均衡型 $\left(C_{5}, C_{6}\right)$－Foil デザインと関連デザイン

潮 和 彦

グラフ理論において，グラフの分解問題は主要な研究テーマである。 C_{5} を 5 点を通 るサイクル，C_{6} を 6 点を通るサイクルとする。 1 点を共有する辺素な t 個の C_{5} と t 個の C_{6} からなるグラフを $\left(C_{5}, C_{6}\right)-2 t$－foil という。本研究では，完全グラフ K_{n} を均衡的に $\left(C_{5}, C_{6}\right)$－ $2 t$－foil 部分グラフに分解する均衡型 $\left(C_{5}, C_{6}\right)$－foil デザインに ついて述べる。さらに，均衡型 C_{11}－foil デザイン，均衡型（ C_{10}, C_{12} ）－foil デザイン，均衡型 C_{22}－foil デザイン，均衡型 C_{33}－foil デザイン，均衡型 C_{44}－foil デザイン，均衡型 C_{55}－foil デザイン，均衡型 C_{66}－foil デザイン，均衡型 C_{77}－foil デザイン，均衡型 C_{88}－foil デザイン，均衡型 C_{99}－foil デザイン，均衡型 C_{110}－foil デザイン，につい で述べる。

Balanced $\left(C_{5}, C_{6}\right)$－Foil Designs and Related Designs

Kazuhiko Ushio

In graph theory，the decomposition problem of graphs is a very important topic． Various type of decompositions of many graphs can be seen in the literature of graph theory．This paper gives balanced（ C_{5}, C_{6} ）－foil designs，balanced C_{11}－foil designs，balanced（ C_{10}, C_{12} ）－foil designs，balanced C_{22}－foil designs，balanced C_{33}－foil designs，balanced C_{44}－foil designs，balanced C_{55}－foil designs，balanced C_{66}－foil designs，balanced C_{77}－foil designs，balanced C_{88}－foil designs，balanced C_{99}－foil designs，balanced C_{110}－foil designs．

1．Balanced $\left(C_{5}, C_{6}\right)$－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{5} and C_{6} be the 5 －cycle and

[^0]the 6 －cycle，respectively．The $\left(C_{5}, C_{6}\right)$－ $2 t$－foil is a graph of t edge－disjoint C_{5}＇s and t edge－disjoint C_{6}＇s with a common vertex and the common vertex is called the center of the（ C_{5}, C_{6} ）－2t－foil．When K_{n} is decomposed into edge－disjoint sum of $\left(C_{5}, C_{6}\right)$－ $2 t$－foils and every vertex of K_{n} appears in the same number of（ C_{5}, C_{6} ）－2t－foils，we say that K_{n} has a balanced（ C_{5}, C_{6} ）－2t－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced（ C_{5}, C_{6} ）－2t－foil design．

Theorem 1．K_{n} has a balanced $\left(C_{5}, C_{6}\right)$－2t－foil design if and only if $n \equiv 1(\bmod 22 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced（ C_{5}, C_{6} ）－2t－foil decomposi－ tion．Let b be the number of $\left(C_{5}, C_{6}\right)$－2t－foils and r be the replication number．Then $b=n(n-1) / 22 t$ and $r=(9 t+1)(n-1) / 22 t$ ．Among $r\left(C_{5}, C_{6}\right)$－ $2 t$－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $\left(C_{5}, C_{6}\right)$－2t－foils in which v is the center and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 22 t$ and $r_{2}=9(n-1) / 22$ ． Therefore，$n \equiv 1(\bmod 22 t)$ is necessary．
（Sufficiency）Put $n=22 s t+1$ and $T=s t$ ．Then $n=22 T+1$ ．Construct a $\left(C_{5}, C_{6}\right)$－ $2 T$－foil as follows：
$\{(22 T+1, T, 15 T, 21 T+1,9 T+1),(22 T+1, T+1,4 T+2,12 T+2,6 T+2,2 T+1)\} \cup$
$\{(22 T+1, T-1,15 T-2,21 T, 9 T+2),(22 T+1, T+2,4 T+4,12 T+3,6 T+4,2 T+2)\} \cup$
$\{(22 T+1, T-2,15 T-4,21 T-1,9 T+3),(22 T+1, T+3,4 T+6,12 T+4,6 T+6,2 T+3)\} \cup$ ．．．\cup
$\{(22 T+1,3,13 T+6,20 T+4,10 T-2),(22 T+1,2 T-2,6 T-4,13 T-1,8 T-4,3 T-2)\} \cup$ $\{(22 T+1,2,13 T+4,20 T+3,10 T-1),(22 T+1,2 T-1,6 T-2,13 T, 8 T-2,3 T-1)\} \cup$ $\{(22 T+1,1,13 T+2,20 T+2,10 T),(22 T+1,2 T, 6 T, 13 T+1,8 T, 3 T)\}$ ．
（ $11 T$ edges， $11 T$ all lengths）
Decompose the（ C_{5}, C_{6} ）－2T－foil into $s\left(C_{5}, C_{6}\right)$－ $2 t$－foils．Then these starters comprise a balanced（ C_{5}, C_{6} ）－2t－foil decomposition of K_{n} ．

Example 1．1．Balanced（ C_{5}, C_{6} ）－2－foil design of K_{23} ．
$\{(23,1,15,22,10),(23,2,6,14,8,3)\}$ ．

情報処理学会研究報告
IPSJ SIG Technical Report

（11 edges， 11 all lengths）

This starter comprises a balanced（ C_{5}, C_{6} ）－2－foil decomposition of K_{23}

Example 1．2．Balanced（ C_{5}, C_{6} ）－4－foil design of K_{45} ．

$\{(45,2,30,43,19),(45,3,10,26,14,5)\} \cup$
$\{(45,1,28,42,20),(45,4,12,27,16,6)\}$ ．
（22 edges， 22 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{66}\right)$－4－foil decomposition of K_{45} ．

Example 1．3．Balanced（ C_{5}, C_{6} ）－6－foil design of K_{67} ．

$\{(67,3,45,64,28),(67,4,14,38,20,7)\} \cup$
$\{(67,2,43,63,29),(67,5,16,39,22,8)\} \cup$
$\{(67,1,41,62,30),(67,6,18,40,24,9)\}$ ．
（33 edges， 33 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{6}\right)$－6－foil decomposition of K_{67} ．

Example 1．4．Balanced（ C_{5}, C_{6} ）－8－foil design of K_{89} ．
$\{(89,4,60,85,37),(89,5,18,50,26,9)\} \cup$
$\{(89,3,58,84,38),(89,6,20,51,28,10)\} \cup$
$\{(89,2,56,83,39),(89,7,22,52,30,11)\} \cup$
$\{(89,1,54,82,40),(89,8,14,53,32,12)\}$ ．
（44 edges， 44 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{6}\right)$－8－foil decomposition of K_{89} ．

Example 1．5．Balanced（ C_{5}, C_{6} ）－10－foil design of K_{111} ．
$\{(111,5,75,106,46),(111,6,22,62,32,11)\} \cup$
$\{(111,4,73,105,47),(111,7,24,63,34,12)\} \cup$
$\{(111,3,71,104,48),(111,8,26,64,36,13)\} \cup$
$\{(111,2,69,103,49),(111,9,28,65,38,14)\} \cup$
$\{(111,1,67,102,50),(111,10,30,66,40,15)\}$ ．
（55 edges， 55 all lengths）

This starter comprises a balanced $\left(C_{5}, C_{6}\right)$－10－foil decomposition of K_{111} ．

```
Example 1.6. Balanced ( \(C_{5}, C_{6}\) )-12-foil design of \(K_{133}\).
\(\{(133,6,90,127,55),(133,7,26,74,38,13)\} \cup\)
\(\{(133,5,88,126,56),(133,8,28,75,40,14)\} \cup\)
\(\{(133,4,86,125,57),(133,9,30,76,42,15)\} \cup\)
\(\{(133,3,84,124,58),(133,10,32,77,44,16)\} \cup\)
\(\{(133,2,82,123,59),(133,11,34,78,46,17)\} \cup\)
\(\{(133,1,80,122,60),(133,12,36,79,48,18)\}\).
(66 edges, 66 all lengths)
This starter comprises a balanced \(\left(C_{5}, C_{6}\right)\)－12－foil decomposition of \(K_{133}\) ．
```

Example 1．7．Balanced（ C_{5}, C_{6} ）－14－foil design of K_{155} ．
$\{(155,7,105,148,64),(155,8,30,86,44,15)\} \cup$
$\{(155,6,103,147,65),(155,9,32,87,46,16)\} \cup$
$\{(155,5,101,146,66),(155,10,34,88,48,17)\} \cup$
$\{(155,4,99,145,67),(155,11,36,89,50,18)\} \cup$
$\{(155,3,97,144,68),(155,12,38,90,52,19)\} \cup$
$\{(155,2,95,143,69),(155,13,40,91,54,20)\} \cup$
$\{(155,1,93,142,70),(155,14,42,92,56,21)\}$ ．
（77 edges， 77 all lengths）
This starter comprises a balanced $\left(C_{5}, C_{6}\right)$－14－foil decomposition of K_{155} ．

2．Balanced C_{11}－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{11} be the 11－cycle．The $C_{11-t-f o i l ~}^{\text {d }}$ is a graph of t edge－disjoint C_{11}＇s with a common vertex and the common vertex is called the center of the $C_{11}-t$－foil．When K_{n} is decomposed into edge－disjoint sum of $C_{11}-t$－foils and every vertex of K_{n} appears in the same number of $C_{11}-t$－foils，it is called that K_{n} has a balanced $C_{11}-t$－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced $C_{11}-t$－foil design．

Theorem 2．K_{n} has a balanced $C_{11}-t$－foil design if and only if $n \equiv 1(\bmod 22 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced $C_{11}-t$－foil decomposition．Let b be the number of $C_{11}-t$－foils and r be the replication number．Then $b=n(n-1) / 22 t$ and $r=(10 t+1)(n-1) / 22 t$ ．Among $r C_{11}-t$－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $C_{11}-t$－foils in which v is the center and v is not the center，respectively． Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 22 t$ and $r_{2}=10(n-1) / 22$ ．Therefore，$n \equiv 1(\bmod$ $22 t$ ）is necessary．
（Sufficiency）Put $n=22 s t+1, T=s t$ ．Then $n=22 T+1$ ．Construct a $C_{11}-T$－foil as follows：
$\{(22 T+1, T, 15 T, 21 T+1,9 T+1,10 T+2, T+1,4 T+2,12 T+2,6 T+2,2 T+1)$ ， $(22 T+1, T-1,15 T-2,21 T, 9 T+2,10 T+4, T+2,4 T+4,12 T+3,6 T+4,2 T+2)$, $(22 T+1, T-2,15 T-4,21 T-1,9 T+3,10 T+6, T+3,4 T+6,12 T+4,6 T+6,2 T+3)$, ．．．，
$(22 T+1,3,13 T+6,20 T+4,10 T-2,12 T-4,2 T-2,6 T-4,13 T-1,8 T-4,3 T-2)$, $(22 T+1,2,13 T+4,20 T+3,10 T-1,12 T-2,2 T-1,6 T-2,13 T, 8 T-2,3 T-1)$,
$(22 T+1,1,13 T+2,20 T+2,10 T, 12 T, 2 T, 6 T, 13 T+1,8 T, 3 T)\}$ ．
（11T edges， $11 T$ all lengths）
Decompose this $C_{11}-T$－foil into $s C_{11}-t$－foils．Then these starters comprise a balanced $C_{11}-t$－foil decomposition of K_{n} ．

Example 2．1．Balanced C_{11} design of K_{23} ．

$\{(23,1,15,22,10,12,2,6,14,8,3)\}$ ．
（11 edges， 11 all lengths）
This stater comprises a balanced C_{11}－decomposition of K_{23} ．

Example 2．2．Balanced C_{11}－2－foil design of K_{45} ．

$\{(45,2,30,43,19,22,3,10,26,14,5)$ ，
$(45,1,28,42,20,24,4,12,27,16,6)\}$ ．
（22 edges， 22 all lengths）
This stater comprises a balanced $C_{11}-2$－foil decomposition of K_{45} ．

Example 2．3．Balanced C_{11}－3－foil design of K_{67} ．
$\{(67,3,45,64,28,32,4,14,38,20,7)$ ，
$(67,2,43,63,29,34,5,16,39,22,8)$ ，
$(67,1,41,62,30,36,6,18,40,24,9)\}$ ．
（33 edges， 33 all lengths）
This stater comprises a balanced $C_{11}-3$－foil decomposition of K_{67} ．

Example 2．4．Balanced $C_{11}-4$－foil design of K_{89} ．
$\{(89,4,60,85,37,42,5,18,50,26,9)$ ，
$(89,3,58,84,38,44,6,20,51,28,10)$ ，
$(89,2,56,83,39,46,7,22,52,30,11)$ ，
$(89,1,54,82,40,48,8,24,53,32,12)\}$ ．
（44 edges， 44 all lengths）
This stater comprises a balanced $C_{11}-4$－foil decomposition of K_{89} ．

Example 2．5．Balanced C_{11}－5－foil design of K_{111} ．
$\{(111,5,75,106,46,52,6,22,62,32,11)$ ，
（111，4，73，105，47，54，7，24，63，34，12），
$(111,3,71,104,48,56,8,26,64,36,13)$ ，
$(111,2,69,103,49,58,9,28,65,38,14)$ ，
（111，1，67，102，50，60，10，30，66，40，15）\}.
（55 edges， 55 all lengths）
This stater comprises a balanced $C_{11}-5$－foil decomposition of K_{111} ．

Example 2．6．Balanced $C_{11}-6$－foil design of K_{133} ．

$\{(133,6,90,127,55,62,7,26,74,38,13)$ ，
$(133,5,88,126,56,64,8,28,75,40,14)$ ，
$(133,4,86,125,57,66,9,30,76,42,15)$ ，

情報処理学会研究報告

IPSJ SIG Technical Report
（133，3，84，124，58，68，10，32，77，44，16），
（133，2，82，123，59，70，11，34，78，46，17），
$(133,1,80,122,60,72,12,36,79,48,18)\}$ ．
（66 edges， 66 all lengths）
This stater comprises a balanced $C_{11}-6$－foil decomposition of K_{133} ．

3．Balanced $\left(C_{10}, C_{12}\right)$－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{10} and C_{12} be the 10 －cycle and the 12 －cycle，respectively．The（ C_{10}, C_{12} ）－2t－foil is a graph of t edge－disjoint C_{10}＇s and t edge－disjoint C_{12}＇s with a common vertex and the common vertex is called the center of the $\left(C_{10}, C_{12}\right)$－2t－foil．When K_{n} is decomposed into edge－disjoint sum of（ C_{10}, C_{12} ）－2t－ foils and every vertex of K_{n} appears in the same number of（ C_{10}, C_{12} ）－2t－foils，we say that K_{n} has a balanced $\left(C_{10}, C_{12}\right)$－2t－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced（ C_{10}, C_{12} ）－2t－foil design．

Theorem 3．K_{n} has a balanced $\left(C_{10}, C_{12}\right)$－ $2 t$－foil design if and only if $n \equiv 1(\bmod$ $44 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced（ C_{10}, C_{12} ）－2t－foil decomposi－ tion．Let b be the number of $\left(C_{10}, C_{12}\right)$－2t－foils and r be the replication number．Then $b=n(n-1) / 44 t$ and $r=(20 t+1)(n-1) / 44 t$ ．Among $r\left(C_{10}, C_{12}\right)$－2t－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of（ C_{10}, C_{12} ）－2t－foils in which v is the center and v is not the center，respectively．Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 4 t r_{1}+2 r_{2}=n-1$ ．From these relations，$r_{1}=(n-1) / 44 t$ and $r_{2}=20(n-1) / 44$ ．Therefore，$n \equiv 1(\bmod 44 t)$ is necessary．
（Sufficiency）Put $n=44 s t+1$ and $T=s t$ ．Then $n=44 T+1$ ．Construct a（ C_{10}, C_{12} ）－ $2 T$－foil as follows：
$\{(44 T+1,2 T, 30 T, 42 T+1,18 T+1,36 T+3,18 T+2,42 T, 30 T-2,2 T-1)$,
$(44 T+1,2 T+1,8 T+2,24 T+2,12 T+2,4 T+1,8 T+3,4 T+2,12 T+4,24 T+3,8 T+$

```
4,2T+2)}\cup
{(44T+1,2T-2,30T-4,42T-1,18T+3,36T+7,18T+4,42T-2,30T-6,2T-3),
(44T+1,2T+3,8T+6,24T+4,12T+6,4T+3,8T+7,4T+4,12T+8,24T+5,8T+
8,2T+4)}\cup
{(44T+1,2T-4,30T-8,42T-3,18T+5,36T+11,18T+6,42T-4,30T-10,2T-5),
(44T+1,2T+5,8T+10,24T+6,12T+10,4T+5,8T+11,4T+6,12T+12,24T+
7, 8T+12,2T+6)}
... U
{(44T + 1, 2, 26T + 4,40T + 3,20T - 1, 40T - 1, 20T, 40T + 2, 26T + 2, 1),
(44T+1,4T-1,12T-2, 26T,16T-2,6T-1,12T-1,6T,16T,26T+1,12T, 4T)}.
(22T edges, 22T all lengths)
Decompose the ( }\mp@subsup{C}{10}{},\mp@subsup{C}{12}{})\mathrm{ -2T-foil into s ( }\mp@subsup{C}{10}{},\mp@subsup{C}{12}{})\mathrm{ -2t-foils. Then these starters com-
prise a balanced ( }\mp@subsup{C}{10}{},\mp@subsup{C}{12}{})\mathrm{ -2t-foil decomposition of }\mp@subsup{K}{n}{}\mathrm{ .
```

Example 3.1. Balanced (C_{10}, C_{12})-2-foil design of K_{45}.
$\{(45,2,30,43,19,39,20,42,28,1)$,
$(45,3,10,26,14,5,11,6,16,27,12,4)\}$.
(22 edges, 22 all lengths)
This starter comprises a balanced $\left(C_{10}, C_{12}\right)$-2-foil decomposition of K_{45}.

Example 3．2．Balanced $\left(C_{10}, C_{12}\right)$－4－foil design of K_{89} ．

$\{(89,4,60,85,37,75,38,84,58,3)$ ，
$(89,2,56,83,39,79,40,82,54,1)\}$
\cup
$\{(89,5,18,50,26,9,19,10,28,51,20,6)$ ，
$(89,7,22,52,30,11,23,12,32,53,24,8)\}$ ．
（44 edges， 44 all lengths）
This starter comprises a balanced $\left(C_{10}, C_{12}\right)$－4－foil decomposition of K_{89} ．

Example 3．3．Balanced $\left(C_{10}, C_{12}\right)$－6－foil design of K_{133} ．
$\{(133,6,90,127,55,111,56,126,88,5)$ ，

情報処理学会研究報告
IPSJ SIG Technical Report
（133，4，86，125，57，115，58，124，84，3），
$(133,2,82,123,59,119,60,122,80,1)\}$
\cup
$\{(133,7,26,74,38,13,27,14,40,75,28,8)$ ，
$(133,9,30,76,42,15,31,16,44,77,32,10)$ ，
$(133,11,34,78,46,17,35,18,48,79,36,12)\}$ ．
（66 edges， 66 all lengths）
This starter comprises a balanced $\left(C_{10}, C_{12}\right)$－6－foil decomposition of K_{133} ．

Example 3．4．Balanced（ C_{10}, C_{12} ）－8－foil design of K_{177} ．
$\{(177,8,120,169,73,147,74,168,118,7)$ ，
$(177,6,116,167,75,151,76,166,114,5)$ ，
（177，4，112，165，77，155，78，164，110，3），
$(177,2,108,163,79,159,80,162,106,1)\}$
\cup
$\{(177,9,34,98,50,17,35,18,52,99,36,10)$ ，
（ $177,11,38,100,54,19,39,20,56,101,40,12$ ），
（177，13，42，102，58，21，43，22，60，103，44，14），
$(177,15,46,104,62,23,47,24,64,105,48,16)\}$ ．
（88 edges， 88 all lengths）
This starter comprises a balanced $\left(C_{10}, C_{12}\right)$－8－foil decomposition of K_{177} ．

Example 3．5．Balanced（ C_{10}, C_{12} ）－10－foil design of K_{221} ．
$\{(221,10,150,211,91,183,92,210,148,9)$ ，
（221，8，146，209，93，187，94，208，144，7），
（221，6，142，207，95，191，96，206，140，5），
（221，4，138，205，97，195，98，204，136，3），
$(221,2,134,203,99,199,100,202,132,1)\}$
\cup
$\{(221,11,42,122,62,21,43,22,64,123,44,12)$ ，
$(221,13,46,124,66,23,47,24,68,125,48,14)$ ，
$(221,15,50,126,70,25,51,26,72,127,52,16)$ ，
（221，17，54，128，74，27，55，28，76，129，56，18），
$(221,19,58,130,78,29,59,30,80,131,60,20)\}$ ．
（110 edges， 110 all lengths）
This starter comprises a balanced $\left(C_{10}, C_{12}\right)$－10－foil decomposition of K_{221} ．

4．Balanced C_{22}－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let C_{22} be the 22 －cycle．The $C_{22-t-f o i l ~}^{\text {－}}$ is a graph of t edge－disjoint C_{22}＇s with a common vertex and the common vertex is called the center of the $C_{22}-t$－foil．When K_{n} is decomposed into edge－disjoint sum of $C_{22}-t$－foils and every vertex of K_{n} appears in the same number of $C_{22}-t$－foils，it is called that K_{n} has a balanced $C_{22}-t$－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced $C_{22}-t$－foil design．

Theorem 4．K_{n} has a balanced $C_{22}-t$－foil design if and only if $n \equiv 1(\bmod 44 t)$ ．

Proof．（Necessity）Suppose that K_{n} has a balanced $C_{22}-t$－foil decomposition．Let b be the number of $C_{22}-t$－foils and r be the replication number．Then $b=n(n-1) / 44 t$ and $r=(21 t+1)(n-1) / 44 t$ ．Among $r C_{22}$－t－foils having a vertex v of K_{n} ，let r_{1} and r_{2} be the numbers of $C_{42}-t$－foils in which v is the center and v is not the center，respectively． Then $r_{1}+r_{2}=r$ ．Counting the number of vertices adjacent to $v, 2 t r_{1}+2 r_{2}=n-1$ ． From these relations，$r_{1}=(n-1) / 44 t$ and $r_{2}=21(n-1) / 44$ ．Therefore，$n \equiv 1(\bmod$ $44 t$ ）is necessary．
（Sufficiency）Put $n=44 s t+1, T=s t$ ．Then $n=44 T+1$ ．Construct a $C_{22}-T$－foil as follows：
$\{(44 T+1,2 T, 30 T, 42 T+1,18 T+1,20 T+2,2 T+1,8 T+2,24 T+2,12 T+2,4 T+$
$1,8 T+3,4 T+2,12 T+4,24 T+3,8 T+4,2 T+2,20 T+4,18 T+2,42 T, 30 T-2,2 T-1)$,
$(44 T+1,2 T-2,30 T-4,42 T-1,18 T+3,20 T+6,2 T+3,8 T+6,24 T+4,12 T+6,4 T+$
$3,8 T+7,4 T+4,12 T+8,24 T+5,8 T+8,2 T+4,20 T+8,18 T+4,42 T-2,30 T-6,2 T-3)$ ，
$(44 T+1,2 T-4,30 T-8,42 T-3,18 T+5,20 T+10,2 T+5,8 T+10,24 T+6,12 T+$

情報処理学会研究報告
IPSJ SIG Technical Report
$10,4 T+5,8 T+11,4 T+6,12 T+12,24 T+7,8 T+12,2 T+6,20 T+12,18 T+6,42 T-$ $4,30 T-10,2 T-5)$ ，
．．．，
$(44 T+1,2,26 T+4,40 T+3,20 T-1,24 T-2,4 T-1,12 T-2,26 T, 16 T-2,6 T-1,12 T-$ $1,6 T, 16 T, 26 T+1,12 T, 4 T, 24 T, 20 T, 40 T+2,26 T+2,1)\}$ ．
（ $22 T$ edges， $22 T$ all lengths）
Decompose this $C_{22}-T$－foil into $s C_{22}-t$－foils．Then these starters comprise a balanced C_{22}－t－foil decomposition of K_{n} ．

Example 4．1．Balanced C_{22} design of K_{45} ．

$\{(45,2,30,43,19,22,3,10,26,14,5,11,6,16,27,12,4,24,20,42,28,1)\}$ ．
（22 edges， 22 all lengths）
This starter comprises a balanced C_{22}－decomposition of K_{45} ．

Example 4．2．Balanced C_{22}－2－foil design of K_{89} ．

$\{(89,4,60,85,37,42,5,18,50,26,9,19,10,28,51,20,6,44,38,84,58,3)$ ，
$(89,2,56,83,39,46,7,22,52,30,11,23,12,32,53,24,8,48,40,82,54,1)\}$ ．
（44 edges， 44 all lengths）
This starter comprises a balanced C_{22}－2－foil decomposition of K_{89} ．

Example 4．3．Balanced C_{22}－3－foil design of K_{133} ．

$\{(133,6,90,127,55,62,7,26,74,38,13,27,14,40,75,28,8,64,56,126,88,5)$ ， $(133,4,86,125,57,66,9,30,76,42,15,31,16,44,77,32,10,68,58,124,84,3)$ ， $(133,2,82,123,59,70,11,34,78,46,17,35,18,48,79,36,12,72,60,122,80,1)\}$ ． （66 edges， 66 all lengths）
This starter comprises a balanced $C_{22}-3$－foil decomposition of K_{133} ．

Example 4．4．Balanced C_{22}－4－foil design of K_{177} ．

$\{(177,8,120,169,73,82,9,34,98,50,17,35,18,52,99,36,10,84,74,168,118,7)$ ， $(177,6,116,167,75,86,11,38,100,54,19,39,20,56,101,40,12,88,76,166,114,5)$ ， $(177,4,112,165,77,90,13,42,102,58,21,43,22,60,103,44,14,92,78,164,110,3)$ ，
$(177,2,108,163,79,94,15,46,104,62,23,47,24,64,105,48,16,96,80,162,106,1)\}$. （88 edges， 88 all lengths）
This starter comprises a balanced $C_{22}-4$－foil decomposition of K_{177} ．

Example 4．5．Balanced C_{22}－5－foil design of K_{221} ．

$\{(221,10,150,211,91,102,11,42,122,62,21,43,22,64,123,44,12,104,92,210,148,9)$ ， $(221,8,146,209,93,106,13,46,124,66,23,47,24,68,125,48,14,108,94,208,144,7)$ ， $(221,6,142,207,95,110,15,50,126,70,25,51,26,72,127,52,16,112,96,206,140,5)$ ， （ $221,4,138,205,97,114,17,54,128,74,27,55,28,76,129,56,18,116,98,204,136,3)$ ， $(221,2,134,203,99,118,19,58,130,78,29,59,30,80,131,60,20,120,100,202,132,1)\}$ （110 edges， 110 all lengths）
This starter comprises a balanced C_{22}－5－foil decomposition of K_{221} ．

5．Balanced $C_{11 m}$－Foil Designs

Let K_{n} denote the complete graph of n vertices．Let $C_{11 m}$ be the $11 m$－cycle．The $C_{11 m}$－ t－foil is a graph of t edge－disjoint $C_{11 m}$＇s with a common vertex and the common vertex is called the center of the $C_{11 m}-t$－foil．When K_{n} is decomposed into edge－disjoint sum of $C_{11 m}-t$－foils and every vertex of K_{n} appears in the same number of $C_{11 m}-t$－foils，it is called that K_{n} has a balanced $C_{11 m}$－t－foil decomposition and this number is called the replication number．This decomposition is to be known as a balanced $C_{11 m}-t$－foil design．

Theorem 5．K_{n} has a balanced C_{33}－t－foil design if and only if $n \equiv 1(\bmod 66 t)$ ．

Example 5．1．Balanced C_{33} design of K_{67} ．

Starter：$\{(67,7,20,38,14,4,32,28,64,45,42,44$ ，
$2,43,63,29,34,5,16,39,22,8,17$ ，
$9,24,40,18,6,36,30,62,41,1)\}$ ．

Example 5．2．Balanced C_{33}－2－foil design of K_{133} ．

情報処理学会研究報告
IPSJ SIG Technical Report
Starter：$\{(133,13,38,74,26,7,62,55,127,90,6,89$ ，
$83,88,126,56,64,8,28,75,40,14,29$ ，
$15,42,76,30,9,66,57,125,86,4)$ ，
（133，16，44，77，32，10，68，58，124，84，3，5，
$2,82,123,59,70,11,34,78,46,17,35$ ，
$18,48,79,36,12,72,60,122,80,1)$ ．$\}$ ．

Theorem 6．K_{n} has a balanced $C_{44}-t$－foil design if and only if $n \equiv 1(\bmod 88 t)$ ．

Example 6．1．Balanced C_{44} design of K_{89} ．

Starter：$\{(89,4,60,85,37,42,5,18,50,26,9,19$ ，
$10,28,51,20,6,44,38,84,58,55,57$ ，
$2,56,83,39,46,7,22,52,30,11,23$ ，
$12,32,53,24,8,48,40,82,54,1)\}$ ．

Example 6．2．Balanced C_{44}－2－foil design of K_{177} ．
Starter：$\{(177,8,120,169,73,82,9,34,98,50,17,35$ ，
$18,52,99,36,10,84,74,168,118,111,117$ ，
$6,116,167,75,86,11,38,100,54,19,39$ ，
$20,56,101,40,12,88,76,166,114,5)$ ，
（177，4，112，165，77，90，13，42，102，58，21，43，
$22,60,103,44,14,92,78,164,110,107,109$ ，
$2,108,163,79,94,15,46,104,62,23,47$ ，
$24,64,105,48,16,96,80,162,106,1)$.$\} ．$

Theorem 7．K_{n} has a balanced C_{55}－t－foil design if and only if $n \equiv 1(\bmod 110 t)$ ．

Example 7．1．Balanced C_{55} design of K_{111} ．
Starter：$\{(111,11,32,62,22,6,52,46,106,75,70,74$ ，
$4,73,105,47,54,7,24,63,34,12,25$ ，
$13,36,64,26,8,56,48,104,71,3,5$ ，
$2,69,103,49,58,9,28,65,38,14,29$ ，
$15,40,66,30,10,60,50,102,67,1)\}$ ．

Starter：$\{(221,21,62,122,42,11,102,91,211,150,10,149$ ， $139,148,210,92,104,12,44,123,64,22,45$ ， $23,66,124,46,13,106,93,209,146,8,145$ ， $137,144,208,94,108,14,48,125,68,24,49$ ， $25,70,126,50,15,110,95,207,142,6)$ ， （221，26，72，127，52，16，112，96，206，140，5，9，
$4,138,205,97,114,17,54,128,74,27,55$ ，
$28,76,129,56,18,116,98,204,136,133,135$ ，
$2,134,203,99,118,19,58,130,78,29,59$ ，
$30,80,131,60,20,120,100,202,132,1)$.$\} ．$

Theorem 8．K_{n} has a balanced $C_{66}-t$－foil design if and only if $n \equiv 1(\bmod 132 t)$ ．

Example 8．1．Balanced C_{66} design of K_{133} ．

Starter：$\{(133,6,90,127,55,62,7,26,74,38,13,27$ ，
$14,40,75,28,8,64,56,126,88,83,87$ ，
$4,86,125,57,66,9,30,76,42,15,31$ ，
$16,44,77,32,10,68,58,124,84,3,5$ ，
$2,82,123,59,70,11,34,78,46,17,35$ ，
$18,48,79,36,12,72,60,122,80,1)\}$ ．

Theorem 9．K_{n} has a balanced $C_{77}-t$－foil design if and only if $n \equiv 1(\bmod 154 t)$ ．

Example 9．1．Balanced C_{77} design of K_{155} ．

Starter：$\{(155,15,44,86,30,8,72,64,148,105,98,104$ ，
$6,103,147,65,74,9,32,87,46,16,33$ ，
$17,48,88,34,10,76,66,146,101,96,100$ ，

情報処理学会研究報告
IPSJ SIG Technical Report
$4,99,145,67,78,11,36,89,50,18,37$ ，
$19,52,90,38,12,80,68,144,97,3,5$ ，
$2,95,143,69,82,13,40,91,54,20,41$ ，
$21,56,92,42,14,84,70,142,93,1)\}$ ．

Theorem 10．K_{n} has a balanced $C_{88}-t$－foil design if and only if $n \equiv 1(\bmod 176 t)$ ．

Example 10．1．Balanced C_{88} design of K_{177} ．
Starter：$\{(177,8,120,169,73,82,9,34,98,50,17,35$ ，
$18,52,99,36,10,84,74,168,118,111,117$ ，
$6,116,167,75,86,11,38,100,54,19,39$ ，
$20,56,101,40,12,88,76,166,114,109,113$ ，
$4,112,165,77,90,13,42,102,58,21,43$ ，
$22,60,103,44,14,92,78,164,110,3,5$ ，
$2,108,163,79,94,15,46,104,62,23,47$ ，
$24,64,105,48,16,96,80,162,106,1)\}$ ．

Theorem 11．K_{n} has a balanced $C_{99}-t$－foil design if and only if $n \equiv 1(\bmod 198 t)$ ．

Example 11．1．Balanced C_{99} design of K_{199} ．
Starter：$\{(199,19,56,110,38,10,92,82,190,135,126,134$ ，
$8,133,189,83,94,11,40,111,58,20,41$ ，
$21,60,112,42,12,96,84,188,131,124,130$ ，
$6,129,187,85,98,13,44,113,62,22,45$ ，
$23,64,114,46,14,100,86,186,127,5,9$ ，
$4,125,185,87,102,15,48,115,66,24,49$ ，
$25,68,116,50,16,104,88,184,123,120,122$ ，
$2,121,183,89,106,17,52,117,70,26,53$ ，
$27,72,118,54,18,108,90,182,119,1)\}$ ．

Theorem 12．K_{n} has a balanced $C_{110}-t$－foil design if and only if $n \equiv 1(\bmod 220 t)$ ．

Example 12．1．Balanced C_{110} design of K_{221} ．
Starter：$\{(221,10,150,211,91,102,11,42,122,62,21,43$ ，
$22,64,123,44,12,104,92,210,148,139,147$ ，
$8,146,209,93,106,13,46,124,66,23,47$ ，
$24,68,125,48,14,108,94,208,144,137,143$ ，
$6,142,207,95,110,15,50,126,70,25,51$ ，
$26,72,127,52,16,112,96,206,140,5,9$ ，
$4,138,205,97,114,17,54,128,74,27,55$ ，
$28,76,129,56,18,116,98,204,136,133,135$ ，
$2,134,203,99,118,19,58,130,78,29,59$ ，
$30,80,131,60,20,120,100,202,132,1)\}$ ．

参 考 文 献

1）Ushio，K．and Fujimoto，H．：Balanced bowtie and trefoil decomposition of com－ plete tripartite multigraphs，IEICE Trans．Fundamentals，Vol．E84－A，No．3，pp． 839－844（2001）．
2）Ushio，K．and Fujimoto，H．：Balanced foil decomposition of complete graphs，IE－ ICE Trans．Fundamentals，Vol．E84－A，No．12，pp．3132－3137（2001）．
3）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E86－A，No．9，pp．2360－2365（2003）．
4）Ushio，K．and Fujimoto，H．：Balanced bowtie decomposition of symmetric com－ plete multi－digraphs，IEICE Trans．Fundamentals，Vol．E87－A，No．10，pp．2769－2773 （2004）．
5）Ushio，K．and Fujimoto，H．：Balanced quatrefoil decomposition of complete multi－ graphs，IEICE Trans．Information and Systems，Vol．E88－D，No．1，pp．19－22（2005）．
6）Ushio，K．and Fujimoto，H．：Balanced C_{4}－bowtie decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E88－A，No．5，pp．1148－1154（2005）．
7）Ushio，K．and Fujimoto，H．：Balanced C_{4}－trefoil decomposition of complete multi－ graphs，IEICE Trans．Fundamentals，Vol．E89－A，No．5，pp．1173－1180（2006）．

[^0]: $\dagger 1$ 近畿大学理工学部情報学科
 Department of Informatics，Faculty of Science and Technology，Kinki University

