
IPSJ SIG Technical Report

Performance Analysis of SPECjEnterprise2010

Sho Niboshi and Hitoshi Oi†1

We are currently developing a performance analysis model for SPECjEnter-
prise2010, a benchmark suite for a multi-tier Java EE server which is modeled
after an automobile manufacturer. In this report, we present our recent mea-
surement results and their analysis, including the scalability, the workload on
each server and the response time of each transaction type.

1. Introduction

We have been developing a performance model for consolidated multi-tier Java
application server1). As the initial target of the model, we have been using
SPECjAppServer2004 (noted as 2004 here after)2). However, according to the
retirement of 2004 on November 2010, we also have migrated our target system
to SPECjEnterprise2010 (2010)3). While both benchmark suites are modeled
after the business of the automobile manufacturer, 2010 has up-to-date version
of the Java EE technology (from J2EE 1.3 to Java EE 1.5) and it is designed to
use JMS and MDB more extensively.

Our modeling methodology is based on Kounev’s4) with extensions in (1) bas-
ing the platform on a consolidated system that includes virtualization overhead
and (2) prediction of the performance gain with the increased number of cores.
Using the workload parameters obtained by the measurement of 2004, we com-
pared the actual measurements and the predictions by the model and identified
discrepancies in (i) total (physical) CPU utilization and the transaction type that
is most sensitive to the system scaling1).

Disclosure
SPECjEnterprise is trademark of the Standard Performance Evaluation Corp.

(SPEC). The SPECjEnterprise2010 results or findings in this publication have not

†1 The University of Aizu. Authors are ordered alphabetically.

been reviewed or accepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result.

2. Tuning Problem in Consolidated Platform

After the initial measurements of 2010 on a Xen-consolidated system using a
4-core Xeon 2310 (reported in 5)), we migrated our measurement platform to a
6-core AMD Phenom II based system (now used as the application server in Ta-
ble 1) and tackled the problems identified in1). On this measurement platform,
we created three domains (VMs): Application Server (6 vCPU, 7GB Memory),
DB Server (6 vCPU, 6 GB Memory) and Dom0 (6 vCPU and 0.5GB Memory).
While conducting scalability measurement of this platform, we have encountered
a problem in tuning the system and application parameters. The system satu-
rated at around 70% of the total CPU utilization measured by xentop. From our
experiences in1), CPU utilization reported by xentop seems to be lower than the
actual system status. However, a system saturated at 70% of CPU utilization
looks suboptimal and requires further tuning. To properly tune the system and
application parameters (and to understand the behavior of 2010), we have de-
cided to conduct the tuning and measurements on non-consolidated (i.e. separate)
servers first, and then return to the consolidated platform later.

3. Measurement

In this section, we present the measurement results obtained thus far. As men-
tioned in the previous section, we use two machines for application and database
servers (Table 1). System tuning that are have been applied to the system include
installation of irqbalance and use of -XX:+DisableExplicitGC option for the
JVM. To represent the system size, we use the term Scaling Factor (SF) instead
of the official term Injection Rate (IR).

Fig. 1 shows the CPU utilization of the App server (left) and the DB server
(right). The vertical lines drawn at SF = 177 indicate the maximum system
size by which all the transaction response times meet the requirement. First of
all, it is noticed that the CPU utilization of the App server does not linearly
grow against SF. The growth rate of the CPU utilization is reduced gradually.
This is not a good sign for our modeling methodology, because it is based on the

1 c© 2011 Information Processing Society of Japan

Vol.2011-EVA-36 No.1
2011/12/2

IPSJ SIG Technical Report

Component App Server DB Server
CPU AMD Phenom II X6 1065T Xeon X3210 (4 Cores)

Memory 16GB 6GB
OS Oracle Linux 6

Software Glassfish v3.0.1 MySQL 5.5.13
Table 1 Measurement Environment

assumption that each transaction type consumes a fixed amount of CPU time at
each server?1. The source of this non-linearity needs to be identified by further
investigations. On the contrary, the CPU utilization of the DB server grows
linearly against SF. In addition, at the maximum SF of 177, the CPU utilization
is close to 100% (93%) and it saturates for SF > 177. This implies that the DB
server is the performance bottleneck of our measurement platform.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 U

til
iz

at
io

n
(%

)

Scaling Factor

App Server CPU Utilization

sys
+user

+others
Max SF

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 U

til
iz

at
io

n
(%

)

Scaling Factor

DB Server CPU Utilization

sys
+user

+others
Max SF

Fig. 1 CPU Utilization (Left: App Sever, Right: DB server)

Fig. 2 shows the average transaction response time (left) and the throughput
against SF. For the system smaller than saturation point (at SF = 177), the
response time of each transaction is quit low (less than 1 second) and the trans-
action throughput grows linearly. It is also noticed that the response times of
Purchase and Browse transaction types are most sensitive to the system scaling.

?1 Kounev’s model also assumes this property

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160 180 200

R
es

po
ns

e
T

im
e

(S
ec

)

Scaling Factor

Average Transaction Response Time

Purchase
Manage
Browse

CreateVehicleEJB
CreateVehicleWS

Max SF

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200

T
ra

ns
ac

tio
n

pe
r

S
ec

on
d

Scaling Factor

Transaction Throughput

Purchase
+Manage
+Browse

+CreateVehicleEJB
+CreateVehicleWS

Max SF

Fig. 2 Transaction Response Time (Left) and Throughput (Right)

4. Current Status

We are currently performing the measurement of each transaction type sep-
arately. As mentioned in Section 3, it is necessary to identify the reason of
non-linearly in the CPU utilization of the App server against the increasing sys-
tem size. According to the result of this investigation, we may have to alter the
modeling methodology so that the model represents the system behavior of the
multi-tier Java application server more accurately.

References

1) Hitoshi Oi and Kazuaki Takahashi, “Performance Modeling of a Consolidated
Java Application Server,” in Proceedings of 2011 IEEE International Conference
on High Performance Computing and Communications (HPCC-2011), pp834–838,
Banff, Alberta, Canada, September, 2011.

2) SPECjAppServer2004, http://www.spec.org/jAppServer2004/ .
3) SPECjEnterprise2010, http://www.spec.org/jEnterprise2010/ .
4) Samuel Kounev, “Performance Modeling and Evaluation of Distributed

Component-Based Systems Using Queueing Petri Nets,” IEEE Trans.on Software
Engineering, vol.32 no.7, pp.486–502, 2006.

5) Kazuaki Takahashi and Hitoshi Oi, “Measurement of SPECjEnterprise2010”, IPSJ
SIG Technical Report, Vol.2011-EVA-34 No.4, March 2011.

2 c© 2011 Information Processing Society of Japan

Vol.2011-EVA-36 No.1
2011/12/2

