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Towards an Asynchronous Checkpointing System
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The overall failure rate of HPC systems is increasing because the number of compo-
nents is growing. Checkpoint/Restart, the most common technique to tolerate these faults,
enables an application to restart from the last checkpoint even if a failure happens while
the application is running. However, writing large checkpoint files may impact application
runtime, depending on the bandwidth of the file systems to which checkpoints are writ-
ten. To minimize the impact, we propose an asynchronous checkpointing system to write
checkpoints to the file system in the background. This system uses extra nodes to drain a
checkpoint from compute nodes using RDMA (Remote Direct Memory Access) to mini-
mize CPU usage. Our preliminary evaluation shows that our asynchronous checkpointing
system reduces checkpointing impact with runtime increases of CPU-bound applications
under 1% compared to not checkpointing to a parallel file system.

1. Introduction

The computational power of High Performance Computing (HPC) systems is growing
exponentially, driven by compute-intensive scientific simulations. Simulation enables
researchers to conduct fine-grained scientific simulations. However, the overall failure
rate of HPC systems increases with the size of the HPC system. For example, TSUB-
AME2.0, ranking 5th in the Top500 list1) (June 2011), experienced about 1,500 failures
over the past one year rainging from a memory error to whole rack failure2). This means
that a failure occurred every 6 hours. Moreover, in exascale systems, MTBF is projected
to shrink to only a few minutes3). Without a viable resilience strategy, it will be im-
possible for an application to continue to run for even one day on such a large machine.
Thus, resilience in HPC is becoming more important than ever as we plan for exascale
systems.
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Checkpointing is an indispensable fault tolerance technique, commonly used by HPC
applications that run continuously for hours or days at a time. Acheckpointis a snapshot
of application state that can be used to restart execution if a failure occurs. Generally,
to survive a devastating failure, such as a multi-node or whole-rack failure, checkpoints
are periodically written to stable, reliable storage, such as a parallel file system (PFS)
4)–6). For example, TSUBAME2.0 experienced a whole rack failure about 30 times over
the past one year due to failures of switches or water cooling systems2). In addition,
Coastal, Hera and Atlas clusters at Lawrence Livermore National Laboratory (LLNL),
reported 191 failures out of 871 runs of a production application, a total of over 5 million
node-hours. 15% of the failures requiered the application to restart from the checkpoint
in the PFS7). Thus, applications are required to write their checkpoints to the PFS.

When checkpointing large-scale systems, tens of thousands of compute nodes write
checkpoints to PFS, and low I/O throughput to the PFS becomes a bottleneck. Thus, the
overhead of checkpointing becomes very large. However, the I/O throughput is usually
unstable and varied over the execution, since the PFS is shared with other compute nodes
and users, which makes performance estimation difficult.

Multi-level checkpointing is a promising approach for addressing these problems.
This approach uses multiple storage levels, such as RAM, local disk and the PFS, accord-
ing to the different degrees of resiliency and the cost of checkpointing in those storage
levels. The Scalable Checkpoint/Restart (SCR) library7),8) is a multi-level checkpoint-
ing implementation for MPI applications. SCR enables MPI applications to use storage
distributed among a system’s compute nodes and on the PFS to attain high checkpoint
performance. By taking frequent, inexpensive node-local checkpoints, and less frequent,
high-cost checkpoints to the PFS, applications can achieve high resilience and better effi-
ciency. However, even with less frequent checkpointing to the PFS, overhead of writing
to the PFS can still dominate overall application runtime. Moreover, because the huge
numbers of compute nodes write checkpointings concurrently, large write operations
burden the PFS and are themselves a major source of failures. Thus, it is critical to
achieve reliable application runs while minimizing the overhead of checkpointing to the
PFS and failure rates due to overburdening the PFS.

To reduce the checkpointing overhead and the workload to the PFS, we propose an
asynchronous checkpointing system in which an application can continue to run while
checkpoints are transferred to the PFS. We use agents running on additional nodes to
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asynchronously transfer checkpoints from compute nodes to the PFS using Remote Di-
rect Memory Access (RDMA). This approach reduces application overhead because the
application does not have to block whie writing to the PFS, and RDMA transfers min-
imize CPU interference. In addition, since the additional nodes are independent from
the compute nodes, the additional nodes can control I/O rate to reduce the probability
of a failure in the PFS without affecting an application on compute nodes. In this paper,
we focus on minimizing the checkpointing overhead of applications. Our preliminary
experiments show that our asynchronous checkpointing system can impose less than 1%
overhead on the runtime of a CPU-bound benchmark when using a sufficient number of
additional nodes for transferring checkpoints.

2. The Scalable Checkpoint/Restart Library (SCR)

Our asynchronous checkpointing system is developed as an extension to the SCR li-
brary7),8) . and is intended to transfer SCR checkpoints to the PFS. The SCR library is
an application-level checkpoint/restart library that has been used in production applica-
tions at LLNL. It enables MPI applications to use distributed storage, (including RAM
disk, SSD, and the PFS) for multi-level checkpoint/restart. SCR is designed to support
globally-coordinated checkpoints written primarily as a file per MPI process, a common
checkpointing technique used by large-scale codes.

2.1 Checkpint/Restart Scheme
SCR uses distributed storage for checkpointing to increase reliability while reducing

overhead. SCR first writes each checkpoint to local storage such as a RAM disk, a local
disk, or an SSD. Generally, since older checkpoints are rarely used unless the subse-
quent checkpoints are corrupted, SCR caches a user-defined number of the most recent
checkpoints in local storage and deletes older checkpoints. SCR also applies redun-
dancy schemes, e.g. simple checkpoint copy to a partner node, to potentially recover
checkpoints after a failure of one or more compute nodes. Moreover, for more crucial
failures, SCR also periodically copies (flushes) a cached checkpoint to the PFS based on
a specified redundancy scheme.

On a restart after a failure, SCR tries to restart from the most recent checkpoints in
cache. If it cannot restart from the cached checkpoints, then SCR inspects the most
recent checkpoint in the PFS. It then fetches and restarts from the checkpoint. Thus,
when the application restarts, it must use the same number of processes as were used in

Fig.1 IOR Runtime on a 12-core machine with SCR

the application run that wrote the checkpoint.
2.2 SCR Flush
As mentioned, to withstand catastrophic failures, such as a rack-level failure and an

outage in datacenters, SCR copies (flushes) a checkpoint from a node-local storage to
a PFS with user-specified frequency. As an example of the flush, if a user specifies the
checkpoint flush frequency as 10, SCR creates checkpoint directories on the specified
path in the PFS, and flushes every 10 checkpoints (10,20, . . .10×n iterations). When an
MPI application writes its checkpoint to node-local storage, it obtains the full path and
file name the application must use to write the checkpoint through SCR library so that
SCR knows which node-local checkpoints were written and what redundancy schemes
were applied to them, and additionally which checkpoints should be flushed to the PFS.
After the end of the checkpoint, the application is required to inform SCR that the current
checkpoint is finished, and then SCR starts its flush operation. SCR supports two types
of flush operations: synchronous and asynchronous. When SCR copies a checkpoint to
the PFS synchronously, it blocks the application until the copy has completed. In large-
scale computations on tens of thousands or more compute nodes, the total checkpoint
size can reach multiple terabytes. Thus, an application may block for ten minutes or
more while the copies complete, so synchronous flushes can application runtime. SCR
also supports an asynchronous flush in which it starts the flush but immediately returns
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Fig.2 Our asynchronous checkpointing system

control to the application. SCR then copies a cached checkpoint to the PFS. During
the flush, an external and independent process is running in the background to copy
the checkpoint to the PFS asynchronously, so the application is not blocked while SCR
copies the cached checkpoint. At some later point, SCR checks whether the flush has
completed properly. Thus, SCR guarantees that the flushed checkpoint is written to the
PFS without missing checkpoint data.

Although SCR’s asynchronous flush is expected to be effective, the external process
uses CPU time, which impacts application runtime. Fig.1 shows the runtime of the IOR
benchmark9) using SCR with synchronous flush, asynchronous flush, and no flush. We
used the Sierra machine at LLNL, a 1944-node Linux cluster with 12 cores per node.
The result shows that the IOR runtime increases even if asynchronous flush is used,
and especially when the full 12 cores per node are used by IOR. Motivated by this result
from current SCR asynchronous flush implementation, we developed a more lightweight
asynchronous checkpoint system that does not affect application runtime.

3. Asynchronous Checkpointing System

3.1 Architecture
Our asynchronous checkpointing system has two types of nodes:compute nodesand

transfer nodes(Fig.2). The compute nodes are a group of nodes on which an application
is executed. In addition, atransfer clientprocess runs on each compute node. Once SCR
finishes flushing a checkpoint, it calls a function of the transfer client library. The trans-
fer client then sends a request to thetransfer serverto read a checkpoint. The transfer

nodes are a group of nodes that read a checkpoint from compute nodes and write to the
PFS. A transfer server process running on a transfer node uses RDMA to read a remote
checkpoint data located in memory region on compute nodes and write the checkpoint
to the PFS. Generally, each transfer node handles multiple compute nodes; the number
of transfer processes our system employs depends on the number of compute nodes in
the run. Because it uses additional nodes to transfer checkpoint data, our asynchronous
checkpointing system has the following advantages:
( 1 ) Stable checkpint write performance:A PFS is generally accessed concurrently

by not only a large number of processes in a single application, but additionally
by processes in other user’s jobs. With our asynchronous checkpointing system,
compute nodes write their checkpoints through transfer nodes. Thus, an applica-
tion is not directly affected by spikes in the I/O workload of other users.

( 2 ) Minimal CPU usage: On a flush operation, even asynchronous checkpointing
can impact application runtime as shown in Fig.1. With RDMA, the asynchronous
checkpointing system drains a checkpoint from compute nodes to a PFS while
minimizing the impact on the application runtime.

( 3 ) Overall data center I/O balancing: Checkpointing is one of the most I/O in-
tensive operations, and one application’s checkpoint bandwidth can affect other
applications’ I/O performance and potentially cause PFS failures. Since transfer
nodes, which are independent from compute nodes, write checkpoints to a PFS,
I/O control can be applied to solve the problem without directly throttling I/O rate
in compute nodes.

In this paper, we focus on minimizing CPU usage and consider an I/O throttling tech-
nique for optimizing overall data center I/O as future work.

3.2 RDMA checkpoint transfers
We implemented an RDMA checkpoint transfer system for asynchronous checkpoint-

ing based on the SCR library. The existing SCR asynchronous flush reads a checkpoint
from a local storage to a buffer and directly writes the checkpoint from the buffer to
the PFS (Fig.3). We extended this implementation to drain a checkpoint from compute
nodes to the PFS through a transfer node using RDMA transfers. The other checkpoint
management, such as version, checkpoint location and redundancy scheme, relies on the
original SCR library. Fig.4 describes the architecture. The transfer client and server pro-
cesses run on compute nodes and transfer nodes, respectively. These processes transfer
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Fig.3 Original SCR
asynchronous flush

Fig.4 Proposed asynchronous flush client/server using
RDMA

and write checkpoints to the PFS.
We explain how a checkpoint on a compute node is written to the PFS through a

transfer node. For simplicity, we assume that the SCR library writes checkpoints to local
storage according to a particular redundancy scheme. The local storage can be RAM
disk, a hard disk drive, or SSD (Step 1 in Fig.4). After several checkpoints are written to
local storage, SCR writes transfer information into a file calledtransfer.infoto request
the transfer client to transfer the checkpoint according to specified flush frequency (Step
2). The transfer.info file includes the source and destination paths from and to which
the checkpoint should be flushed. The transfer client process periodically checks the
transfer.info file to see if SCR has issued the request (Step 3). If the transfer client
detects the request in transfer.info, the transfer client process reads the checkpoint from
the source path and writes to local RDMA buffer space (Step 4). Once the transfer
client fills the buffer with checkpoint data, it calls an RDMA client function to send out
the chunk of checkpoint data in the buffer (Step 5). Since the RDMA client function
returns control immediately, the transfer client process can read the next chunk to one
of the buffer entry in the buffer pool (Fig.4 shows the double-buffering case) while the
RDMA client transfers checkpoint chunks to the transfer server. The RDMA client
issues a request for the chunk transfer to an RDMA server (Step 6). When the RDMA
server running on the transfer node receives a transfer request, an RDMA read request is
issued to the transfer client to read the remote buffer space into a local buffer, which then
sends an acknowledgement to the RDMA client. The RDMA client issues RDMA read

requests until all chunks are sent to the transfer node (Step 7-9). Finally, the data writer
threads write the checkpoint to the PFS in parallel with RDMA reads by the RDMA
server (Step 10-11).

An RDMA operation can read or write remote memory regions up to only a few MB of
data at a time. Therefore, a checkpoint chunk is also divided into smaller chunks and the
RDMA server reads the remote chunks one by one. To transfer checkpoints from thou-
sands of compute nodes with fewer transfer nodes, a transfer server can concurrently
handle RDMA requests from multiple transfer clients. However, a large amount of in-
coming checkpoint data from multiple compute nodes can overflow a buffer in a transfer
node. To avoid buffer overflow, if buffered checkpoint data exceeds a specified buffer
size limit, the transfer nodes throttle the RDMA read rate to balance between incoming
checkpoint data from compute nodes and outgoing data to the PFS. Thus, to avoid in-
coming data rate from being saturated by outgoing data rate, an appropriate number of
transfer nodes needed to be determined.

4. Evaluation

We developed and evaluated the asynchronous checkpointing system on the Sierra
cluster at LLNL using a parallel file system designed to deliver a peak performance of
30GB/s. Each Sierra node has two 2.8 GHz 6-core Intel Xeon 5660 processors (12 cores
in total) and 24GB of memory, and nodes share a QLogic IBA7322 QDR InfiniBand
HCA (4X) interoconnect. We used the IOR benchmark9) developed by LLNL, which
measures I/O performance using POSIX, MPI I/O, or HDF5 with several access pat-
terns. IOR has a main loop that executes read/write operations followed by a sleep-delay
interval. The number of loop iterations is specified by the user along with the number of
seconds for the delay interval. We ran IOR to write a 200 MB per-process ckeckpoint
files to local storage through the HDF5 API. IOR repeats this write operation three times
with a 250 second sleep interval between writes, for 750 seconds of delay in total. We
wrote node-local checkpoints to RAM disk (/tmp) and flushed them to a Lustre PFS4) .
To emulate a compute-bound scientific application writing checkpoints periodically, we
replaced the sleep-delay with a CPU-intensive loop based on thedo work() function in
the ATS (APART Test Suite)10). Thedo work() function repeatedly generates a random
index using the Crand() function, copies a value of one array at the index to another
array at the same index a specified number of times. We calibrated this computation
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Fig.5 IOR Runtime varying number of compute nodes

time to take 250 seconds.
Fig.5 shows IOR runtime with an increasing number of MPI processes. The MPI pro-

cesses occupy all cores on computes node, i.e., 12 MPI processes per compute node.
With SCR w/o Flush, SCR writes checkpoints to local storage, but never flushes them
to the PFS. WithSCR w/ Async flush, SCR uses the original implementation with a
200MB buffer to flush each checkpoint to the PFS after IOR writes it.SCR w/ RDMA
Async flushis the proposed asynchronous checkpointing with two 200MB buffers in the
transfer client and a 20GB buffer in the transfer server. We vary the number of compute
nodes that a transfer node handles from 2 to 32 in increasing powers of 2. The first asyn-
chronous flush in bothSCR w/ Async flushandSCR w/ RDMA Async flush starts at
the end of the first checkpoint to local storage. Thus, the first iteration is not affected by
asynchronous checkpointing. As presented in Fig.5, asynchronous checkpointing with
RDMA can flush checkpoints to the PFS with less runtime overhead that the original
SCR asynchronous checkpointing. Since the asynchronous checkpointing uses RDMA
to drain checkpoint data from compute nodes to the PFS, our system uses less CPU time
than the original one and reduces the impact on the application.

Fig.6 shows a compute intervals by thedo work() function, which is sorted by the
runtime, of each MPI process for the run with 768 processes. Processes causing runtime
gaps are distributed across compute nodes equally, i.e. the differences are not due to a

Fig.6 Thedo work() function runtime

small set of defected or slower compute nodes. We found that the original asynchronous
checkpointing scheme impactsdo work() runtime more than our new mechanism, and
the runtime using our asynchronous checkpointing is much closer to that without flushes.
We observed CPU usage of our asynchronous checkpointing process running on a com-
pute node is only about 0.1-0.3% on average. As for the jump in runtime forSCR w/o
Flush, we also observed that the Lustre RPC client process, which is calledptlrpcd,
used 0.1% of CPU over the execution. We expect that the gap in runtime performance
was caused by ptlrpcd.

Fig.5 also shows that the runtime withSCR w/ RDMA Async flush tends to increase
with the number of computes nodes that a transfer node handles. In the current imple-
mentation, an RDMA client process polls a memory region to detect an acknowledge-
ment from an RDMA server of completed RDMA read. Since a transfer node, which
handles a larger number of compute nodes, take longer before sending the reply, the
RDMA client inspects the memory region more often, which impacts thedo work()
runtime more heavily.

We also investigated runtime differences with the different number of compute nodes
that a transfer node handles. As presented in Fig.7, we observed that IOR runtime
increases significantly with 64 compute nodes and is much longer than withSCR w/
Async flush. The time increases because one checkpoint flush starts before the prior
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Fig.7 IOR Runtime increasing number of compute nodes per transfer node

Fig.8 incoming/outgoing data size of a transfer node’s buffer with 32 compute nodes

flush completes when there many compute nodes handled by the transfer node. SCR
does not start the next flushing untile the prior one completes. When multiple compute
nodes share a transfer node, the throughput, at which a compute node can send check-
point data to the transfer node, decreases accordingly. This can lead to flush operations
not completing before the next one begins.

Fig.8 and 9 shows the impact of varying incoming and outgoing checkpoint data size
in a transfer node that handles 32 and 64 compute nodes respectively. As shown in

Fig.9 incoming/outgoing data size of a transfer node’s buffer with 64 compute nodes

both figures, the incoming data rate is saturated by the outgoing data rate since the
RDMA servers throttle an RDMA read to balance the incoming and outgoing data rates
when buffered checkpoint data exceeds 20GB. However, with 32 compute nodes, the
rate was about 605 MB/s. Since total checkpoint size of 32 compute nodes is 76.8GB (=
200MB x 12 processes x 32 nodes), the flush operation completes within 250 seconds.
Alternatively, the incoming data rate with 64 compute nodes was about 458 MB/seconds,
which means that about 335 seconds is required to receive 153.6 GB (= 200MB x 12
processes x 64 nodes). When we consider the I/O throttling to reduce the probability of a
failure in the PFS, the incoming data rate is expected to be saturated with the less number
of compute nodes. Therefore, we found that performance analysis and modeling of our
asynchronous checkpointing system are required to determine the appropriate number
of transfer nodes given the number of compute nodes, the checkpoint size, network and
effective I/O throughput. In addtion, we used thedo work() function of ATS, which is
a CPU-bound function. However since our asynchronous checkpointing system shares
a network bandwidth, it is expected to affect network-bound applications. We consider
these problems to be future work.

5. Related Work

Multi-level checkpointing7),11) is a promising technique for fault-tolerant execution
that utilizes different levels of storages such as RAM, SSD, hard disk and PFS depending
on redundancy and resiliency requirements. Under a well-chosen redundancy scheme,
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multi-level checkpointing enables an application to be reliable while maintaining the
performance. Moody et al.7) modeled and optimized the frequency based on collected
failure rates and checkpointing costs of each level by using predictable a Markov model.
Bautista-Gome et al.11) proposed multi-level checkpoint using local SSDs and an un-
derlying PFS. The proposed technique uses Reed-Solomon (RS) encoding to avoid re-
covery from a costly PFS. Generally, since checkpointing to and restarting from a PFS
are relatively costly operations compared to those from and to local storages, the PFS
is used less often in these techniques. However, an increasing failure rate by a recent
growing number of components in HPC systems requires checkpointings to a PFS more
frequently. Thus, with even multi-level checkpointing, the lightweight checkpointing to
a PFS is crucial for exascale systems.

Significant research explores I/O performance in PFS. Lustre4), PVSF5) and GPFS6)

exhibit high I/O performance by using multiple dedicated I/O nodes. This enables ap-
plications to read/write data in parallel. However, since these file systems are shared by
tens of thousands compute nodes, it is difficult to scale to a larger number of compute
nodes writing checkpoints concurrently.

Asynchronous I/O has long been used to hide I/O bottlenecks.12)–14) These techniques
enable applications to parallelize I/O and computation, resulting in increased CPU uti-
lization and enhanced I/O performance. Patrick et al.12) presented a comprehensive
study of different techniques of overlapping I/O, communication, and computation, and
showed the performance benefits of asynchronous I/O. Nawab et al.13) asynchronously
transfer multiple striped TCP data streams to increase I/O performance in Grid environ-
ments significantly. Asynchronous staging service using RDMA proposed by Hasan et
al.14) is the closest research to this work. The authors achieved high I/O throughput by
using additional nodes. As we observed, when an additional node handles a large num-
ber of compute nodes, buffer can overflow and an optimal number of compute nodes that
a additional node handles needs to be determined. However, the comprehensive study
on the problem is not shown and also the solution is not presented given the number of
compute nodes.

6. Conclusion and Future Work

We have proposed an asynchronous checkpointing system based on the SCR library.
Our approach uses extra nodes to drain checkpoint data from compute nodes to a PFS

using RDMA. Our preliminary experiments showed that the asynchronous checkpoint-
ing system can transfer checkpoint data with less than a 1% of runtime increase for
CPU-bound applications with an appropriate number of transfer nodes.

As future work, we will further analyze and model our asynchronous checkpoint sys-
tem to determine the optimal number of transfer nodes for a number of compute nodes,
the checkpoint size, and network and I/O throughputs. We will also consider an I/O
throttling in transfer nodes to reduce PFS failures. due to heavy load.
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