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Abstract: This paper proposes a method that speeds up a classifier trained with many conjunctive features: combina-
tions of (primitive) features. The key idea is to precompute as partial results the weights of primitive feature vectors
that represent fundamental classification problems and appear frequently in the target task. A prefix tree (trie) com-
pactly stores the primitive feature vectors with their weights, and it enables the classifier to find for a given feature
vector its longest prefix feature vector whose weight has already been computed. Experimental results on base phrase
chunking and dependency parsing demonstrated that our method speeded up the svm and llm classifiers by a factor of
1.8 to 10.6.
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1. Introduction

In the information-explosion era, researchers in the field of nat-
ural language processing (nlp) and data mining (dm) have demon-
strated that processing more texts promotes better science [16],
[23], [43], [47]. Deep and accurate text analysis based on discrim-
inative models is, however, not yet efficient enough to process
Web-scale corpora for knowledge acquisition [5], [38], [39], [40]
or semi-supervised learning [1], [3], [8], [29], [31], [44] even with
distributed computing environments [38], [41]; typically, syntac-
tic parsing such as dependency parsing and supertagging is orders
of magnitudes slower than the front-end part-of-speech (pos) tag-
ging [15], [20], [39], which forces us to limit the size of web texts
to make processing feasible.

One of the main reasons for this inefficiency is attributed to
the inefficiency of core classifiers trained with many feature com-
binations (e.g., word n-grams). Hereafter, we refer to features
that explicitly represent combinations of features as conjunctive

features and the other atomic features as primitive features. The
feature combinations play an essential role in obtaining a clas-
sifier with state-of-the-art accuracy for several nlp tasks; recent
examples include morphological analysis [33], dependency pars-
ing [24], parse re-ranking [31], named-entity recognition [29],
pronoun resolution [34], and semantic role labeling [30]. How-
ever, ‘explicit’ feature combinations significantly increase the
feature space, which slows down not only training but also testing
of the classifier.
�1-regularized log-linear models (�1-llms) provide sparse solu-

tions, in which weights of irrelevant features are exactly zero as
a result of assuming a Laplacian prior on the weights [46], [49].
However, Kazama and Tsujii [22] have reported in a text catego-
rization task that most features regarded as irrelevant during the
training of �1-llms appeared rarely in the task. In such a case, �1-
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regularization cannot greatly reduce the number of active features
in each classification, while retaining the classification accuracy.
We later confirm this in a dependency parsing task.

Kernel-based methods such as support vector machines (svms),
on the other hand, consider feature combinations space-efficiently
by using a polynomial kernel function [7]. The kernel-based clas-
sification is, however, known to be very slow in nlp tasks, so ef-
ficient classifiers should sum up the weights of the explicit con-
junctive features as in llms [14], [17], [26]. In the end, when
efficiency is a major concern, we must use exhaustive feature se-
lection [26], [36], [50] or even restrict the order of conjunctive
features at the expense of accuracy.

In this study, we provide a simple, effective solution to the in-
efficiency of classifiers trained with higher-order conjunctive fea-
tures (or polynomial kernel), by exploiting the Zipfian nature of
language data. The key idea is to precompute the weights of prim-
itive feature vectors, which represent fundamental classification
problems in the task, and use them as partial results to compute
the weight of a given feature vector. We maintain primitive fea-
ture vectors and their pre-calculated weights in a trie called the
feature sequence trie to quickly find for a given feature vector its
longest prefix feature vector whose weight has been computed.
The trie is built from feature vectors generated by applying the
classifier to actual data in the task. The time complexity of the
classifier approaches time that is linear with respect to the num-
ber of active primitive features when the retrieved feature vector
covers most of the features in the input feature vector.

We implemented our algorithm for svm and llm classifiers and
evaluated the performance of the resulting classifiers in a base
phrase chunking task and a dependency parsing task. Experimen-
tal results show that it successfully speeded up classifiers trained
with conjunctive features by a factor of up to 10.

The rest of this paper is organized as follows. Section 2 in-
troduces llms and svms. Section 3 proposes our classification
algorithm. Section 4 presents experimental results. Section 5
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concludes with a summary and addresses future directions.

2. Preliminaries

In this paper, we focus on linear classifiers that calculate the
probability (or margin) by summing up weights of individual fea-
tures. Examples include not only llms but also svms with kernel
expansion [14], [17], [26]. Below, we introduce these two classi-
fiers and the ways that they treat feature combinations.

In classification-based nlp, the target task is modeled as one or
more classification steps. For example in pos tagging, each clas-
sification decides whether to assign a particular label (pos tag) to
a given example (each word in a given sentence). Each example
is then represented by a feature vector x, whose element xi is a
value of a feature function fi ∈ F .

Here, we assume a binary feature function fi(x) ∈ {0, 1}, in
which a non-zero value means that particular context data ap-
pears in the example. We say that a feature fi is active in example
x when xi = fi(x) = 1 and |x| represents the number of active
features in x (|x| = |{ fi | fi(x) = 1}|).

2.1 Log-Linear Models
The log-linear model (llm), or also known as maximum-

entropy model [4], is a linear classifier widely used in the nlp
literature. Let the training data D of llms be {〈xi, yi〉}|D|i=1, where
xi ∈ {0, 1}n is a feature vector and yi is a class label associated
with xi.

The classifier provides conditional probability p(y | x) for a
given feature vector x and label y:

p(y | x) =
1

Z(x)
exp

∑
i

wi,y fi,y(x, y), (1)

where fi,y(x, y) is a feature function that returns a non-zero value
when fi(x) = 1 ( fi ∈ F ) and the label is y, wi,y ∈ R is a weight
associated with fi,y, and Z(x) is the partition function defined as:

Z(x) =
∑
y

exp
∑

i

wi,y fi,y(x, y).

We can consider feature combinations in llms by explicitly intro-
ducing a new conjunctive feature fF ′ ,y(x, y) that is activated when
a particular set of features F ′ ⊆ F to be combined is activated
(namely, fF ′ ,y(x, y) =

∧
fi∈F ′ fi,y(x, y)) *1.

We then introduce an �1-regularized llm (�1-llm), in which the
weight vector w is tuned so as to maximize the logarithm of the a
posteriori probability of the training data:

w� = argmax
w
Lw

where Lw =
|D|∑
i=1

log p(yi | xi) −C‖w‖1 (2)

Hyper-parameter C thereby controls the degree of over-fitting (so-
lution sparseness). Interested readers may refer to the cited liter-
ature [48] for the optimization procedures.

To the best of our knowledge, there are no previous reports of
an exact weight calculation faster than linear summation for an
llm (Eq. (1)).
*1 Precisely speaking, we can kernelize an llm (with Gaussian prior) to

implicitly consider conjunctive features by using the polynomial kernel
function (as in Section 2.2).

2.2 Support Vector Machines
A support vector machine (svm) is a binary classifier [7]. Train-

ing with examples {〈xi, yi〉}|D|i=1 where xi ∈ {0, 1}n and yi ∈ {±1}
yields the following decision function:

y(x) = sgn(m(x) + b)

where m(x) =
∑
x j∈S
α jφ(x j)

Tφ(x), (3)

where b ∈ R, φ : Rn 	→ RH and support vectors x j ∈ S (support

set, a subset of training examples), each of which is associated
with weight α j ∈ R. We hereafter call m(x) the weight func-

tion. The nonlinear mapping function φ is chosen to make the
training examples linearly separable in RH space. Kernel func-
tion k(x j, x) = φ(x j)Tφ(x) is then introduced to compute the dot
product in RH space without mapping x to φ(x).

To consider combinations of primitive features f j ∈ F , we use
a polynomial kernel kd(x j, x) = (xT

j x + 1)d. From Eq. (3), we
obtain the weight function for the polynomial kernel as:

m(x) =
∑
x j∈S
α jkd(x j, x) =

∑
x j∈S
α j(xT

j x + 1)d. (4)

Since we assumed that xi is a binary value representing whether a
(primitive) feature fi is active in the example, the polynomial ker-
nel kd implies a mapping φd from x to φd(x) that has H =

∑d
k=0

(
n
k

)
dimensions. Each dimension represents a (weighted) conjunction
of d features in the original example x *2.

The time complexity of Eq. (4) is O(|S||x|). This cost is usu-
ally high for classifiers used in nlp tasks because they often have
many support vectors (|S| > 10,000).
2.2.1 Kernel Inverted

Kudo and Matsumoto [26] proposed polynomial kernel in-

verted (pki), which builds inverted indices hS( fi) = {x j | x j ∈
S, fi ∈ x j} from each feature fi to support vector x j ∈ S to only
consider support vector x j relevant to a given feature vector x
such that xT

j x � 0. The time complexity of pki is O(B · |x| + |S|)
where B ≡ 1

|x|
∑

f j∈x |hS( fi)|, which is smaller than O(|S||x|) if x
has many rare features fi such that |hS( fi)| � |S|.
2.2.2 Kernel Expansion

Isozaki and Kazawa [17] and Kudo and Matsumoto [26] pro-
posed polynomial kernel expanded (pke) to convert Eq. (4) into
the linear sum of the weights in the mapped feature space as in
llm (p(y | x) in Eq. (1)):

m(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑
x j∈S
α jφd(x j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
T

φd(x) =
∑

i:xd
i =1

wi, (5)

where xd ∈ {0, 1}H is a binary feature vector whose element xd
i

has a non-zero value when (φd(x))i � 0, w is the weight vector
for xd in the expanded feature space F d and is precalculated from
the support vectors x j and their weights α j:

*2 For example, given an input vector x = (x1, x2)T and a support vec-
tor x′ = (x′1, x

′
2)T, the 2nd-order polynomial kernel returns k2(x′, x) =

(x′1 x1+x′2 x2+1)2 = 3x′1 x1+3x′2 x2+2x′1 x1 x′2 x2+1 (∵ x′i , xi ∈ {0, 1}). This

function thus implies a mapping φ2(x) = (1,
√

3x1,
√

3x2,
√

2x1 x2)T. In
the following argument, we ignore the dimension of the constant in the
mapped space and assume constant b is set to include it.
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Fig. 1 Efficient computation of m(x).

w =
∑
x j∈S
α j

d∑
k=0

ck
dIk(xd

j ). (6)

where ck
d is a squared coefficient of k-th order conjunctive fea-

tures for d-th order polynomial kernel (e.g., c0
2 = 1, c1

2 = 3, and
c2

2 = 2) *3 and Ik(xd
j ) is xd

j ∈ {0, 1}H whose dimensions other than
those of k-th order conjunctive features are set to zero. The time
complexity of Eq. (5) (and Eq. (1)) is O(|x|d), which is linear with
respect to the number of active features in xd within the expanded
feature space F d.

Since kernel expansion demands a huge memory volume to
store the weight vector, w, in RH (H =

∑d
k=0

(|F |
k

)
), it is unre-

alistic to maintain explicit conjunctive features for higher-order
conjunctive features. To make the weight vector sparse, Kudo
and Matsumoto [26] proposed an approximation method that fil-
ters out less useful features whose absolute weight values are less
than a pre-defined threshold σ *4. They reported that increased
threshold value σ resulted in a dramatically sparse feature space
F d, which had the side-effects of accuracy degradation and clas-
sifier speed-up.
2.2.3 Kernel Splitting

To cope with memory explosion, Goldberg and Elhadad [14]
only explicitly considered conjunctions among features fC ∈ FC

that commonly appear in support setS, and they handled the other
conjunctive features relevant to rare features fR ∈ F \FC by using
the polynomial kernel:

m(x) = m(x̃) + m(x) − m(x̃)

=
∑
fi∈x̃d

w̃i +
∑

x j∈SR

α jk
′
d(x j, x, x̃), (7)

where x̃ is x whose dimensions of rare features are set to zero, w̃
is a weight vector computed with Eq. (6) for F d

C , and k′d(x j, x, x̃)
is defined as:

k′d(x j, x, x̃) ≡ kd(x j, x) − kd(x j, x̃)

= (xT
j x + 1)d − (xT

j x̃ + 1)d.

We can space-efficiently compute the first term of Eq. (7) since
|w̃| � |w|, whereas we can quickly compute the second term of
Eq. (7) since k′d(x j, x, x̃) = 0 when xT

j x = xT
j x̃; we only need to

*3 Following Lemma 1 in Ref. [26],

ck
d =

d∑
l=k

(
d
l

) ⎛⎜⎜⎜⎜⎜⎜⎝
k∑

m=0

(−1)k−m · ml

(
k
m

)⎞⎟⎟⎟⎟⎟⎟⎠ .
*4 Precisely speaking, they set different thresholds for positive (α j > 0) and

negative (α j < 0) support vectors, considering the proportion of positive
and negative support vectors.

consider a small subset of the support set, SR =
⋃

fR∈x\x̃ hS( fR),
that has at least one of the rare features fR appearing in x \ x̃
(|SR| � |S|). Parameter r is set to determine FC = { fi | |hS( fi)| ≥
r}.

Although they referred to this computation as splitsvm, we
hereafter refer to this computation as polynomial kernel splitting

(pks) since it does not depend on svms.

3. Proposed Method

In this section, we propose a method that speeds up a classifier
trained with many conjunctive features. Below, we focus on a
kernel-based classifier trained with a polynomial kernel of degree
d (here, svms), but an analogous argument is possible for linear
classifiers (e.g., llms) *5.

We hereafter represent a binary feature vector x as a set of ac-
tive features { fi | fi(x) = 1}. x can thereby be represented as an
element of the power set 2F of the set of features F .

3.1 Idea
Let us remember that weight function m(x) in Eq. (5) maps

x ∈ 2F to W ∈ R. If we could calculate Wx = m(x) for all
possible x in advance, we could obtain m(x) by simply check-
ing |x| elements, namely, in O(|x|) time. However, because
|{x | x ∈ 2F }| = 2|F | and |F | is likely to be very large (often
|F | > 10,000) in nlp tasks, this calculation is impractical.

We then compute and store weight Wx′ = m(x′) for x′ ∈ Xc(⊂
2F ), a certain subset of the possible value space, and compute
m(x) for x � Xc by using precalculated weight Wxc for xc ⊆ *6 x
in the following way:

m(x) = Wxc +
∑

fi∈xd\xd
c

wi. (8)

Intuitively speaking, starting from partial weight Wxc , we add up
remaining weights of primitive features f ∈ F that are not active
in xc but are active in x and conjunctive features that combine f

and the other active features in x.
An example of this computation (d = 2) is depicted in Fig. 1.

We can efficiently compute m(x) for a vector x that has four active
features f1, f2, f3, and f4 (and x2 has their six conjunctive fea-
tures) using precalculated weight W{1,2,3}; we should first check
the three features f1, f2, and f3 to retrieve W{1,2,3} and next check
the remaining four features related to f4, namely f4, f1,4, f2,4, and

*5 When a feature vector x includes (explicit) conjunctive features f ∈ F d ,
we assume weight function m′(x′) = m(x), where x′ is a projection of x
(by φ−1

d : F d 	→ F ).
*6 This means that all active features in xc are active in x.
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Fig. 2 Feature sequence trie and completion of prefix feature vector weights.

f3,4, in order to add up the remaining weights, while the normal
computation in Eq. (5) should check the four primitive and six
conjunctive features to get the individual weights.

Counting the number of features f (x, xc, d) to be checked in
the computation, we obtain the time complexity of Eq. (8) as:

f (x, xc, d) = |xc| + |xd | − |xd
c | ∈ O(|x|d − |xc|d),

where |xd | =
d∑

k=1

(|x|
k

)
(9)

(e.g., |x2| = |x|2+|x|
2 and |x3| = |x|3+5|x|

6 ) *7. Note that when |xc|
becomes close to |x|, this time complexity actually approaches
Ω(|x|).

Thus, to minimize this computational cost, xc is to be chosen
from Xc as follows:

xc = argmin
x′∈Xc ,x′⊆x

(|x′| + |xd | − |x′d |). (10)

3.2 Construction of Feature Sequence Trie
There are two issues with speeding up the classifier by the

computation shown in Eq. (8). First, since we can store weights
for only a small fraction of possible feature vectors (namely,
|Xc| � 2|F |), we should choose Xc so as to maximize its impact
on the speed-up. Second, we should quickly find an optimal xc

from Xc for a given feature vector x.
The solution to the first problem is to enumerate partial feature

vectors that frequently appear in the target task. Note that typical
linguistic features used in nlp tasks usually consist of disjunctive
sets of features (e.g., word surface and pos), in which the sets are
likely to follow Zipf’s law [52] and correlate with each other. We
can expect the distribution of feature vectors, the mixture of Zipf
distributions, to be Zipfian. This has been confirmed for word
n-grams [12] and itemset support distribution [6]. We can thus
expect that a small set of partial feature vectors will commonly
appear in the task.

To solve the second problem, we introduce a feature sequence

trie (fstrie), which represents a hierarchy of feature vectors, to
enable the classifier to efficiently retrieve (sub-)optimal xc (in
Eq. (10)) for a given feature vector x.

We build an fstrie in the following steps:
Step 1: Apply the target classifier to actual (raw) data in the

task to enumerate possible feature vectors (hereafter, source

feature vectors).
Step 2: Sort the features in each source feature vector according

to their frequency in the training data (in descending order).

*7 This is the maximum number of conjunctive features.

Step 3: Build a trie from the source feature vectors by regarding
feature indices as characters and store weights of all prefix
feature vectors.

An fstrie built from four source feature vectors is shown in
Fig. 2. In fstries, a path from the root to another node represents
a feature vector. An important point here is that the fstrie stores
the weights of all prefix feature vectors of the source feature vec-
tors, and the trie structure enables us to retrieve for a given feature
vector x the weight of its longest prefix vector xc ⊆ x in O(|xc|)
time. To handle feature functions in llms (Eq. (1)), we store par-
tial weight Wxc ,y =

∑
i wi,y fi,y(xc, y) for each label y on the node

that expresses xc.
Since we sort the features in the source feature vectors accord-

ing to their frequency, the prefix feature vectors exclude less fre-
quent features in the source feature vectors. Lexical features or
finer-grained features (e.g., pos-subcategory) are usually less fre-
quent than coarse-grained features (e.g., pos), so they lie in the
latter part of the feature vectors. This sorting helps us to retrieve
longer feature vector xc for input feature vector x that will have
diverse infrequent features. It also minimizes the size of fstrie by
sharing the common frequent prefix (e.g., { f1, f3} in Fig. 2).
Pruning nodes from fstrie We have so far described the way
to construct an fstrie from the source feature vectors. However,
a naive enumeration of source feature vectors will result in the
explosion of the fstrie size, and we want to have a principled way
to control the fstrie size rather than reducing the processed data
size. Below, we present a method that prunes useless prefix fea-
ture vectors (nodes) from the constructed fstrie to maximize its
impact on the classifier efficiency.

We adopt a greedy strategy that iteratively prunes a leaf node
(one prefix feature vector and its weight) from the fstrie built from
all the source feature vectors, according to a certain utility score
calculated for each node. In this study, we consider two metrics
for each prefix feature vector xc to calculate its utility score.
Probability p(xc), which denotes how often the stored weight

Wxc will be used in the target task. The maximum-likelihood
estimation provides probability:

p(xc) =

∑
x′⊇xc

nx′∑
x nx

,

where nx ∈ N is the frequency count of a source feature vec-
tor x in the processed data.

Computation reduction Δd(xc), which denotes how much
computation is reduced by Wxc to calculate a weight of
x ⊇ xc. This can be estimated by counting the number of
conjunctive features we additionally have to check when we
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Input: fstrieW, node limit N ∈ N
Output: fstrieW
1: while no. of nodes inW > N do

2: xc ← argminx′∈leaf(W) u(x′)
3: remove xc,W

4: end while
5: return W

Fig. 3 Pruning nodes from fstrie.

Input: weight vector w ∈ R|F d |, fstrieW,
feature vector x ∈ 2F

Output: weight W = m(x) ∈ R
1: x← sort(x)
2: 〈xc,Wxc 〉 ← prefix search(W, x)
3: W ← Wxc

4: for all features fi ∈ xd \ xd
c do

5: W ← W + wi

6: end for
7: return W

Fig. 4 Computing weight with fstrie.

remove xc. Since the fstrie stores the weight of a prefix fea-
ture vector xc- ⊂ xc such that |xc-| = |xc| − 1 (e.g., in Fig. 2,
xc- = { f1, f3} for xc = { f1, f3, f4}), we can define the compu-
tation reduction as:

Δd(xc) = (|xd
c | − |xd

c-|) − (|xc| − |xc-|)

=

d∑
k=2

(|xc|
k

)
−

d∑
k=2

(|xc| − 1
k

)
(∵ Eq. (9)).

Δ2(xc) = |xc| − 1 and Δ3(xc) = |xc |2−|xc |
2 .

We calculate the utility score of each node xc in the fstrie as
u(xc) = p(xc) · Δd(xc), which means the expected computation
reduction by xc in the task, and prune the lowest-utility-score leaf
nodes from the fstrie one by one (Fig. 3). If several prefix vec-
tors have the same utility score, we eliminate them in numerical
descending order.

3.3 Classification Algorithm
Our classification algorithm is shown in detail in Fig. 4. The

classifier first sorts the active features in input feature vector x
according to their frequency in the training data. Then, for x,
it retrieves the longest common prefix vector xc from the fstrie
(line 2 in Fig. 4). It then adds the weights of the remaining fea-
tures to partial weight Wxc (line 5 in Fig. 4).

Note that the remaining features whose weights we sum up
(line 4 in Fig. 4) are primitive and conjunctive features that relate
to f ∈ x \ xc, which appear less frequently than f ′ ∈ xc in the
training data. Thus, when we apply our algorithm to classifiers
with the sparse solution (e.g., �1-llms or svms that filter out less
useful features), |xd | − |xd

c | can be much smaller than the theo-
retical expectation (Eq. (9)). We confirmed this in the following
experiments.

Figure 5 depicts a classification algorithm that accommodates
the kernel splitting described in Section 2.2. The algorithm
changes its behavior depending on whether or not the prefix fea-
ture vector xc covers all the common features x̃ = x ∩ FC : if xc

does not cover all the common features x̃, it uses w̃ to compute
the partial weight Wx̃. We then compute the remaining weights
regarding features that are not covered by either xc or x̃ (line 13
in Fig. 5). Note that the line 8 in Fig. 5 implicitly assumes x̃ ⊃ xc

Input: common features FC ⊆ F , weight vector w̃ ∈ R|F d
C |,

fstrieW, feature vector x ∈ 2F
Output: weight W = m(x) ∈ R
1: x← sort(x)
2: 〈xc,Wxc 〉 ← prefix search(W, x)
3: W ← Wxc

4: x̃← x ∩ FC

5: if x̃ ⊆ xc then
6: x̃← xc

7: else // remaining common features
8: for all features fi ∈ x̃d \ xd

c do
9: W ← W + w̃i

10: end for
11: end if
12: for all support vectors x j ∈ S = ⋃

fR∈x\x̃ hS( fR) do
13: W ← W + α jk′d(x j, x, x̃)

14: end for
15: return W

Fig. 5 Computing weight with fstrie and kernel splitting.

(namely, x̃d ⊃ xd
c ). To satisfy this assumption, we choose the

common featuresFC according to their frequencies in the training
examples, while Goldberg and Elhadad [14] chose FC according
to their frequencies in the subset of training examples (support set
S).

4. Evaluation

We applied our algorithm to svm and �1-llm classifiers and
evaluated the resulting classifiers in two nlp tasks: a base phrase
chunking task and a dependency parsing task. We compared
our svm classifier with pki [26] (described in Section 2.2.1) and
pks [14] (described in Section 2.2.3), both of which perform exact
weight computation, and pke [26] (described in Section 2.2.2) for
svms that approximated the original svms by setting the threshold
σ for the conjunctive feature weights (referred to as svm�). Anal-
ogously, we compared our llm classifier with the linear summa-
tion described in Eq. (1).

4.1 Task descriptions
4.1.1 Japanese Base Phrase Chunking

A Japanese ‘bunsetsu’ base phrase chunker inputs a morpho-
logically analyzed sentence and outputs its correct bunsetsu seg-
mentation; here, a bunsetsu is a grammatical unit in Japanese con-
sisting of one or more content words followed by zero or more
function words. A chunker generates a feature vector for each
morpheme. The classifier then outputs label y = ‘+1’ (the begin-
ning of the bunsetsu) or ‘−1’ (not the beginning of the bunsetsu).
4.1.2 Japanese Dependency Parsing

A Japanese dependency parser inputs a bunsetsu-segmented
sentence and outputs the correct head (bunsetsu) for each bun-
setsu. It generates a feature vector for a particular pair of
bunsetsus (modifier and modifiee candidates) by exploiting the
head-final and projective [35] nature of dependency relations in
Japanese. The classifier then outputs label y = ‘+1’ (dependent)
or ‘−1’ (independent).

Since our classifier is independent of individual parsing algo-
rithms, we targeted speeding up (a classifier in) the shift-reduce
parser proposed by Sassano [42], which has been reported to be
the most efficient for this task, with almost state-of-the-art accu-
racy [18]. This parser decreases the number of classification steps
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Table 2 Chunking results for test corpus: svm classifiers.

model pki baseline w/ fstries w/ fstriem w/ fstriel speed
classify (total) w classify (total) W classify (total) W classify (total) W classify (total) up

[ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.]

svm1 1.428 (1.453) 0.2 0.003 (0.027) 0.1 0.007 (0.031) 4.3 0.007 (0.031) 134.7 0.016 (0.041) ×0.5
svm2 1.626 (1.652) 1.8 0.022 (0.047) 0.1 0.013 (0.037) 4.7 0.012 (0.037) 156.7 0.018 (0.043) ×1.8
svm3 2.135 (2.160) 9.0 0.072 (0.098) 0.2 0.033 (0.059) 5.6 0.023 (0.049) 183.7 0.022 (0.047) ×3.3

by using the fact that a bunsetsu is likely to modify a bunsetsu
close to itself.

4.2 Settings
For evaluation, we used the following standard split of Kyoto

University Text Corpus (version 4.0) [27], Mainichi news articles
in 1995 that have been manually annotated with bunsetsu seg-
mentation and dependency relations *8:
Training: Articles of January 1st and 3rd through 11th and ed-

itorial articles of January through August (24,283 sentences
and 234,685 bunsetsus).

Development: Articles of January 12th and 13th and editorial
articles of September (4,833 sentences, 47,571 bunsetsus).

Test: Articles of January 14th through 17th and editorial arti-
cles of October through December (9,284 sentences, 89,874
bunsetsus).

The following experiments were performed on a server with
an Intel R© XeonTM 3.20-GHz CPU. We used LIBSVM (version
3.1) *9 and a simple C++ library for maximum entropy classifi-
cation *10 to train svms and �1-llms, respectively. We used darts-
clone (version 0.32f rc2) *11, a double-array trie [2], [51], as a
compact trie implementation. All these libraries and algorithms
are implemented in C++. The code for building fstries occupies
around 100 lines, while the code for the classifier occupies around
20 lines (except those for kernel expansion).

We should mention that the base phrase chunking is less com-
plex than the dependency parsing, since i) the number of active
(conjunctive) features is small and ii) the features originate from
local trigrams (as we will later explain in Section 4.3). To keep
the following discussion simple, we trained a classifier only with
svms for base phrase chunking, since we do not need to perform
an approximation such as �1-regularization for llm or techniques
to reduce the size of weight vectors for svm (described in Sec-
tions 2.2.2 and 2.2.3) to reduce the number of active conjunctive
features.

We varied svm soft margin parameter c from 1.0 to 0.0001 and
width factor parameter ω *12, which controls the impact of the
prior, from 0.1 to 5.0, and adjusted the values to maximize chunk-
ing/dependency accuracy for the development set: for base phrase
chunking, we used (d, c) = (1, 0.5), (2, 0.05), (3, 0.005) for svms,
while for dependency parsing, we used (d, c) = (1, 0.1) (2, 0.005),

*8 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?Kyoto%20University%20
Text%20Corpus

*9 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
*10 http://www-tsujii.is.s.u-tokyo.ac.jp/˜tsuruoka/maxent/. We used a pre-

liminary version that implements stochastic gradient descent training of
the �1-llm [48].

*11 http://code.google.com/p/darts-clone/
*12 The parameter C of �1-llm in Eq. (2) was set to ω/|D| (referred to as

‘single width’ in Ref. [22]).

Table 1 Specifications of svms for the base phrase chunking task. The ac-
curacies marked with ‘�’ or ‘>’ were significantly better than the
d = 1 counterpart (p < 0.01 or 0.01 ≤ p < 0.05 by McNemar’s
test).

model statistics accuracy (%)
|S| |F d | |xd | partial complete

svm1 13,365 12,261 11.0 99.58 90.80
svm2 15,612 215,744 62.3 99.72 93.90�
svm3 20,619 1,704,940 201.7 99.70> 93.55�

(3, 0.0001), for svms and (d, ω) = (1, 1.5), (2, 1.0), (3, 1.0) for �1-
llms *13. For llm training, we designed explicit conjunctive fea-
tures for all the d or lower-order feature combinations to make the
results comparable with those of svms. We hereafter refer to svm
and llm classifiers trained with d or lower-order conjunctive fea-
tures as svmd and llmd, respectively. The superscripts attached
to classifiers express their hyper-parameters (e.g., llmω=1.0

2 ); we
omit the hyper-parameters when clear from contexts.

4.3 Results for Base Phrase Chunking
We used surface-form, pos, pos-subcategory and inflection

form of previous, current, and next words as features to train a
classifier. Specifications of svms used here are shown in Table 1;
|F d | is the number of active features, while |xd | is the average
number of active features in each classification for the test cor-
pus. Partial accuracy is the ratio of morphemes whose labels are
correctly identified by the chunker, while complete accuracy is
the exact match accuracy of complete bunsetsu segmentation in a
sentence.

We obtained source feature vectors to build fstries for this
task by applying the chunkers with the target classifiers to a
raw corpus in the target domain, 3,261,638 sentences of 1991–
94 Mainichi news articles that were morphologically analyzed by
MeCab 0.98 (with a JUMAN dictionary) *14. We first built fstriel
using all the source feature vectors. We then attempted to reduce
the number of prefix feature vectors in fstriel to 1/2n the size by
the algorithm shown in Fig. 3. We refer to fstries built from 1/32
and 1/1024 of the prefix feature vectors in fstriel as fstriem and
fstries in the following experiments.

The performances of parsers having svm classifiers with and
without the fstrie are given in Table 2. The column titled w shows
the size of weight vectors for svm classifiers, while the columns
W show the size of fstriess, fstriesm, and fstriesl, respectively.
The ‘speed-up’ column shows the speed-up factor of the most ef-
ficient classifier with an fstrie (bold) versus the baseline classifier
without fstries.

*13 The estimator used to learn �1-llms [48] needed two other hyper-
parameters, α and η0, both of which were tuned to maximize the de-
pendency accuracy for development set: (d, α, η0) = (1, 0.8, 1.0), (2,
0.8, 0.01), (3, 0.8, 0.0005).

*14 http:://mecab.sourceforge.net/
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Table 3 Feature set used for the dependency parsing task.

Modifier, modifiee bunsetsu head word (surface-form, pos, pos-subcategory, inflection form), functional word
(surface-form, pos, pos-subcategory, inflection form), brackets, quotation marks,
punctuation marks, position in sentence (beginning, end)

Between bunsetsus distance (1, 2–5, 6–), case-particles, brackets, quotation marks, punctuation marks

Fig. 6 Average classification time per sentence plotted against size of fstrie
in base phrase chunking.

The fstries successfully speeded up the baseline pke classifiers
with conjunctive features (d ≥ 2). The inefficiency of the classi-
fier (d = 1) results from the cost of the additional sort function
(line 1 in Fig. 4) and CPU cache failure due to random accesses
to the huge fstries. Considering these costs, the performance im-
provement is almost saturated for fstriem. The average classifica-
tion time of our classifiers plotted against fstrie size is shown in
Fig. 6; the rightmost plots refer to fstriem (n = 5). With a tiny
fstrie (n = 7, 1.1 MiB *15), the most accurate chunker (d = 2) is
almost as fast as d = 1 counterpart.

4.4 Results for Dependency Parsing
We used the standard feature set tailored for this task [18], [25],

[42] (Table 3) to train svm and llm classifiers. Note that features
listed in the ‘Between bunsetsus’ row represent contexts between
the target pair of bunsetsus and appear independently of other fea-
tures, which will become an obstacle to finding the longest prefix
vector. This task is therefore a better measure of our method than
the base phrase chunking or simple sequential labeling such as
pos tagging or named-entity recognition that uses features origi-
nating from a local context.

Specifications of svms and llms used here are shown in Table 4
and Table 5; svms� refer to svms that filter out less useful features
by setting threshold σ for weights of conjunctive features. r is
the common feature threshold in pks (feature whose frequency is
more than r · |D| was regarded as a common feature), |F d

C | is the
number of active common features in pks, while |x̃d | is the average
number of active common features in pks in each classification for
the test corpus. Partial accuracy is the ratio of dependency rela-
tions correctly identified by the parser, while sentence accuracy
is the exact match accuracy of complete dependency relations in
a sentence.

The accuracy of around 90.9% (svm3) is close to the perfor-
mance of state-of-the-art parsers [18], and the model statistics are
considered to be complex (or realistic) enough to evaluate our
classifier’s utility. We could clearly observe that the number of

*15 1 MiB = 220 bytes = 1,048,576 bytes.

Table 4 Specifications of svms for the dependency parsing task. The ac-
curacies marked with ‘�’ or ‘>’ were significantly better than the
d = 2 counterpart (p < 0.01 or 0.01 ≤ p < 0.05 by McNemar’s
test).

model statistics accuracy (%)
|S| |F d | (|F d

C |) |xd | (|x̃d |) partial complete

svm1 78,327 39,719 27.3 88.27 46.42
svm2 65,104 1,478,077 380.6 90.76 53.82
svm3 68,499 26,198,606 3,286.7 90.93 54.44
svmr=0.0001

3 " (8,175,643) (3,156.3) " "

svmr=0.001
3 " (1,657,900) (2,872.4) " "

svmr=0.01
3 " (329,780) (2,573.4) " "

svm�σ=0.001
3 " 13,249,989 2,725.9 90.92� 54.38�

svm�σ=0.002
3 " 2,515,058 2,238.3 90.91� 54.31>

svm�σ=0.003
3 " 793,300 1,856.0 90.83 54.21

Table 5 Specifications of llms for the dependency parsing task. The ac-
curacies marked with ‘�’ or ‘>’ were significantly better than the
d = 2 counterpart (p < 0.01 or 0.01 ≤ p < 0.05 by McNemar’s
test).

model statistics accuracy (%)
|F d | |xd | partial complete

�1-llmω=1.5
1 4,874 18.2 88.22 45.86

�1-llmω=1.0
2 171,493 238.0 90.55 53.12

�1-llmω=1.0
3 2,379,326 2,265.0 90.76� 54.17�

�1-llmω=2.0
3 703,968 1,774.2 90.75� 54.15�

�1-llmω=3.0
3 351,870 1,469.4 90.68> 53.78>

active features |xd | increased dramatically for this task according
to the order d of feature combinations. The density of |xd | for
svms was very high (e.g., |x3| = 3,287.6, close to the maximum
shown in Eq. (9): (27.33+5×27.3)/6 � 3,414). Comparing spec-
ifications of svms for the two tasks (Table 1 and Table 4), we can
understand why dependency parsing is slower than base phrase
chunking.

For d = 3 models, we attempted to control the size of the
feature space |F d | by changing the model’s hyper-parameters:
threshold σ for the svm� and width factor ω for the �1-llm. Al-
though we successfully reduced the size of the feature space |F d |,
we could not dramatically reduce the average number of active
features |xd | in each classification while keeping the accuracy ad-
vantage. This confirms that the solution sparseness does not suf-
fice to obtain an efficient classifier.

We obtained source feature vectors to build fstries by applying
parsers with the target classifiers to the data used in Section 4.3
that were bunsetsu-segmented by the chunker with svm2 shown in
Table 1. We used the algorithm in Fig. 3 to build fstriel, fstriem
and fstries in the analogous way described in Section 4.3.

Because we exploited the algorithm shown in Fig. 4 to calcu-
late the weights of the prefix feature vectors, it took less than
one hour on the 3.20-GHz server to build fstriel (and calculate
the utility score for all the nodes in it) for the slowest svm3 from
the 40,368,771 source feature vectors (63,365,958 prefix feature
vectors) generated by parsing the 3,261,638 sentences.
4.4.1 Results for svms

The performances of parsers having svm classifiers with and
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Table 6 Parsing results for test corpus: svm classifiers.

model pki baseline w/ fstries w/ fstriem w/ fstriel speed
classify (total) w classify (total) W classify (total) W classify (total) W classify (total) up

[ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.]

svm1 16.708 (16.758) 0.3 0.004 (0.015) 1.0 0.006 (0.018) 33.1 0.007 (0.019) 1,074.3 0.017 (0.030) ×0.5
svm2 12.293 (12.333) 14.9 0.048 (0.061) 1.0 0.023 (0.035) 31.9 0.023 (0.036) 1,097.3 0.026 (0.039) ×2.1
svm3 13.271 (13.312) 150.0 0.425 (0.442) 1.0 0.199 (0.214) 32.1 0.127 (0.142) 1,104.4 0.091 (0.105) ×4.7
svmr=0.0001

3 n/a 59.8 0.401 (0.417) " 0.177 (0.192) " 0.108 (0.123) " 0.076 (0.090) ×5.3
svmr=0.001

3 n/a 15.0 0.387 (0.404) " 0.163 (0.178) " 0.097 (0.112) " 0.069 (0.083) ×5.6
svmr=0.01

3 n/a 3.9 0.687 (0.708) " 0.376 (0.395) " 0.201 (0.218) " 0.125 (0.140) ×5.5

Table 7 Parsing results for test corpus: svm� and �1-llm classifiers.

model baseline w/ fstries w/ fstriem w/ fstriel speed
w classify (total) W classify (total) W classify (total) W classify (total) up

[MiB] [ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.] [MiB] [ms/sent.]

svm�σ=0.001
3 69.7 0.415 (0.431) 1.0 0.179 (0.194) 32.0 0.111 (0.125) 1083.2 0.078 (0.093) ×5.3

svm�σ=0.002
3 17.2 0.386 (0.402) 1.0 0.142 (0.157) 31.7 0.083 (0.097) 1054.7 0.059 (0.073) ×6.5

svm�σ=0.003
3 6.3 0.359 (0.373) 1.0 0.113 (0.126) 31.1 0.063 (0.076) 982.9 0.046 (0.059) ×7.8

�1-llmω=1.5
1 0.1 0.003 (0.016) 0.8 0.005 (0.018) 24.4 0.005 (0.018) 629.2 0.012 (0.026) ×0.5

�1-llmω=1.0
2 2.1 0.051 (0.065) 1.1 0.020 (0.033) 37.3 0.018 (0.032) 1,130.9 0.021 (0.036) ×2.8

�1-llmω=1.0
3 12.6 0.432 (0.448) 1.2 0.165 (0.180) 37.9 0.091 (0.107) 1,233.7 0.061 (0.076) ×7.1

�1-llmω=2.0
3 4.0 0.387 (0.402) 1.0 0.130 (0.144) 30.9 0.066 (0.080) 987.7 0.043 (0.057) ×9.1

�1-llmω=3.0
3 2.2 0.358 (0.372) 0.8 0.114 (0.128) 26.8 0.054 (0.068) 848.7 0.034 (0.048) ×10.6

Fig. 7 Average classification time per sentence plotted against size of fstrie
in dependency parsing: svm3.

without the fstrie are given in Table 6. Since each classifier with
a different order of conjunctive features solved a slightly different
number of classification steps, we show the (average) cumulative
classification time for a sentence.

The fstries successfully speeded up svm classifiers with con-
junctive features (d ≥ 2). Although the baseline pke/pks classi-
fiers without fstries were still faster than pki, as expected from
a large |xd | value, the classifiers with higher conjunctive features
were much slower than the classifier with only primitive features
(d = 1) by factors of 14 (d = 2), and 121 (d = 3) and the classifi-
cation time accounted for most of the parsing time.

We should note that the slowest pks classifier (d = 3, r = 0.01)
can be faster than the pke classifier when we combine the clas-
sifier with the fstriem. The combination of pks with fstrie (the
algorithm shown in Fig. 5) yielded a space-efficient svm classifier
while keeping the accuracy and the classification speed.

The average classification time of our classifiers plotted against
fstrie size is shown in Fig. 7. Surprisingly, we obtained a signif-
icant speed-up even with tiny fstrie sizes of < 1 MiB. Further-
more, we naively controlled the fstrie size by simply reducing the
number of sentences processed to 1/2n. The impact on the speed-
up of the resulting fstries (naive) and the fstries constructed by
our utility score (utility-score) on svm3 is shown in Fig. 8. The
Zipfian nature of language data let us obtain a substantial speed-

Fig. 8 Fstrie reduction: utility score vs. processed sentence reduction for
svm3.

up even when we naively reduced the fstrie size, and the utility
score further decreased the fstrie size required to obtain the same
speed-up. We needed less than 1/4 size fstries to achieve the same
speed-up: 0.425→ 0.153 ms/sent. with 7.9 MiB (utility-score) vs.
35.1 MiB (naive).
4.4.2 Results for svms� and �1-llms

The performances of parsers having svm� and �1-llm classi-
fiers with and without the fstrie are given in Table 7. The fstries
successfully speeded up the svm� and �1-llm classifiers by factors
of 7.8 (d = 3, σ = 0.003) and 10.6 (d = 3, ω = 3.0), respectively.
We obtained more speed-up when we used fstries for classifiers
with more sparse feature space F d (Fig. 9 and Fig. 10). The pars-
ing speeds with d = 3 models are now comparable to those with
d = 2 models.

Without fstries, little speed-up of svm classifiers versus the
svm� classifiers (in Table 6) was obtained owing to the mild re-
duction in the average number of active features |xd | in the classi-
fication. This result agrees with the results reported in Ref. [26].

The parsing speed reached 13,653 sentences per second with
accuracy of 90.91% (svm�σ=0.002

3 ). We used this parser to process
22,540,994 sentences (140,633,895 bunsetsus) from Japanese
weblog feeds updated in December 2010, to see how much the
impact of fstries lessens when the test data and the data processed
to build fstries mismatch. The parsing time was 4,472.1 seconds
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Fig. 9 Average classification time per sentence plotted against size of fstrie:
svm�3.

without fstriel, while it was only 1,032.4 seconds with fstriel.
The speed-up factor of 4.3 for weblog feeds was slightly worse
than that for news articles (0.402/0.073 � 5.5) but still evident.
This implies that sorting features in building fstries yielded prefix
features vectors that commonly appear in a Japanese dependency
parsing task by excluding domain-specific features such as lexical
features.

In summary, our algorithm successfully minimized the effi-
ciency gap among classifiers with different degrees of feature
combinations and made accurate classifiers trained with higher-
order feature combinations practical.

5. Conclusions

Our simple method speeds up a classifier trained with many
conjunctive features by using precalculated weights of (partial)
feature vectors stored in a feature sequence trie (fstrie). We ex-
perimentally demonstrated that it speeded up svm and llm clas-
sifiers for a base phrase chunking task and a dependency pars-
ing task by a factor of 1.8 to 10.6. We also confirmed that
the sparse feature space provided by �1-llms and svms con-
tributed much to size reduction of the fstrie required to achieve
the same speed-up. The implementations of the proposed al-
gorithm for llms and svms (with a polynomial kernel) and the
bunsetsu chunker and dependency parser for Japanese are pub-
licly available at http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/pecco/
and http://www.tkl.iis.u-tokyo.ac.jp/˜ynaga/jdepp/, respectively.

We plan to apply our method to wider range of classifiers used
in various nlp tasks. To speed up classifiers used in a real-time
application, we can build fstries incrementally by using feature
vectors generated from user inputs. When we run our classifiers
on resource-tight environments such as cell-phones, we can use a
random feature mixing technique [13] or a memory-efficient trie
implementation based on a succinct data structure [11], [19] to
reduce required memory usage.

We will combine our method with other techniques that pro-
vide sparse solutions, for example, kernel methods on a bud-
get [9], [10], [37] or kernel approximation (surveyed in Ref. [21]).
And in the future, we will consider the issue of speeding up de-
coding with structured models [28], [32], [45].
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