation. We use the notation < m(l)

n , τ
(l)
n > to repre-

sent the interval that has a mode m(l)
n ∈ {md,ms} and duration

τ(l)
n (

∑
n τ

(l)
n = el − bl + 1). We first set threshold to the speed (the

first order differential value) of ||C(l)|| at πc, and segment it into an
initial mode sequence (< m(l)

1 , τ
(l)
1 >, . . . , < m(l)

Nl
, τ(l)

Nl
>). Static

modes with smaller intervals than ws are then suppressed by
merging them with subsequent dynamic modes. Dynamic modes
with a smaller motion than an amplitude ωd are also merged with
subsequent static modes because such small modes cause no eye
motions. Finally we renew the subindices to obtain the mode se-
quence M(l) = (m(l)

1 , . . . ,m
(l)
Nl

).
Pattern classification in saliency dynamics
Saliency-dynamics patterns describe characteristics of the

spatio-temporal structure of saliency dynamics in videos. We
consider video scenes with and without dynamic saliency flows
separately because the dynamic flows originally tend to attract a
more attention than the static ones. Besides, we take the number
of flows into account because it affects gaze distributions. Thus,
from the existence and modes of the saliency flows, the patterns
consisting of Single Static, Single Dynamic, Multi Static, Multi-
Static/Dynamic, and Multi Dynamic, are formed by a set of mode
sequencesM = {M(1), . . . ,M(L)} (see Table 1 for their specifica-
tions).
M is first segmented based on changes in the number of flows
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and of their modes. As well as the preceding flow segmen-
tation, we examine the duration of each segment and merge
small segments with subsequent ones with the threshold ωp.
A sequence of saliency-dynamics patterns is finally acquired:
P = (p1, . . . , pN) (pn ∈ {SS, SD,MS,MSD,MD}), from an input
video.

3. Eye Movements Analysis Using Saliency
Dynamics

3.1 Mental Focus and Eye Movements
Mental focus is here defined as a state that specifies whether

humans pay attention to video viewing tasks, and we assume the
state can be quantified into several levels. Kahneman proposed
the attention theory that likens attention to a limited resource
which is allocated to tasks [15]. Following this theory, the level
of the mental focus can be regarded as the amount of attention
resource that allocates to the tasks. Besides, human information
processing can be classified into two types [16]: controlled pro-
cessing is driven by human intentions, and automatic processing
is on the other hand a passive outcome of visual stimuli. We de-
fine the eye movements in a controlled mode as endogenous eye
movements, and in an automatic mode as exogenous eye move-
ments.

Based on these two theories, we assume the following mental
focus and eye movements relationship model. From mental fac-
tors such as intentions or physiological factors such as fatigues,
the level of mental focus is determined and attention resource is
allocated. This attention resource causes endogenous eye move-
ments, and some visual stimuli in saliency dynamics cause ex-
ogenous eye movements as well. Eye gaze data is observed by
mixing these eye movements.

Eye movements have different features according to their type,
and therefore have to be evaluated in a different way. The first
step toward the estimation is to classify the eye-movement type
using saliency dynamics. After that we extract features from the
eye movements differently according to their type.

3.2 Eye Movements in Video Viewing
We summarize the kinds of eye movements being observable

on a screen, which take place during video viewing, so that we
classify them (see Fig. 4). When we humans watch videos, itera-
tive scanning and selection of objects are expected to be observed.
Here, we employ the following primitive eye movements from a
biomedical research [17]: saccade, fixation and smooth pursuit,
and try to describe characteristics of the scanning and the selec-
tion using combinations of the primitive movements.

The scanning movements present steady behaviors, and there-
fore are characterized by flow modes. Based on the modes, they
are classified into two types:
Fixation scan (FS) is a scanning eye movement of static

saliency flows. FSs can be described as the combination of
fixations: maintenance of gaze on a single location, and sac-
cades: rapid and jerky gaze shifts.

Pursuit scan (PS) is a scanning of moving (dynamic) saliency
flows. PSs contain smooth pursuits of the flow motions, and
saccades.

Fig. 4 Eye movements in video viewing.

On the other hand, the selection movements present transi-
tional behaviors, and are caused voluntarily as well as by visual
stimuli in saliency flows. Therefore, they can be classified based
on the type of human information processing. We introduce the
term events that represent visual stimuli in the flows. Events are
defined here as emergences or mode transitions from static to dy-
namic. They cause exogenous gaze shifts, and according to the
their association with target selections, the following eye move-
ments are introduced:
Endogenous target change (NC) is a gaze shift between

saliency flows that occurs asynchronously with events.
Using NCs, humans voluntarily determine which flows to
scan next, and manage to shift their gaze.

Exogenous target change (XC) is also a gaze shift between
saliency flows but it occurs in synchronization with events
in a destination flow. The feature of XCs is that humans do
not consciously shift their gaze.

3.3 Eye Movements Classification
Let us assume that eye-gaze data xt ∈ R2, a 2D point on a

screen is obtained using an eye tracker. The four eye movements
mentioned above are specified from the observed sequence of
eye-gaze points X = (x1, x2, . . .) (see Fig. 5).

Segmentation
For the classification, we first produce intervals < gk, τk > from

X, each of which has a single target flow with ID gk and duration
τk. By following Eq. (1), the reference from a point xt to a flow
ID is described as follows:

g(t) = SIDt(xt) ∈ {1, . . . , L, ζ, η}. (3)

Notice that the numbers 1, . . . , L denote the flow IDs, ζ shows that
no flow locates at the point, and η shows that the human blinks
or looks outside of a screen. Using target-flow changes, we ob-
tain a target-flow sequence with duration G = (< g1, τ1 >, . . . , <

gK , τK >), which consists of gk � {ζ, η} (see Fig. 5 (a)). We then
divide < gk, τk > based on mode transitions in the flow S (gk);
< gk, τk > is divided into (< mk1 , τ

′
k1
>, . . . , < mkM , τ

′
kM
>) by a

set of mode-transition time in S (gk). After the division, we renew
subindices to get a sequence of target-flow mode with duration:
G′ = (< m1, τ

′
1 >, . . . , < mK′ , τ

′
K′ >) (see Fig. 5 (b)).

Classification
We classify the eye movements using the obtained mode se-

quence G′. Let us assume that < mk, τ
′
k > exists in the interval

[bk, ek]. We describe a sequence of eye-gaze points in < mk, τ
′
k >

as X(k) � {xt |t ∈ [bk, ek])} and of eye-gaze points between
< mk−1, τ

′
k−1 > and < mk, τ

′
k > as X(k−1,k) � {xt |t ∈ [ek−1, bk]},

which will individually correspond to specific eye movements.
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Fig. 5 Eye-movement classification. (a) Target-flow identification and initial segmentation.
(b) Interval division based on target modes. (c) Eye-movement classification.

FSs and PSs take place within the interval < mk, τ
′
k > and X(k)

can be classified to either of them. These eye movements can be
classified using modes of their gaze targets; based on the target-
flow mode mk, we assign the label FS to X(k) if mk = ms and PS if
mk = md.

On the other hand, NCs and XCs take place between two inter-
vals < mk−1, τ

′
k−1 > and < mk, τ

′
k >. As mentioned in Section 3.2,

these two movements are discriminated by observing whether the
eye movement is synchronized with events or not. Specifically,
we evaluate the temporal distance between the starting time of
the eye movements and that of the corresponding events to dis-
criminate the two movements. Let us assume that the most recent
event from bk occurs at Tk(< bk) in NC/XC destination flows.
NCs are then discriminated from XCs using temporal distance
between Tk and bk; if bk − Tk is within the reaction time σ of ex-
ogenous saccades (generally around 0.2 sec [18]), X(k−1,k) can be
labeled as XC, and otherwise it is labeled as NC. Finally we ob-
tain the sequence of eye movements, X(1), X(1,2), X(2), . . . , X(K−1),
X(K−1,K), X(K), labeled by FS, PS, NC, or XC (see Fig. 5 (c)).

4. Mental Focus Estimation

4.1 Estimation Overview
Following the procedure in Section 3, a sequence of eye move-

ments, consisting of fixation scan FS, pursuit scan PS, endoge-
nous target change NC and exogenous target change XC, is ob-
tained. This section presents the feature extraction of the eye
movements and the estimation of the mental focus. We assume
that the level of mental focus corresponds to the amount of at-
tention resource to tasks, and that humans scan or select saliency
flows more actively using the resource when they are in a higher
level of mental focus.

Eye movements have different characteristics according to
their type, and thus we first extract features which indicate ac-
tiveness in video viewing, from the observed eye movements in
a different way for their type. Since we focus on dynamic as-

Table 2 Saliency-dynamics patterns and observable eye movements. The
detailed specifications of the patterns in the left column can be
found in Table 1.

Saliency-dynamics pattern Observable eye movements
Single Static (SS) FS

Single Dynamic (SD) PS
Multi Static (MS) FS, NC, XC

Multi Static/Dynamic (MSD) FS, PS, NC, XC
Multi Dynamic (MD) PS, NC, XC

pects in eye movements, the features are extracted as summariza-
tions of their dynamics. Here, the eye movements are affected
not only by a target flow but by the other surrounding flows in
a scene. For instance, scenes composed of multiple flows cause
NC and XC whereas scenes with a single flow cause only FS or
PS. In addition, when the scene includes both static and dynamic
flows, PS seems to be observed more often than FS because the
dynamic flows are more salient than the static ones. That is, the
features can perform differently according to the type of saliency-
dynamics patterns, which indicate the number and modes of ex-
isting flows.

Therefore, we then integrate the features, which are extracted
from the eye movements in a certain time window defined by
the saliency-dynamics patterns, into a feature set. The observable
eye movements for each of the patterns can be derived as Table 2,
since the eye movements are categorized by their association with
modes or events of saliency flows. By learning a discriminative
model from the feature sets for each pattern, we can estimate the
level of mental focus by switching an appropriate model to the
observed eye movements based on the corresponding saliency-
dynamics patterns in view.

4.2 Feature Extraction
As shown in Section 3.2, FSs and PSs are steady eye move-

ments and they have internal dynamics. With regard to FSs, they
usually contain saccades as gaze shifts. As seen in a study on the
scene perception [19], the saccades are regarded as crucial fea-
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tures in eye movements. We suppose that such saccades occur
more actively when humans are in higher level of mental focus,
and introduce a stroke length efs1 and a frequency efs2 of saccades
as features of FSs. Let us use the notation Ẋ(k) for the velocity of
an eye-motion pattern X(k). ||Ẋ(k)|| is thresholded at πv, so that Nv
instances of partial temporal intervals

{
O1, . . . ,ONv

}
which con-

tain saccades are detected. For each partial eye-motion pattern
X(k)
v � (xt | t ∈ Ov), we calculate the stroke length of saccades

and then get the average value as efs1:

efs1 =
1
Nv

Nv∑
v=1

1√
av

(
max

(i, j)∈Ov

(
||X(k)

i − X(k)
j ||

))
, (4)

where av denotes the area size of a target flow at the time Ov starts.
e(v)

fs1 is normalized by
√

av because the length of saccades seems
to depend on the target size. efs2 is defined as efs2 = Nv/τ′k, where
τ′k denotes the duration of Xk.

Meanwhile for PSs, we consider the synchronization between
eye movements and target flows. When humans track a mov-
ing object, they tend to synchronize the pursuit acceleration to
expected changes of the target movement, and maintain the ve-
locity at a constant level while no change of target velocity
is expected [20]. The feature of PSs therefore contains syn-
chronous components in the speed of eye movements. Such

components lie in ||Ẋ(k)
t || cos θt

(
cos θt =

Ẋ(k)
t ·Ċ(k)

t

||Ẋ(k)
t ||||Ċ(k)

t ||
, t ∈ [bk, ek]

)
,

an orthographically-projected component of Ẋ(k) to the corre-
sponding part of a target motion velocity denoted as Ċ(k). We
introduce the feature eps1 that indicates the synchronization by
using the average ratio of speed between eyes and targets:

eps1 =
1
τ′k

∑
t∈[bk ,ek]

||Ẋ(k)
t || cos θt

||Ċ(k)
t ||

. (5)

PSs contain saccadic components as well, and we suppose that
such components mainly lie in the rest of information ||Ẋ(k)

t || sin θt.
The feature eps2 which includes the saccadic components is given
by the following equation:

eps2 =
1
τ′k

∑
t∈[bk ,ek]

∣∣∣||Ẋ(k)
t || sin θt

∣∣∣ . (6)

NCs and XCs are transitional eye movements and therefore
contain no internal dynamics in themselves. Following the sac-
cade evaluation above, we focus on the occurrence frequency of
the NCs. Given that K instances of NCs occur during the interval
L defined by a single saliency-dynamics pattern consisting of F

flows, the feature enc is defined as enc = K/(L · F). With regard
to XCs, we calculate the reaction time between the starting time
of XCs and that of events which associate with the XCs, since
exogenous saccades are featured by the synchronization with the
events. Given that K instances of XCs occur with the reaction
time rk (rk = bk − Tk in Section 3.3) in a pattern, the feature exc is
defined as

∑K
k=1 rk/K.

4.3 Integration and Estimation
The next step is the integration of features within saliency-

dynamics patterns; multiple features obtained from the observ-
able eye movements are combined into one feature set for each

pattern. In what follows, ep = [e1, . . . , eN] represents the fea-
ture set for a saliency-dynamics pattern p, the elements of which
denote features derived from eye movements observed in the pat-
tern. For instance, if p is MS, the observable eye movements
are FS, NC, and XC (see Table 2). So ep can be represented as
ep = [efs1, efs2, enc, exc]. Each element of ep is here normalized
into a range of [0, 1]. Notice that every type of eye movements
can be observed more than once during a saliency-dynamics pat-
tern. Therefore, we first calculate a feature from each eye move-
ment, and then give the average value per each type of feature to
the component of ep.

Here we assume that the different levels of mental focus R are
described as {R1, . . . ,RN}. The estimation of mental focus is then
formulated as a problem to estimate the state R̂ ∈ {R1, . . . ,RN}
which brings to a maximum a posterior probability from a new
observation e∗p, such as

R̂ = arg max
R

P(R|ep = e∗p) ∝ arg max
R

P(ep = e∗p|R)P(R). (7)

Furthermore, in this paper we assume P(R) as a constant, and
transform the equation above into arg maxR P(ep = e∗p|R). We
build a discriminative model of mental focus levels from feature
sets derived from training data, differently for saliency-dynamics
patterns. And for the estimation, we switch the model according
to the observed saliency-dynamics patterns.

5. Experiments

5.1 Experimental Setup
We conducted some experiments and estimated the level of

mental focus. In these experiments, we aim to discriminate two
levels of mental focus: high and low, as a relatively-simplified
evaluation. 10 subjects took part in the experiments, and 12
TV commercial videos (15 sec) were employed. The commer-
cial videos are originally designed to attract the attention, and
therefore are expected to include some obvious saliency flows.

Environments and conditions
A subject sat in front of a screen *2, and an eye tracker *3 was

installed below the screen. The eye-tracking accuracy was, on
average, around 0.7◦. The spatial distance between the subject
and the screen was around 1000 mm, and in these settings eye
movements could be observed during experiments.

Since the mental focus specifies an attentional state to video-
viewing tasks, we adopt the following two conditions in order to
control the level of the mental focus in the experiments:
Condition 1 (high level of mental focus) A subject watches a

video and answers a simple interview after that.
Condition 2 (low level of mental focus) A subject watches a

video, and besides he/she does a mental calculation while
watching.

For each condition, subjects were asked to orient their gaze to a
screen as far as possible. They carried out the tasks in the fol-
lowing sequence: video group A (six out of all the videos)—
Condition 1, video group B (the other six videos)—Condition 2,

*2 MITSUBISHI Diamondcrysta RDT262WH, 25.5 inch, W550 mm/
H344 mm.

*3 Tobii X60 Eye Tracker. An approximate allowed range of head motion
is 400 × 220 × 300 mm.
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video group B—Condition 1, and video group A—Condition 2.
Preprocessing and parameter setting
Eye-gaze data were acquired by the eye tracker at 30 Hz. As

preprocessing, we applied a median filter with 0.5 sec window
to the data in order to suppress spontaneous noises and to inter-
polate defects by eye blinks *4. The remaining defects of eye-
gaze data caused by eyelid closures constituted 23.6% of the to-
tal sequences. For the saliency extraction, the parameter πs in
Section 2.1 was empirically defined as 0.1. Saliency areas then
covered 31.5% regions of the total video frames, and the ratio
of the state in which subjects looked at any saliency areas was
88.7%. For the saliency-dynamics analysis, the parameters πc,
wd, ws, wp (see Section 2.3) were defined as πc = 2◦/s, wd = 2◦

based on the size of the human central visual field, ws = 0.1 sec
and wp = 0.5 sec to avoid creating short fragments of static flows
and saliency-dynamics patterns. The reaction time of exogenous
saccades δ (see Section 3.3) was defined as 0.2 sec by following
Ref. [18], and the threshold for saccade speed πv (see Section 4.2)
was defined as 8◦/sec to avoid detecting fixations incorrectly.

5.2 Results and Discussions
Eye movement analysis
We aggregate feature sets for each saliency-dynamics pattern

observed in the experiments. Since we used two conditions in the
experiments to control the levels of the mental focus, the obtained
data consists of two classes (high/low mental focus). Namely, the
obtained feature sets constitute two conditional distributions, con-
ditioned by the level of the mental focus. In order to verify the
separability of these two classes in terms of linear discrimination,
we first apply the linear discriminant analysis (LDA) to the ob-
tained data set, and calculate partial F-Values to figure out which
elements of the feature sets contribute.

Figures 6, 7, 8, 9 and 10 describe the relative frequency distri-
butions of the data after LDA projection, in order to visualize the
separability. Table 3 shows partial F-Values for each saliency-
dynamics pattern. We can find that the importance of features
varies according to the saliency-dynamics patterns, and these re-
sults also suggest the following aspects of gaze behaviors:

Fig. 6 Relative frequency distributions (SS).

*4 Since we employ sequences of eye-gaze points on a screen as eye move-
ments, we do not regard the eye blinks especially in this paper, though
some studies report on the effectiveness of eye blinks to estimate atten-
tion resource [21].

Fig. 7 Relative frequency distributions (SD).

Fig. 8 Relative frequency distributions (MS).

Fig. 9 Relative frequency distributions (MSD).

Fig. 10 Relative frequency distributions (MD).
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Table 3 Partial F-Values for saliency-dynamics patterns.

Pattern Parital F-Values
SS efs1 : 1.23, efs2 : 3.84
SD eps1 : 0.69, eps2 : 3.68

MS
efs1 : 34.36, efs2 : 41.10

enc : 2.11, exc : 4.11

MSD

efs1 : 20.71, efs2 : 24.47
eps1 : 10.07, eps2 : 21.99

enc : 2.43, exc : 1.51

MD
eps1 : 0.26, eps2 : 5.32
enc : 2.43, exc : 2.04

• The level of mental focus mainly affects saccades which in-
ternally occur in FS/PS. We can find the above aspect from
the partial F-Value of efs1, efs2 and eps2. Subjects seem to
scan target flows actively rather than change them when they
are in the high level of the mental focus, since all the NC/XC
contributions are much smaller than the others.

• Synchronization in the speed between eye movements and
target flows is not affected much by the level of mental focus.
That is, subjects basically tend to pursue dynamic saliency
flows at any level of mental focus. That is because the par-
tial F-Value of eps1 is relatively smaller than that of efs1 and
efs2 in MSD, as well as than that of enc and exc in MD.

We can find that the two relative frequency distributions are
somewhat separated. Still, some of them are clearly impossible
to separate linearly. Therefore, for the estimation, we employ the
non-linear discrimination that directly estimates the conditional
probability distributions.

Mental focus estimation
Following Eq. (7), we estimate the level of mental focus. 24

data for each subject (totally 240 data), which consist of two lev-
els of mental focus per each video, are obtained. We apply leave-
one-out cross validation method to obtain the estimation accuracy
for each saliency-dynamics pattern. Namely, we remove one of
the 240 data to learn a conditional probability distribution using
the rest of the data, and test the removed data to be classified cor-
rectly. To interpolate the obtained distributions, here we apply
the additive smoothing with the empirically-defined smoothing
parameter α = 0.0001 to them. We iteratively change the feature
set to remove so that we test all the data, and obtain the average
accuracy per saliency-dynamics pattern.

Table 4 shows estimation accuracies. The accuracies are ob-
tained for all the saliency-dynamics patterns and their average.
Here we employ two estimation baselines. One utilizes gaze du-
rations toward saliency areas as a feature of eye movements (see
“Duration” in Table 4). We calculate temporal durations while
subjects look at each saliency area, and get the average ratios be-
tween the durations and temporal intervals defined by saliency-
dynamics patterns. From sequences of saliency-dynamics pat-
terns, we obtain conditional probability distributions of the dura-
tion ratios for each level of mental focus, and utilize them for the
estimation. The other utilizes PERCLOS [4] as a feature of eye
movements (see “PERCLOS” in Table 4). In fact we simply cal-
culate the average ratios between temporal intervals of eye-gaze
data defects and those of saliency-dynamics patterns, instead of
the duration ratios shown above.

We can confirm that estimations of all the patterns perform

Table 4 Estimation accuracies. SS, SD, MS, MSD and MD show the results
for each saliency-dynamics pattern. Average shows the average ac-
curacy of all the patterns. Duration and PERCLOS show results of
the baseline methods.

Baselines Proposed method
Duration PERCLOS SS SD MS MSD MD Average

53.8% 65.0% 66.9% 75.0% 78.8% 81.5% 76.3% 78.2%

more accurately than the baselines. The proposed method
switches different discriminative models for observed types of
saliency-dynamics patterns. The results suggest that we can uti-
lize better features in adapting to the changes of the saliency-
dynamics patterns than uniform features employed in the baseline
methods. Another difference of the proposed method from the
baselines is that it focuses on the internal eye-movement dynam-
ics in saliency areas. That is, the proposed method investigates
not only “what subjects look at,” but also “how subjects look at,”
and thus seems to enhance the accuracies.

From a viewpoint of improving the robustness of the method,
one of the approaches is to vote estimation results within longer
intervals. The estimation accuracy by integrating the results con-
ducted in a single video interval (15 sec) is 93.3% on average.
Besides, this paper conducts classification of two levels of men-
tal focus as a relatively-simplified evaluation, but in principle, we
can estimate multi-levels of the mental focus in the same fashion.

Comparing the two baselines, PERCLOS employs gazes of
both saliency and non-saliency areas whereas Duration employs
those of only saliency areas. The difference in their accuracy sug-
gests that gazes of the non-saliency areas also contribute the dis-
crimination of the levels of mental focus. For the discrimination
of saliency and non-saliency areas, we simply set a fixed thresh-
old for all the saliency maps. Therefore, the saliency extraction
employed here has a potential risk of regarding actual gaze tar-
gets as non-saliency areas. To overcome the problem, one possi-
ble way is to improve the thresholding method such as to select
thresholds adaptively for each saliency map with consideration of
its saliency-value histogram.

Also, the videos we employed in the experiments contain some
clear saliency areas, and therefore eye gaze seems to have a ten-
dency to focus on those areas. However, to apply the proposed
method to other kinds of videos, it is difficult to assume that clear
saliency areas always exist. With regard to scenes with no salien-
cies such as plain natural sceneries or scenes filled with saliencies
such as crowds, the proposed method with a simple saliency ex-
traction originally has a problem with the specification of objects
to be looked at. For improvement of the saliency extraction, we
can introduce some heuristics in conjunction with the saliency
map; for instance, employing the saliency map with object detec-
tion such as face detection [22], [23] can enhance the saliencies
of actual objects to be looked at, and therefore it can be helpful to
specify them.

6. Conclusions

We proposed to analyze the spatio-temporal correlation of
dynamics between the visual saliency and eye movements for
mental-focus estimation. Experimental results reveal that this
correlation can be a meaningful clue for the mental focus, and the
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proposed method performs accurately to discriminate two levels
of them. This study introduces an analysis of eye-movement dy-
namics by categorizing them from the aspect of visual-saliency
dynamics in view, in order to estimate the mental focus. On
the other hand, we can also utilize this correlation in the form
of the detailed analysis of the visual-saliency dynamics from the
aspect of the eye-movement dynamics. That is, extraction and
modeling of the visual-saliency dynamics allow taking actual eye
movements and mental focus into account, as well as introducing
heuristics shown in Section 5.2. Besides, we can confirm the ef-
fectiveness and the necessity of the proposed analysis, but its suf-
ficiency has yet to be revealed. Future work will seek to general-
ize the analysis of the spatio-temporal correlation between visual
saliency and eye movements, and to apply the proposed method
to more general video-viewing scenes.
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