
IPSJ SIG Technical Report

A Preliminary Evaluation of Chapel with

Molecular Dynamics Simulation

Nan Dun†1 and Kenjiro Taura†1

This paper presents a preliminary study of the programmability and
performance of the high-level parallel language Chapel in an implementation
of molecular dynamics simulation. Our experience show that Chapel has good
expressiveness to describe parallelism, which allows users to effectively write
parallel program. The evaluation of language features and MD programs
provides the performance implication and usage considerations of using Chapel.

1. Introduction

Through the advance of parallel computing, users now have the chance of

using powerful computing resources with massive parallelism to solve real-

world problems. However, the programmability of conventional programming

models/languages prevents most users who are familiar with programming

sequential machines to efficiently and effectively programming modern parallel

machines. This is mainly because the lack of high-level abstractions to express

parallelism, locks, synchronization, data distributions and communications in

mainstream programming languages1). Besides parallel programmability, another

challenge comes from the convergence of heterogeneous/hybrid computing with

CPU and GPGPU accelerators, which introduces more parallelism, higher

performance, and better power efficiency. Thus without a unified high-level

programming model, it is difficult to efficiently integrate various low-level

programming models and to orchestra data locality among different platforms.

Among many attempts to narrow this gap, redesigning programming languages

that inherently adapt to parallel machines is a profound and effective one.

Fortunately, language developers have made significant contribution by creating

†1 The University of Tokyo

new parallel languages with the consideration of above problems, such as Cilk2),

Intel Threading Building Blocks (TBB)3), Unified Parallel C (UPC), Chapel4),

X105), Fortress6), etc. Since these are languages are new and most users still do

not have much experience with them (especially comparing to well-understood

mainstream languages), an investigation and evaluation of high-level languages

is necessary to serve following purposes:

• Study the programmability of high-level programming language in the

context of real world scientific applications.

• Understand the performance implications of using high-level language,

especially comparing to an equivalent implementation in low-level language.

• Provide suggestions for writing scientific applications in high-level languages

with both expressiveness and performance consideration.

• Give feedbacks for designing a unified high-level programming model for both

enhanced programmability and integration of hybrid architectures.

This paper presents a reference implementation of Molecular Dynamics (MD)

simulation by using Chapel programming language. Though there are other

parallel programming languages (see section 5.1), we believe using Chapel is

more generic and intuitive for domain-specific researchers to effortlessly write

parallel programs7). Our implementation covers a wide variety of well-known

MD simulation models. We evaluate our implementation by comparing it with

an identical C (i. e., low-level language) implementation, especially to conduct a

study from the viewpoints of both programmability and performance.

2. Background

2.1 Chapel Programming Language

Chapel1),4),8) is an object-oriented parallel programming language designed

to improve programmability for modern High Performance Computing (HPC)

systems with significant parallelism. The Chapel project was started by Cray

as part of DARPA’s High Productivity Computing Systems (HPCS) programme

which aims to create computing systems with following important attributes

of productivity: performance, programmability, portability, and robustness9).

Chapel focuses on programmability and provides many language features to

achieve this objective.

1 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

2.1.1 Language Overview

Chapel adopts a global view model rather than conventional fragmented model

(which is derived from SIMD model). The major advantage of global view model

is to set programmers free from difficulty and tedious of writing parallel programs

in an explicit task-by-task manner.

Chapel supports the abstractions of task parallelism, data parallelism, and

nested parallelism. The parallelism is described using an implicit multithreading

manner, in which independent computations are mapped to a collection of

threads. Low-level threads management (e. g., create and join) is implemented

by the compiler and runtime system instead of users.

The unit of physical computation resources, i. e., CPU plus memory, is

abstracted as locale in Chapel. For example, one machine with its local memory

represents a locale in a cluster architecture. Locales are used to control the

mapping of data and computation to the physical machine.

Instead of directly compiling source code to generate executable binary, Chapel

uses a source-to-source translation from Chapel source code to C code that links

to a parallel library. Source-to-source translation not only allows Chapel to

support interoperability to other languages such as Fortran or CUDA, but also

provides users a chance to understand its underlying execution mechanisms by

peeking transformed intermediate C code.

2.1.2 Task and Data Parallelism

The parallelism in Chapel can be constructed by one of following parallel

statements: begin, cobegin, coforall, and forall.

For task parallelism, the begin statement is used with sync and single

synchronization variables to construct concurrent tasks in an unstructured way.

The cobegin and coforall statements are more straightforward for common

structured tasks. Following code examples illustrate the difference between these

statements.

begin procA();
begin procB();
// The order of procA() and procB() is unspecified.

cobegin {

procA(); // Synchronization is implicitly introduced.
procB();

} // procA() and procB() finish separately and join here.

coforall i in [1..10] {
procA();
procB();

} // Repeat above cobegin block for 10 times.

Domain is an important data parallelism concept in Chapel. It is used for

define data distributions of arrays (which is a mapping from index to data values).

Concurrent tasks that manipulate a collection of data can be constructed using

forall iterations over a domain or array. For example,

var Dom: domain(1) = [1..m]; // Domain
var ArrA, ArrB: [Dom] real; // Aaray
forall a in Arr do { ... } // Iterate over an array
ArrB = ArrA; // Implicit element-by-element copy in parallel

2.1.3 Locality Control

Locality is important for parallel programs to achieve good performance.

Besides customizing domain distribution, there are two other ways of controlling

locality by using on clause. As shown in following examples, one is to explicit

specify the locale where computation should happen, the other is a data-driven

approach that keeps computation local with data.

// Explicit control of computation location
forall loc in Locales do on loc do procedure();
// Data-driven manner
forall i in Arr.domain do on Arr(i) do procedure(Arr(i));

2.2 Molecular Dynamics Simulation

Molecular Dynamics (MD) simulation10),11) is a scientific applications that uses

numerical approach to study physical substances by simulating the motion of

their build blocks: molecules and atoms. In MD simulation, the movements

of molecules obey classical mechanics (i. e., Newton’s law of motion) and are

dynamically determined by the forces between molecules.

Generally, a MD simulation iterates a computation consisting of following

two steps: 1) calculate the force for each molecule in system, 2) advance the

2 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

positions of the molecules to classical laws of motion. The intermolecular forces

are calculated based on the modeling of force field. A potential function used to

define the force field is also called kernel. A force field usually has two parts of

interactions: 1) short range forces (e. g., van der Waals force) that fall off rapidly

with distance and thus are typically evaluated only for nearby molecules, and

2) long range forces (i. e., electrostatic forces) that fall off slowly with distance.

Therefore, a O(N2) computation is required for calculating forces (esp. long-

range forces) between all pairs of molecules. Long range forces are typically

computed using faster approximate approaches. Some of widely used methods

includes Ewald summation12) using Fast Fourier Transform (FFT), and the Fast

Multipole Method (FMM)13),14).

FMM is a state-of-the-art algorithm for MD simulation because it significantly

reduces the computation complexity of long-range force calculation from O(N2)

to O(N). FMM achieves this by using multipole expansions to approximate

the effects of groups of molecules instead of individual molecules with specified

accuracy. The groups are further organized in a hierarchical way when the

distance between them increases. Due to the lack of space, we refer interested

users to further readings11),13),14). FMM has several variants, such as Kernel-

Independent FMM (KIFMM)15) that avoids to expand underlying kernel. In

order to harness the power of parallel machines, recent research effort has also

been dedicated to the parallelization of FMM16),17). One of major objectives of

our work is also to parallelized FMM, however, by using a language approach

rather than other algorithmic approach.

3. Molecular Dynamics in Chapel

We implemented MD programs in Chapel based on an existing collection of

C implementation11). By this method, we are able to investigate the easiness

of rewriting a serial program to a parallel one by Chapel. Additionally, this

approach allows us to compare the performance with the performance of a

well-understood conventional language. In this paper, we extensively use FMM

instead of other programs as the example for description.

3.1 Data Structures

The basic data structure is the representation of molecule. The molecular

structure is implemented by record type that holds three vectors and other

attributes, as shown below. We choose record rather than tuple mainly

because of performance considerations (see section 4.2.2).

record vector { var x, y, z: real; };
record mol {

var r, rv, ra: vector; // Position, velocity, acceleration
var chg: real; // Electric charge

}

Other major data structures include a list to store the cells for multipole

expansion, and a list for neighbour molecules to simulate soft-sphere interactions.

Both of these lists are implemented using one dimensional array that stores the

index of related molecules. A multidimensional array instead of a tree is used to

store the expansion coefficients in the hierarchy.

3.2 Potential Functions

For long-range interactions, electrostatic field force that follows the Coulomb’s

law11) is used. To prevent molecules with opposite charges from approaching too

closely, the pair potential (i. e., Lennard-Jones potential11)) is used.

3.3 Parallelization

Using Chapel to parallelize the serial code is straightforward and effortless:

1) separate the computation-intensive phase and identify the independent

computations encapsulated in for loop, then 2) change the for into forall

and protect the globally modified variables with atomic⋆1 statement or sync

combinations.

In our FMM implementation, several major computation intensive phases

are parallelized using only forall loops, while begin and cobegin parallel

statements are not used. Most of forall parallelism are iterations over

the expansion cells. Manipulations on the whole array of molecules, such

as initialization and leapfrog steps, are left with serial for loop. This is

because parallelizing loops with less iterations or inexpensive computations may

conversely introduce much more overhead than performance gain. Furthermore,

we use user-defined iterators to replace the default range expression for those

nested serial loops to reduce more overhead (see section 4.4).

⋆1 Currently, atomic statement is not implemented yet.

3 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

Because of Chapel’s high expressiveness of parallelism, we generally find that

less than 10% of the original code is modified/appended when we reconstruct the

serial program into parallel program.

4. Evaluation

4.1 Experimental Environments

The experimental environments consist of one cluster of 20 machines. Each

machine is equipped with Xeon E5530 2.4GHz 8 cores CPU, 24GB MEM, and

an uniform installation of Linux 2.6.26, GCC 4.3.2, and Chapel 1.3.0.

Our Chapel implementation consists of several basic language benchmarks and

MD simulation programs, where MD programs is based on an open-source C

implementation⋆1 with detailed illustrations11). Therefore, there is no algorithmic

but only language descriptive differences between these two implementations.

The used compilation options are shown below. Note that -O3 option is

specified because the same level of optimization is used (which can be shown by

--print-commands option) during the Chapel compilation from intermediate

C code to executable.

$ chpl prog.chpl -o prog --fast // Chapel compilation
$ gcc prog.c -o prog -O3 -lm // C compilation

To investigate performance bottlenecks, we extensively uses source-to-source

compilation feature (i. e., --codegen and --savec options) by exploring

intermediate C code in following experiments.

For each experiment, if not specified, the shown results are the average of 5

identical runs and their standard deviations are considerable small.

4.2 Language Primitives

4.2.1 Arithmetic and Array Indexing

We first investigate the baseline performance of float point arithmetics for both

one single variable and an array. Figure 1 shows the performance of conducting

106 operations, with the comparison of a direct C implementation. While the

plain float point arithmetics perform the same as direct C implementation, the

array reference introduce an average of 15% overhead.

⋆1 Online available at http://www.ph.biu.ac.il/˜rapaport/mdbook/index.html.

...
..

asg

.

add

.

sub

.

mul

.

div

.

0

.

0.5

.

1

.

·104

.

E
la
p
se
d
T
im

e
(µ

se
c)

.

. ..float . ..float in C

. ..array . ..array in C

Fig. 1 Comparison of float point arithmetics

4.2.2 Tuple vs. Record

Tuple and Record are two light-weight data types for encapsulating a group of

data. When translated to intermediate C code, tuple is transformed to multiple

dimensional array and record is transformed to the struct type. Following code

illustrates the correspondence in translation of tuple type, record type, and

their nested constructions.

/* Chapel source */ /* C mapping */
var tup: (int, int); int tup[2];
var nstTup: (tup, tup); int nstTup[2][2];

record Rec {var x, y: int;} struct rec {int x, y;}
record nstRec { struct nstRec {

var x, y: Rec; } struct rec x, y; }

As described in section 3.1, both tuple and record can be used to implement

vector. Figure 2 and 3 show the manipulation performance of 1D and 2D vectors,

respectively. 2D vector is implemented by nested types. The number of vectors

is 106 and we also compare them with a direct C implementation using array

and struct. Results show that using tuple has a potential indexing overhead

(up to 50%) than using record, and the increment of overhead by using nested

4 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

...
..

asg

.

add

.

sub

.

mul

.

div

.
0.5

.

1

.

1.5

.

·104

.

E
la
p
se
d
T
im

e
(µ

se
c)

.

. ..tuple . ..array in C . ..record . ..struct in C

Fig. 2 Performance of manipulations on 1D-vectors

...
..

asg

.

add

.

sub

.

mul

.

div

.
2

.

4

.

6

.

8

.

·104

.

E
la
p
se
d
T
im

e
(µ

se
c)

.

. ..Nested tuple . ..2D array in C

. ..Nested record . ..Nested struct in C

Fig. 3 Performance of manipulation on 2D-vectors

types is much higher comparing to direct C implementation.

4.3 Domain Indexing

In Chapel, domain is classified as rectangular domain and irregular/associative

domain8). Rectangular domain describes multidimensional rectangular index

...

..

alloc

.

asg

.

add

.

sub

.

mul

.

div

.

104

.

105

.

106

.

107

.

E
la
p
se
d
T
im

e
(µ

se
c)

.

. ..1D-Reg . ..1D-Irr . ..2D-Reg

. ..2D-Irr . ..3D-Reg . ..3D-Irr

Fig. 4 Indexing performance of arrays with different domains

sets, and irregular domain is like dictionary-style array which can use arbitrary

type as index.

To study the performance of domain reference, we compare the throughput

of manipulation on arrays that are defined by rectangular domain and associate

domain. The size of all arrays is set to 106, and the length of a n-dimensional

array is 106/n. Figure 4 presents the experimental results. Generally, using

regular domain is much more efficient (hundreds times faster) than using associate

domain because regular domain typically requires O(1) space8).

4.4 Nested For Loop

The nested loop is common in scientific calculation, and it can be constructed

using a nested iteration or zipper iteration in Chapel. But when the inner loop

depends on the outer loop, the iteration can only use the nested way because the

range literal is evaluated at once before iterations (see example below).

// Nested iteration
for i in [1..I] do // Inner loop depends on outer loop

for j in [1..I-1] { .. }

// Zipper iteration

5 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

for (i, j) in [1..I, 1..J] do { ... } // OK
for (i, j) in [1..I, 1..I-1] do { ... } // NG

Figure 5 shows the elapsed time of conducing 106 times of accumulation by

using different for/while constructions. Here, “for-for” stands for a nested

iteration and “for2” stands for a zipper iteration. For a n-level nested loops,

each level is iterated for 106/n times.

It is clear that the overhead is non-trivial when for exists in inner loops.

Following intermediate C code shows that a for loop in Chapel is translated

into a while loop surrounded by a pair of domain constructor and destructor

procedures which are also iterated by outer loops.

// Transformed C code of the for loop
chpl__buildDomainExpr2(&loop_domain, ...);
while (loop_domain) { ... }
chpl__autoDestroy2(loop_variable, ...);

Thus, there are three ways to overcome this problem by preventing compiler

from inserting the domain construction procedures.

• Define an iterator by using iter function8), which preserves the semantics

of data parallelism in the forall loop⋆1.

• Use the while statement for inner loop, if the inner loop does not need to

be executed in parallel.

• Use zipper iteration, if inner loop is independent of outer loop.

4.5 Molecular Dynamics Applications

4.5.1 Serial Execution Performance

Figure 6 shows the performance of the serial version of FMM. Similar as

evaluation results in previous sections, a Chapel program generally achieves about

50% of the performance of an identical C program. Though not shown here,

other simpler MD programs with fewer array reference can achieve about 60-70%

performance of the C implementation.

4.5.2 Parallel Execution Performance

To parallelize a serial program, parallel statements and synchronization are

inserted. Figure 7 shows the performance breakdown of FMM phases by a

⋆1 However, the parallel iterator is not available now. It will be supported in the future8).

.....

23

.

43

.

63

.

83

.

103

.

163

.0 .

20

.

40

.

60

.

Number of Molecules

.

E
la
p
se
d
T
im

e
(s
ec
)

.

. ..Chapel . ..C

.... 0.

0.2

.

0.4

.

0.6

.

0.8

.

1

.

S
p
ee
d
u
p

Fig. 6 Performance of serial FMM

serial version and a parallelized version (but executed serially) FMM programs.

For the most computation intensive part (i. e., multipoleCalc phase), the

parallelization can introduces 5 times of overhead because lock is used in a heavy

loop part.

Figure 8 shows the scalability of parallel FMM for different number of threads

and problem sizes. Figure 9 illustrates the scalability of each phase for N = 323.

For a small problem size (e. g., N = 83), the performance drops down when the

number of threads exceed 4 because there are less calculations for long range

interactions and the computation for short range is dominant. When there are

more molecules, which suggests larger space, the performance scales up to 8

threads. However, the speedup only achieves 4 for 8 threads, this is because an

lock existing in multipoleCalc phase leads to significant overhead. We are

currently developing a new algorithm for this phase to remove the usage of lock.

4.6 Source Lines of Code

Figure 10 shows the head-to-head comparison of Lines of Code (LOC) between

serial programs of our Chapel and original C implementation. Using Chapel saves

20-40% effort to develop a program. Note that the parallel version of programs

in Chapel only introduce a small fraction of additional code. For example, our

6 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

...

..

for

.

whi
le

.

for-
for

.

for2

.

for-
whi

le

.

whi
le-fo

r

.

whi
le-w

hile

.

for-
for-

for

.

for3

.

for-
for-

whi
le

.

for2
-wh

ile

.

for-
whi

le-fo
r

.

for-
whi

le-w
hile

.

whi
le-fo

r-fo
r

.

whi
le-fo

r2

.

whi
le-fo

r-w
hile

.

whi
le-w

hile
-for

.

whi
le-w

hile
-wh

ile

.
1,000

.

2,000

.

3,000

.

4,000

.E
la
p
se
d
T
im

e
(µ

se
c)

Fig. 5 Performance comparison of traversing various nested loops

...

..

ini
t

.

lea
pF

rog
(1)

.

bu
ild

Ne
br
Lis

t

.

co
mpu

teF
orc

es

.

mu
lti
po
leC

alc

.
co
mpu

teW
all
Fo
rce

s

.

ap
ply

Th
erm

o

.

lea
fFr

og
(2)

.

102

.

103

.

104

.

105

.

106

.

E
la
p
se
d
T
im

e
(µ

se
c)

.

. ..Serial FMM

. ..Parallelized FMM

Fig. 7 Serial performance breakdown of serial FMM and parallelized FMM

parallelized FMM program has only 3% more lines of code than the serial version,

which demonstrates that expressive of describing parallelism by Chapel.

.....
1
.

2
.

3
.

4
.

5
.

6
.

7
.

8
.1 .

2

.

3

.

4

.

Threads per Locale

.

S
p
ee
d
u
p

.

. ..N = 83 . ..N = 163

. ..N = 323 . ..N = 643

Fig. 8 Scalability of parallelized FMM

5. Related Work

5.1 Parallel Programming Languages

Conventional parallel programming languages (and libraries) includes SPMD

languages such as MPI18), UPC19), OpenMP20), HPF21), Cilk2), TBB3).

Besides Chapel, there are two other high-level parallel programming languages

7 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

...

..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

.

104

.

105

.

106

.

Threads per Locale

.

E
la
p
se
d
T
im

e
(µ

se
c)

.

. ..init . ..leapFrog(1) . ..buildNebrList

. ..computeForces . ..multipoleCalc . ..computeWallForces

. ..applyThermo . ..leafFrog(2)

Fig. 9 Parallel performance breakdown of parallelized FMM

that were also initiated by HPCS programme: Oracle’s Fortress6) and IBM’s

X105). Though these three languages share a common approach of using

Partitioned Global Address Space (PGAS) model with multi-threading to

adapt various parallel systems, they differ from each other in other aspects22).

For example, Chapel is an object-oriented programming language aiming

for broader community. Fortress is designed to use mathematical syntax

to benefit scientific computing users, and X10 targets Java programmers.

Though our implementation does use X10 and Fortress, a similar study of the

programmability of HPCS languages conclude that they are also expressive for

scientific problems7).

5.2 Practices of Molecular Dynamics Simulations

Prevalent MD simulations are conducted by software approaches on general-

purpose computers. Some of widely used software packages include CHARMM23),

...

..

allpairs2d

.

veldist

.

cellsub

.

nebrlist

.

fmm

.200 .

400

.

600

.

800

.

1,000

.

L
in
es

o
f
C
o
d
e

.

. ..Chapel . ..C

.... 0.

0.2

.

0.4

.

0.6

.

0.8

.

1

.

P
ro
p
o
ti
o
n
(C

h
a
p
el
:C

)

Fig. 10 Comparison of lines of code of serial MD programs

NAMD24), Desmond25), Tremole-X26), etc.⋆1 While most of MD packages are

written in C and Fortran, NAMD is implemented using Charm++27).

There are also parallel machines specifically designed for MD simulations, such

as MDGRAPE28) and Anton29). Different from general-purpose computers, they

use specialized Application-Specific Integrated Circuits (ASICs) and network to

perform computation, which can achieve speedup by several orders of magnitude

than general-purpose machines.

Other research projects, such as Folding@home30) and Docking@Home31),

harness the power of distributed computing resources (e. g., idle CPU of personal

computers) to collaboratively perform simulations of protein folding and other

molecular dynamics.

6. Conclusion and Future Work

By implementing MD simulation programs in Chapel, we have studied the

programmability and performance implication of using a high-level parallel

language. Our experience show that Chapel has good expressiveness to describe

⋆1 Refer to http://en.wikipedia.org/wiki/Molecular_dynamics for a list of software
for MD simulations.

8 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

parallelism, which allows users to effectively write parallel program.

Evaluation presents that Chapel has a reasonable performance for scientific

applications. Since Chapel is still under development, users also need to be

aware of the performance implications of various data and program structures to

avoid potential performance overhead.

Our major future work is to develop and optimize the FMM/KIFMM for

various parallel architectures including clusters and supercomputers, as well as to

investigate the possibility of adopting existing techniques32),33) within the Chapel

framework. We also plan to extend current implementation to adapt GPGPU-

based hybrid computing system, as suggested by recent effort of integrating GPU

architecture by using user-defined distributions34).

Finally, the source code and documentation of this work is online available at

http://mdoch.googlecode.com/.

Acknowledgments This work is partially supported by JST, CREST

through its research project: “Highly Productive, High Performance Application

Frameworks for Post Petascale Computing.”

References

1) Chamberlain, B. L., Callahan, D. and Zima, H. P.: Parallel Programmability
and the Chapel Language, International Journal of High Performance Computing
Applications, Vol.21, pp.291–312 (2007).

2) : The Cilk Project, MIT CSAIL Supertech Research Group (online),
available from ⟨http://supertech.csail.mit.edu/cilk/⟩ (accessed 2011-10-28).

3) : Intel Threading Building Blocks, Intel Corporation (online),
available from ⟨http://software.intel.com/en-us/articles/intel-tbb/⟩
(accessed 2011-10-28).

4) Inc, C.: Chapel Programming Language, Cray. Inc (online),
available from ⟨http://chapel.cray.com/⟩ (accessed 2011-10-28).

5) IBM: X10 Programming Language, IBM (online),
available from ⟨http://x10-lang.org/⟩ (accessed 2011-10-28).

6) Oracle: Fortress Programming Language, Fortress (online),
available from ⟨http://projectfortress.java.net/⟩ (accessed 2011-10-28).

7) Shet, A.G., Elwasif, W.R., Harrison, R.J. and Bernholdt, D.E.: Programmability
of the HPCS Languages: A Case Study with a Quantum Chemistry Kernel, Proc.
of IEEE International Symposium on Parallel and Distributed Processing, IPDPS
’08, Miami, Florida, pp.1–8 (2008).

8) Cray Inc.: Chapel Language Specification v0.8 (2011).

9) Dongarra, J., Graybill, R., Harrod, W., Lucas, R.F., Lusk, E.L., Luszczek, P.,
McMahon, J., Snavely, A., Vetter, J.S., Yelick, K.A., Alam, S.R., Campbell, R.L.,
Carrington, L., Chen, T.-Y., Khalili, O., Meredith, J.S. and Tikir, M.M.: DARPAs
HPCS Program: History, Models, Tools, Languages, Advances in Computers: High
Performance Computing, Vol.72, pp.1–100 (2008).

10) Haile, J. M.: Molecular Dynamics Simulation: Elementary Methods, Wiley
Professional, 1st edition (1997).

11) Rapaport, D. C.: The Art of Molecular Dynamics Simulation, Cambridge
University Press, 2nd edition (2004).

12) Ewald, P. P.: Die Berechnung optischer und elektrostatischer Gitterpotentiale,
Annalen der Physik, Vol.369, No.3, pp.253–287 (1921).

13) Greengard, L. and Rokhlin, V.: A Fast Algorithm for Particle Simulations, Journal
of Computational Physics, Vol.73, pp.325–348 (1987).

14) Kurzak, J. and Pettitt, B.M.: Fast Multipole Method for Particle Dynamics,
Molecular Simulation, Vol.32, No.10, pp.775–790 (2006).

15) Ying, L., Biros, G. and Zorin, D.: A Kernel-Independent Adaptive Fast Multipole
Algorithm in Two and Three Dimensions, Journal of Computational Physics, Vol.
196, pp.591–626 (2004).

16) Lashuk, I., Chandramowlishwaran, A., Langston, H., Nguyen, T.-A., Sampath,
R., Shringarpure, A., Vuduc, R., Ying, L., Zorin, D. and Biros, G.: A Massively
Parallel Adaptive Fast-Multipole Method on Heterogeneous Architectures, Proc. of
the Conference on High Performance Computing Networking, Storage and Analysis,
SC ’09, New York, NY, USA, ACM, pp.58:1–58:12 (2009).

17) Ying, L., Biros, G., Zorin, D. and Langston, H.: A New Parallel Kernel-
Independent Fast Multipole Method, Proc. of the 2003 ACM/IEEE Conference
on Supercomputing, SC ’03, New York, NY, USA, ACM, pp.14–30 (2003).

18) : MPI: Message Passing Interface, MPI Forum (online),
available from ⟨http://www.mpi-forum.org/⟩ (accessed 2011-10-28).

19) : UPC: Unified Parallel C, UC Berkeley/LBNL (online),
available from ⟨http://upc.lbl.gov/⟩ (accessed 2011-10-28).

20) : OpenMP, OpenMP Organization (online), available from ⟨http://openmp.org/⟩
(accessed 2011-10-28).

21) : High Performance Fortran, HPF Forum (online),
available from ⟨http://hpff.rice.edu/⟩ (accessed 2011-10-28).

22) Weiland, M.: Chapel, Fortress and X10: Novel Languages for HPC, Technical
report, HPCx Consortium (2007).

23) Brooks, B.R., III, C. L.B., Jr., A. D.M., Nilsson, L., Petrella, R.J., Roux, B.,
Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L. S.D., Cui,
Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera,
K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu,
J.Z., Schaefer, M., Tidor, B., Venable, R.M., III, H. L.W., Wu, X., Yang, W., York,

9 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

IPSJ SIG Technical Report

D.M. and Karplus, M.: CHARMM: the biomolecular simulation program, Journal
of Computational Chemistry, Vol.30, No.10, pp.1545–1614 (2009).

24) Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R.D., Kalé, L.V. and Schulten, K.: Scalable Molecular Dynamics
with NAMD., Journal of Computational Chemistry, pp.1781–1802 (2005).

25) Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A.,
Klepeis, J.L., Kolossvry, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan,
Y., and Shaw, D.E.: Scalable Algorithms for Molecular Dynamics Simulations on
Commodity Clusters, Proc. of the ACM/IEEE Conference on Supercomputing, SC
’06 (2006).

26) : Tremole-X, Institute for Numerical Simulation, the University of Bonn (online),
available from ⟨http://www.tremolo-x.com/⟩ (accessed 2011-10-28).

27) : Charm++ Parallel Languages, Parallel Programming Laboratory, University of
Illinois (online), available from ⟨http://charm.cs.uiuc.edu/research/charm/⟩
(accessed 2011-10-28).

28) Narumi, T., Kawai, A. and Koishi, T.: An 8.61 Tflop/s Molecular Dynamics
Simulation for NaCl with a Special-Purpose Computer: MDM, Proc. of the 2001
ACM/IEEE Conference on Supercomputing, SC ’01 (2001).

29) Shaw, D.E., Dror, R.O., Salmon, J.K., Grossman, J.P., Mackenzie, K.M., Bank,
J.A., Young, C., Deneroff, M.M., Batson, B., Bowers, K.J., Chow, E., Eastwood,
M.P., Ierardi, D.J., Klepeis, J.L., Kuskin, J.S., Larson, R.H., Lindorff-Larsen, K.,
Maragakis, P., Moraes, M.A., Piana, S., Shan, Y. and Towles, B.: Millisecond-
scale molecular dynamics simulations on Anton, Proc. of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09, pp.39:1–39:11
(2009).

30) : Folding@home Project, Pande Lab Stanford University (online),
available from ⟨http://folding.stanford.edu/⟩ (accessed 2011-10-28).

31) : Docking@Home Project, University of Delaware (online),
available from ⟨http://http://docking.cis.udel.edu/⟩ (accessed 2011-10-28).

32) Kurzak, J. and Pettitt, B. M.: Massively Parallel Implementation of a Fast
Multipole Method for Distributed Memory Machines, Journal of Parallel and
Distributed Computing, Vol.65, pp.870–881 (2005).

33) Chandramowlishwaran, A., Williams, S., Oliker, L., Lashuk, I., Biros, G., Vuduc,
R. and Bernholdt, E.: Optimizing and Tuning the Fast Multipole Method for State-
of-the-Art Multicore Architectures, Proc. of IEEE International Symposium on
Parallel and Distributed Processing, IPDPS ’10, Atlanta, Georgia, pp.1–12 (2010).

34) Sidelnik, A., Chamberlain, B.L., Garzaran, M.J. and Padua, D.: Using the High
Productivity Language Chapel to Target GPGPU Architectures, Technical report,
University of Illinois (2011).

10 c⃝ 2011 Information Processing Society of Japan

Vol.2011-ARC-197 No.1
Vol.2011-HPC-132 No.1

2011/11/28

