
IPSJ SIG Technical Report

Semi-Supervised Ligand Finding

Using Formal Concept Analysis

Mahito Sugiyama,†1,∗1 Kentaro Imajo,†1

Keisuke Otaki†1 and Akihiro Yamamoto†1

To date, enormous studies have been devoted to investigate biochemical func-
tions of receptors, which have crucial roles for signal processing in organisms,
and ligands are key tools in experiments since receptor specificity with respect
to them enables us to control activity of receptors. However, finding ligands is
difficult; choosing ligand candidates relies on expert knowledge of biologists and
conducting test experiments in vivo or in vitro costs high. Here we challenge
to ligand finding with a machine learning approach by formalizing the problem
as multi-label classification mainly discussed in the area of preference learning.
We develop in this paper a new algorithm LIFT (Ligand FInding via Formal
ConcepT Analysis) for multi-label classification, which can treat ligand data in
databases in the semi-supervised manner. The key to LIFT is to realize cluster-
ing by putting an original dataset on lattices using the data analysis technique
of Formal Concept Analysis (FCA), followed by obtaining the preference for
each label using the lattice structure. Experiments using real data of ligands
and receptors in the IUPHAR database show that LIFT effectively solves our
task compared to other machine learning algorithms.

1. Introduction

A receptor is a protein molecule located at the surface of a cell, which receives

chemical signals from outside of the cell. Since receptors have crucial roles for

signal processing in organisms, to date, enormous studies have been devoted

to investigate their biochemical functions. The key approach in an experiment

is to use receptor specificity with respect to a ligand, which triggers a cellular

response by binding to a receptor, for controlling the receptor actions. However,

finding new convenient ligands is difficult; choosing ligand candidates relies on

†1 Graduate School of Informatics, Kyoto University
∗1 Presently with Research Fellow of the Japan Society for the Promotion of Science

expert knowledge of biologists and conducting experiments to test whether or

not candidates work in vivo or in vitro costs high in terms of time and money.

Thus an in silico approach is required for helping biologists.

In this paper, we adopt a machine learning, or knowledge discovery and data

mining, approach to find candidates of ligands. Specifically, we formulate the

problem of ligand finding as multi-label classification recently discussed in the

field of preference learning5), where each training datum used for learning is

associated with not a single class label but a set of possible labels. Here, for each

ligand, receptors to which it binds correspond to class labels of the ligand, and

our goal is to predict labels (i.e., receptors) of ligands from databases of receptors

and ligands. A ligand can often bind to more than two receptors; this is why our

problem is not traditional single-label but multi-label classification. Moreover,

we try to predict labels in a semi-supervised manner15). Semi-supervised learning

is a special form of classification, where a learning algorithm uses both labeled

and unlabeled data in training. Commonly, only few labeled data are assumed to

be available since the labeling task costs high in a real situation. Semi-supervised

learning therefore fits to our goal since, in our problem, only few ligands for each

receptor have been discovered yet lots of ligands for other receptors are available.

Information about receptors and ligands is donated to various databases, such

as KEGG⋆1, and in this paper we use the IUPHAR database11)⋆2. In the

database, every ligand is characterized by seven features. Here, TPS, MW, and

XLogP take continuous (real-valued) values while the others, HBA, HBD, RB,

and NLR, take discrete values. Thus to design an effective classifier for the

IUPHAR database, we have to appropriately treat mixed-type data including

both discrete and continuous variables.

Our proposed algorithm, called LIFT (Ligand FInding via Formal ConcepT

Analysis), uses “label propagation”, or cluster-and-label, which is a typical ap-

proach in semi-supervised learning2),4). This means that it first makes clusters

without label information, followed by giving preferences of class labels for each

cluster. In LIFT, the clustering process is realized by Formal Concept Analysis

⋆1 http://www.genome.jp/kegg/
⋆2 http://www.iuphar-db.org/index.jsp

1 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-86 No.28
Vol.2011-BIO-27 No.28

2011/12/2

IPSJ SIG Technical Report

(FCA)3),6), which is a mathematical data analysis technique originally proposed

by Wille14). One of successful applications of FCA in data mining is for fre-

quent pattern and association rule mining proposed by Pasquier et al.9), where

closed patterns (itemsets) obtained by FCA is used as condensed “lossless” rep-

resentations of original patterns. Using FCA, informally, we can introduce a

lattice structure, called a concept lattice or a closed set lattice, which is a par-

tially ordered set of data clusters with respect to subset inclusion, into original

data. Many studies used FCA for machine learning and knowledge discovery, but

ligand finding presented in this paper is a novel application of FCA.

To date, no study treats machine learning for ligand finding in the (multi-class)

classification point of view. Recently, to the best of our knowledge, there exists

only one related study by Ballester and Mitchell1), which investigated a machine

learning approach to predict the affinity of ligands, the strength of docking.

Another approach was performed by King et al.7) for modeling structure-activity

relationships (SAR), which can be applied to ligand finding. However, their goal

is to understand the chemical model by describing relations using inductive logic

programming (ILP), thus their approach is different from ours.

This paper is organized as follows: Section 2 presents the LIFT algorithm.

Section 3 gives experimental results with methodologies and discussion. Finally

we summarize our results and discuss our future works in Section 4.

2. The LIFT Algorithm

We present the LIFT algorithm in this section.

2.1 Database Formalization

We treat a ligand database using the notion of a relational database. A set of

ligands is treated as a table, or relation, τ which is a pair (H,X) of a header H

and a body X. A header H is a finite set of feature names, where each h ∈ H is

referred to as the domain of h, denoted by Dom(h); a body X is a sequence of

tuples x1, x2, . . . , xn, where each tuple xi is defined as a total function from H

to Dom(H) = {Dom(h) | h ∈ H} such that xi(h) ∈ Dom(h) for all h ∈ H. We

denote the number of tuples, the table size, n by |τ |. When we treat the body X

as a set, we denote it by set(X), that is, set(X) = {x1, x2, . . . , xn}. This means

that we do not take the order and multiplicity into account in set(X).

In the IUPHAR database, the header H is always the set {HBA, HBD, RB,

TPS, MW, XLogP, NLR}, and
Dom(HBA) = Dom(HBD) = Dom(RB) = Dom(NLR) = IN,

Dom(TPS) = Dom(MW) = Dom(XLogP) = IR,

where IN and IR denote the set of natural numbers and real numbers, respectively.

Let J be a subset of the header H. For each tuple x, the projection of x on

J , denoted by x|J , is exactly the same as the restriction of x to J , which is the

function from J to Dom(H) such that x|J(h) = x(h) for all h ∈ J . For a table

τ = (H,X), the projection of τ is the table τ |J = (J,X|J), where X|J is defined

by X|J := x1|J , x2|J , . . . , xn|J .
2.2 Data Preprocessing for FCA

First LIFT performs data preprocessing to construct a (formal) context, a

binary matrix specifying a set of objects and their attributes, to apply FCA.

FCA is a mathematical data analysis technique3),6), which is applied to a triple

(G,M, I), called a (formal) context, where G and M are sets and I ⊆ G ×M

is a binary relation between G and M . The elements in G are called objects,

and those in M are called attributes. In this paper, we identify a tuple with an

object, hence the set of objects G is always set(X) = {x1, x2, . . . , xn}. From a

given table (dataset), LIFT independently constructs seven pairs of attributes

and binary relations (MHBA, IHBA), (MHBD, IHBD), . . ., (MNLR, INLR) for each

feature in the header H and combines them into a context (G,M, I).

First, we focus on preprocessing for discrete values of features HBA, HBD,

RB, and NLR. For each feature h ∈ H, the set of attributes Mh = {h.m | m ∈
x(h) such that x ∈ set(X)} and, for each x ∈ set(X), (x, h.m) ∈ Ih if and only if

x(h) = m. In this way, discrete values are translated into a context. The function

ContextD in Algorithm 1 performs this translation.

Second, we consider how to make a context from continuous values using dis-

cretization. The degree of resolution is denoted by a natural number k, called

discretization level, and we explain the method of discretization at fixed level k

in the following. First we use min-max normalization so that every value is in

the closed interval [0, 1]. Next we discretize values in [0, 1] and make a context

using the binary encoding of real numbers, which is the same approach as the

literature 12). At discretization level k, Mh = {h.1, h.2, . . . , h.2k}. For each tu-

2 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-86 No.28
Vol.2011-BIO-27 No.28

2011/12/2

IPSJ SIG Technical Report

Algorithm 1: Data preprocessing for making context

Input: Table τ = (H,X) and discretization level k
Output: Context (G,Mk, Ik)

function Context(τ , k)
1: G ← set(X)
2: for each feature h ∈ H
3: if Dom(h) = IN then (Mh, Ih) ← ContextD(X, h)
4: else if Dom(h) = IR then (Mh, Ih) ← ContextC(X, h, k)
5: end if
6: combine (MHBA, IHBA), (MHBD, IHBD), . . . , (MNLR, INLR) into (Mk, Ik)
7: return (G,Mk, Ik)

function ContextD(X,h)
1: M ← {h.m | m ∈ x(h) such that x ∈ set(X)}
2: I ← {(x, h.m) | x ∈ set(X) and x(h) = m}
3: return (M, I)

function ContextC(X, h, k)
1: M ← {1, 2, . . . , 2k}, I ← ∅
2: Normalize the set {x(h) | x ∈ set(X)}
3: for each x ∈ set(X)
4: if x(h) = 0 then I ← I ∪ {(x, h.1)}
5: else if x(h) ̸= 0 then
6: I ← I ∪ {(x, h.a)}, where (a− 1) · 2−k < x(h) ≤ a · 2−k

7: end if
8: end for
9: return (M, I)

ple x and feature h, if x(h) = 0, then (x, h.1) ∈ Ih. Otherwise if x(h) ̸= 0, then

(x, h.a) ∈ Ih if and only if (a− 1)/2k < x(h) ≤ a/2k. The function ContextC

in Algorithm 1 performs the above process to make a context from continuous

variables. In the following, for a given table τ , we write G(τ), Mk(τ), and Ik(τ)

for the set of objects, attributes, and binary relations at discretization level k

obtained by Algorithm 1, respectively.

2.3 Lattice Construction Using FCA

From a context obtained by the data preprocessing, LIFT generates closed sets

as clusters and constructs lattices of closed sets (concept lattices) by FCA. We

first summarize FCA. See literature 3), 6) for detail explanation.

Definition 1 A pair (A,B) with A ⊆ G and B ⊆ M is called a concept of a

context (G,M, I) if A′ = B and A = B′, where

A′ := {m ∈M | (g,m) ∈ I for all g ∈ A} and

B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B}.
The set A is called an extent and B an intent.

The set of concepts over (G,M, I), called the concept lattice, is written by

B(G,M, I). In the context of frequent pattern mining, a set of attributes corre-

sponds to an itemset and the lattice is called the closed itemset lattice9). For a

pair of concepts (A1, B1), (A2, B2) ∈ B(G,M, I), we write (A1, B1) ≤ (A2, B2)

if A1 ⊆ A2. Then (A1, B1) ≤ (A2, B2) holds if and only if A1 ⊆ A2 (and if

and only if B1 ⊇ B2). This relation ≤ becomes an order on B(G,M, I) in the

mathematical sense and ⟨B(G,M, I),≤⟩ becomes a complete lattice. For a table

τ , we denote the set of concepts B(G(τ),Mk(τ), Ik(τ)) by Bk(τ).

To obtain concept lattices, we use the algorithm developed by Makino and

Uno8), which is known to be one of the fastest such algorithms. Its time com-

plexity is theoretically bounded as O(∆3), where ∆ denotes the maximum de-

gree of the given bipartite graph, i.e., ∆ = max{#J | J ⊆ I, where g = h for

all (g,m), (h, l) ∈ J or m = l for all (g,m), (h, l) ∈ J} (#J is the number of

elements in J).

2.4 Classification and Ranking

Here we discuss classification on concept lattices using label information. Our

strategy is to design preference, a kind of weight, for each label of a given test

datum (unlabeled tuple) y based on concepts produced by FCA, and achieve

multi-label classification based on the preference.

First LIFT translates y into a context with just one object using Algorithm 1;

i.e., G(υ), Mk(υ), and Ik(υ), where υ = (H, y). We always assume that the

header H is exactly the same as that of a table τ = (H,X) of training data.

The key idea is, for each concept (A,B) ∈ Bk(τ) obtained from a table τ of

training data, to treat the set of attributes B as a classification rule. For an

unlabeled tuple y, we check whether or not the object y has the all attributes of

the concept (A,B), since this condition means that the object y has the same

properties of the objects A, meaning that y is classified to the same class of

objects in A. We call this property consistency.

Definition 2 (Consistency) For a context ({y},M, I) and a concept (A,B), the

object y is consistent with (A,B) if both conditions B ⊆ {m ∈ M | (y,m) ∈ I}

3 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-86 No.28
Vol.2011-BIO-27 No.28

2011/12/2

IPSJ SIG Technical Report

and B ̸= ∅ hold.

Here we give the formal definition of the preference of a label. We denote the

set of labels associated with a tuple x by Λ(x). Thereby, for a set of tuples

(objects) A, Λ(A) denotes the set
∪

x∈A Λ(x). Note that Λ(x) could be empty,

meaning that the object x is unlabeled; LIFT allows unlabeled data for training.

This is why LIFT is a semi-supervised learning algorithm.

Definition 3 (Preference at discretization level k) Given tables τ = (H,X) and

υ = (H, y) with |υ| = 1. For each discretization level k and each label λ ∈ L,
we define the preference of λ at discretization level k with respect to the tuple

y by ψk
y (λ|τ) :=

∑
{#Λ(A)−1 | y is consistent with (A,B) ∈ Bk(τ) such that

λ ∈ Λ(A)}, where we assume #Λ(A)−1 = 0 if #Λ(A) = 0 for simplicity.

Ideally, all discretization levels should be taken into account to obtain the

preference of labels. One of straightforward ways is to obtain the preference of

a label by summing up preferences for each discretization level. However, if we

define the preference by ψy(λ|τ) :=
∑

k≥1 ψ
k
y (λ|τ), this preference goes to infinity

in many cases. We therefore introduce the maximum level kmax of discretization.

Definition 4 (Preference) Given tables τ and υ, where |υ| = 1, and a natural

number kmax. For each label λ ∈ L, we define the preference of λ by

ψy(λ|τ) :=
kmax∑
k=1

ψk
y (λ|τ)

for a tuple y.

We abbreviate “|τ” of the expression ψy(λ|τ) if it is understood from context.

We give the LIFT algorithm in Algorithm 2.

Example 1 Let us consider a table τ = (H,X) with H = {HBD, RB, TPS,

MW}, where labels are associated with each tuple as shown in Table 1, and

a table υ = (H, y) with an unlabeled tuple y. Assume that kmax = 2. At

discretization level 1, we have ψ1
y(A) = 1.5, ψ1

y(B) = 0, and ψ1
y(C) = 0.5, since

y is consistent with two concepts (A1, B1) = ({x1, x3}, {MW.2}) and (A2, B2) =

({x1}, {HBD.0,TPS.2,MW.2}), where Λ(A1) = {A,C} and Λ(A2) = {A} (see

Figure 1). Remember that we always ignore the concept whose attribute is empty.

At discretization level 2, we have ψ2
y(A) = 1, ψ2

y(B) = 0, and ψ2
y(C) = 0, since y

is consistent with only one concept ({x1}, {HBD.0,TPS.4,MW.4}). Finally we

Algorithm 2: The LIFT algorithm

Input: Tables τ = (H,X) and υ = (H, y), and maximum level kmax

Output: Preference ψy for each label λ ∈ L

function LIFT(τ , υ, kmax)
1: k ← 1 // k is discretization level
2: for each label λ ∈ L
3: ψy(λ|τ) ← 0 // initialization
4: end for
5: return Learning(τ, υ, k, kmax)

function Learning(τ, υ, k, kmax)
1: (G(τ),Mk(τ), Ik(τ)) ← Context(τ, k) // make a context from τ
2: (G(υ),Mk(υ), Ik(υ)) ← Context(υ, k) // make a context from υ
3: make a concept lattice Bk(τ) from (G(τ),Mk(τ), Ik(τ)) by FCA
4: for each label λ ∈ L
5: compute the preference ψk

y (λ|X) at discretization level k

6: ψy(λ|X) ← ψy(λ|X) + ψk
y (λ|X)

7: end for
8: if k = kmax then
9: return (ψy(λ|τ))λ∈L

10: else
11: return Learning(τ, υ, k + 1, kmax)
12: end if

have ψy(A) = 2.5, ψy(B) = 0, and ψy(C) = 0.5 for each label.

From the preference obtained by LIFT, multi-label classification can be re-

alized, that is, an unlabeled tuple y is associated with a set of labels L ⊆ L
such that L = {λ ∈ L | ψy(λ) ̸= 0}. Furthermore, a partial order ⪯ of labels

can be derived from preferences, where λi ⪯ λj (λj is preferable than λi) if

ψy(λi) ≤ ψy(λj). Thus we can also realize the label ranking problem.

The time complexity of LIFT is O(nd)+O(∆3)+O(N), where n is the number

of tuples, d is the number of features, and N is the maximum number of con-

cepts in concept lattices constructed in the learning process of LIFT, since data

preprocessing takes O(nd), making a concept lattice takes O(∆3), and obtaining

the preference takes less than O(N).

Example 2 For training and test data given in Example 1, labels A and C are

associated with y since both ψy(A) and ψy(C) are larger then 0. Moreover, we

have the order B ≤ C ≤ A of label ranking for the tuple y.

4 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-86 No.28
Vol.2011-BIO-27 No.28

2011/12/2

IPSJ SIG Technical Report

Table 1 A table τ for training with labels and a table υ as a test datum, shown at the bottom
of τ , in Example 1 and contexts at discretization levels 1 and 2, where HBD, TPS,
and MW are abbreviated as H, T, and M, respectively.

HBD TPS MW Labels

0 0.98 0.88 A
1 0.41 0.48 B C
2 0.12 0.71 A C

0 0.77 0.79

H.0 H.1 H.2 T.1 T.2 M.1 M.2

x1 × × ×
x2 × × ×
x3 × × ×

y × × ×

H.0 H.1 H.2 T.1 T.2 T.3 T.4 M.1 M.2 M.3 M.4

x1 × × ×
x2 × × ×
x3 × × ×

y × × ×

3. Experiments

3.1 Materials and Methods

Environment. LIFT was implemented in R and all experiments were per-

formed in R version 2.12.210). LIFT uses LCM distributed by Uno13) to construct

a concept lattice Bk(τ), which was implemented in C. In all experiments, we used

Mac OS X version 10.6.5 with two 2.26-GHz Quad-Core Intel Xeon CPUs and

12 GB of memory.

Databases. We collected the entire 1,782 ligand data in the IUPHAR

database11)⋆1. Receptors, which corresponds to class labels, are classified into

families, hence we picked up the eleven largest families from the database and

used respective families as datasets for each training. In semi-supervised learning

of LIFT, entire ligands were used as unlabeled training data.

Evaluation. To measure the effectiveness of unlabeled ligand data, we used

LIFT in two cases: only labeled data were used in training in the first case

(denoted by LIFT (w/o) in Figure 2), and all ligands except test data were

used as unlabeled training data in the second case. The maximum level kmax

⋆1 http://www.iuphar-db.org/index.jsp

x1, x2, x3
∅

M.2 T.1

H.0, T.2, M.2 H.2, T.1, M.2 H.1, T.1, M.1

H.0, H.1, H.2, T.1, T.2, M.1, M.2

x3 x2x1

x1, x3 x2, x3

∅

x1, x2, x3
∅

H.0, T.4, M.4 H.2, T.1, M.3

∅

x1 x3

H.0,H.1,H.2,T.1,T.2,T.3,
T.4,M.1,M.2,M.3,M.4

H.1, T.2, M.2

x2

Fig. 1 Concept lattices constructed from contexts B1(τ) (left) and B2(τ) (right) in Table 1.
The tuple y is consistent with concepts denoted by black dots.

was set at 5 throughout all experiments. As a control method for evaluation of

LIFT, we adopted SVM with the RBF kernel and the decision tree-based method

implemented in R. Mean and s.e.m. (standard error of the mean) of accuracy

was obtained for each dataset (receptor family) by 10-fold crossvalidation.

3.2 Results and Discussion

Results are shown in Figure 2. These results clearly show that LIFT is more

effective than the typical classification algorithms of SVM and the tree algorithm

for ligand finding. Furthermore, unlabeled training data can be used effectively in

LIFT in the semi-supervised manner. Our results therefore indicate that LIFT

should be valuable for finding new ligands and contribute to biology and bio-

chemistry.

By using LIFT, we can find new ligand candidates from any training data,

hence LIFT can be used as a tool for actual biological experiments to narrow

down new ligand candidates. Checking such candidates obtained by LIFT in

biological experiments is a future work.

4. Conclusion

In this paper, we have proposed the semi-supervised learning algorithm, called

LIFT, for ligand finding from databases. LIFT realizes preference learning, that

is, multi-label classification and ranking, in the semi-supervised manner. First,

5 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-86 No.28
Vol.2011-BIO-27 No.28

2011/12/2

IPSJ SIG Technical Report

LIFT (w/o)
LIFT
Tree
SVM

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

5-Hydroxytrypta-
mine receptors

Acetylcholine
receptors

Adenosine
receptors

Adrenoceptors

Dopamine
receptors

Histamine
receptors

Neuropeptide Y
receptors

Metabotropic
glutamate receptors

Transient Receptor
Potential Channels

Voltage-Gated
Potassium Channels

Ionotropic glutamate
receptors

Ac
cu

ra
cy

Ac
cu

ra
cy

Fig. 2 Accuracy for each receptor family obtained by LIFT without unlabeled training data
(LIFT (w/o)), LIFT, the tree algorithm, and SVM with the RBF kernel. Data show
mean ± s.e.m.

every dataset is translated into a (formal) context, followed by clustering of it by

FCA by putting on a concept lattice, where each continuous (real-valued) value

is discretized based on the binary encoding scheme. Then, on the lattice, the

preferences of class labels for unlabeled test data are obtained by taking labels

of training data into account.

Acknowledgment

This work is inspired by insightful ideas of Professor Shigeo Kobayashi. This

work was partly supported by Grant-in-Aid for Scientific Research (A) 22240010

and for JSPS Fellows 22·5714.

References

1) Ballester, P.J. and Mitchell, J. B.O.: A machine learning approach to predicting
protein–ligand binding affinity with applications to molecular docking, Bioinfor-
matics, Vol.26, No.9, pp.1169–1175 (2010).

2) Dara, R., Kremer, S.C. and Stacey, D.A.: Clustering unlabeled data with SOMs
improves classification of labeled real-world data, Proceedings of the 2002 Interna-
tional Joint Conference on Neural Networks, Vol.3, pp.2237–2242 (2002).

3) Davey, B.A. and Priestley, H.A.: Introduction to lattices and order, Cambridge
University Press, 2 edition (2002).

4) Demiriz, A., Bennett, K.P. and Embrechts, M.J.: Semi-supervised clustering using
genetic algorithms, Proceedings of Artificial Neural Networks in Engineering, pp.
809–814 (1999).

5) Fürnkranz, J. and Hüllermeier, E.(eds.): Preference learning, Springer (2010).
6) Ganter, B. and Wille, R.: Formal Concept Analysis: Mathematical Foundations,
Springer (1998).

7) King, R.D., Muggleton, S.H., Srinivasan, A. and Sternberg, M. J.E.: Structure-
activity relationships derived by machine learning: The use of atoms and their bond
connectivities to predict mutagenicity by inductive logic programming, Proceedings
of the National Academy of Sciences, Vol.93, No.1, pp.438–442 (1996).

8) Makino, K. and Uno, T.: New algorithms for enumerating all maximal cliques,
SWAT 2004, Lecture Notes in Computer Science, Vol.3111, Springer, pp.260–272
(2004).

9) Pasquier, N., Bastide, Y., Taouil, R. and Lakhal, L.: Efficient mining of association
rules using closed itemset lattices, Information Systems, Vol.24, No.1, pp.25–46
(1999).

10) R Development Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing (2011).

11) Sharman, J.L., Mpamhanga, C.P., Spedding, M., Germain, P., Staels, B., Dacquet,
C., Laudet, V., Harmar, A.J. and NC-IUPHAR: IUPHAR-DB: New receptors and
tools for easy searching and visualization of pharmacological data, Nucleic Acids
Research, Vol.39, pp.D534–D538 (2011). Database Issue.

12) Sugiyama, M. and Yamamoto, A.: Semi-Supervised Learning for Mixed-Type Data
via Formal Concept Analysis, Conceptual Structures for Discovering Knowledge
(Andrews, S., Polovina, S., Hill, R. and Akhgar, B., eds.), Lecture Notes in Com-
puter Science, Vol.6828, pp.284–297 (2011).

13) Uno, T., Kiyomi, M. and Arimura, H.: LCM ver. 3: Collaboration of array, bitmap
and prefix tree for frequent itemset mining, Proceedings of the 1st International
Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations,
ACM, pp.77–86 (2005).

14) Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-
cepts, Ordered Sets, D. Reidel Publishing Company, pp.445–470 (1982). This article
is included in Formal Concept Analysis, LNCS 5548, 314–339, Springer (2009).

15) Zhu, X. and Goldberg, A.B.: Introduction to semi-supervised learning, Morgan and
Claypool Publishers (2009).

6 c⃝ 2011 Information Processing Society of Japan

Vol.2011-MPS-86 No.28
Vol.2011-BIO-27 No.28

2011/12/2

