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均衡型 (C5, C6)-Foil デザインと関連デザイン

潮 和 彦

グラフ理論において、グラフの分解問題は主要な研究テーマである。C5 を５点を通

るサイクル、C6 を６点を通るサイクルとする。1 点を共有する辺素な t 個の C5 と

t 個の C6 からなるグラフを (C5,C6)-2t-foil という。本研究では、完全グラフ Kn

を 均衡的に (C5,C6)-2t-foil 部分グラフに分解する均衡型 (C5, C6)-foilデザインに

ついて述べる。さらに、均衡型 C11-foilデザイン、均衡型 (C10,C12)-foilデザイン、

均衡型 C22-foil デザイン、均衡型 C33-foilデザイン、均衡型 C44-foil デザイン、均

衡型 C55-foil デザイン、均衡型 C66-foilデザイン、均衡型 C77-foil デザイン、均衡

型 C88-foilデザイン、均衡型 C99-foilデザイン、均衡型 C110-foilデザイン、につい

て述べる。

Balanced (C5, C6)-Foil Designs and Related Designs

Kazuhiko Ushio

In graph theory, the decomposition problem of graphs is a very important topic.
Various type of decompositions of many graphs can be seen in the literature of
graph theory. This paper gives balanced (C5,C6)-foil designs, balanced C11-foil
designs, balanced (C10, C12)-foil designs, balanced C22-foil designs, balanced
C33-foil designs, balanced C44-foil designs, balanced C55-foil designs, balanced
C66-foil designs, balanced C77-foil designs, balanced C88-foil designs, balanced
C99-foil designs, balanced C110-foil designs.

1. Balanced (C5, C6)-Foil Designs

Let Kn denote the complete graph of n vertices. Let C5 and C6 be the 5-cycle and
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the 6-cycle, respectively. The (C5, C6)-2t-foil is a graph of t edge-disjoint C5’s and t

edge-disjoint C6’s with a common vertex and the common vertex is called the center of

the (C5, C6)-2t-foil. When Kn is decomposed into edge-disjoint sum of (C5, C6)-2t-foils

and every vertex of Kn appears in the same number of (C5, C6)-2t-foils, we say that Kn

has a balanced (C5, C6)-2t-foil decomposition and this number is called the replication

number. This decomposition is to be known as a balanced (C5, C6)-2t-foil design.

Theorem 1. Kn has a balanced (C5, C6)-2t-foil design if and only if n ≡ 1 (mod 22t).

Proof. (Necessity) Suppose that Kn has a balanced (C5, C6)-2t-foil decomposi-

tion. Let b be the number of (C5, C6)-2t-foils and r be the replication number. Then

b = n(n−1)/22t and r = (9t+1)(n−1)/22t. Among r (C5, C6)-2t-foils having a vertex

v of Kn, let r1 and r2 be the numbers of (C5, C6)-2t-foils in which v is the center and v is

not the center, respectively. Then r1+r2 = r. Counting the number of vertices adjacent

to v, 4tr1 + 2r2 = n − 1. From these relations, r1 = (n − 1)/22t and r2 = 9(n − 1)/22.

Therefore, n ≡ 1 (mod 22t) is necessary.

(Sufficiency) Put n = 22st + 1 and T = st. Then n = 22T + 1. Construct a (C5, C6)-

2T -foil as follows:

{(22T + 1, T, 15T, 21T + 1, 9T + 1), (22T + 1, T + 1, 4T + 2, 12T + 2, 6T + 2, 2T + 1)} ∪

{(22T + 1, T − 1, 15T − 2, 21T, 9T + 2), (22T + 1, T + 2, 4T + 4, 12T + 3, 6T + 4, 2T + 2)} ∪

{(22T + 1, T − 2, 15T − 4, 21T − 1, 9T + 3), (22T + 1, T + 3, 4T + 6, 12T + 4, 6T + 6, 2T + 3)} ∪

... ∪

{(22T + 1, 3, 13T + 6, 20T + 4, 10T − 2), (22T + 1, 2T − 2, 6T − 4, 13T − 1, 8T − 4, 3T − 2)} ∪

{(22T + 1, 2, 13T + 4, 20T + 3, 10T − 1), (22T + 1, 2T − 1, 6T − 2, 13T, 8T − 2, 3T − 1)} ∪

{(22T + 1, 1, 13T + 2, 20T + 2, 10T ), (22T + 1, 2T, 6T, 13T + 1, 8T, 3T )}.

(11T edges, 11T all lengths)

Decompose the (C5, C6)-2T -foil into s (C5, C6)-2t-foils. Then these starters comprise a

balanced (C5, C6)-2t-foil decomposition of Kn.

Example 1.1. Balanced (C5, C6)-2-foil design of K23.

{(23, 1, 15, 22, 10), (23, 2, 6, 14, 8, 3)}.
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(11 edges, 11 all lengths)

This starter comprises a balanced (C5, C6)-2-foil decomposition of K23.

Example 1.2. Balanced (C5, C6)-4-foil design of K45.

{(45, 2, 30, 43, 19), (45, 3, 10, 26, 14, 5)} ∪

{(45, 1, 28, 42, 20), (45, 4, 12, 27, 16, 6)}.

(22 edges, 22 all lengths)

This starter comprises a balanced (C5, C66)-4-foil decomposition of K45.

Example 1.3. Balanced (C5, C6)-6-foil design of K67.

{(67, 3, 45, 64, 28), (67, 4, 14, 38, 20, 7)} ∪

{(67, 2, 43, 63, 29), (67, 5, 16, 39, 22, 8)} ∪

{(67, 1, 41, 62, 30), (67, 6, 18, 40, 24, 9)}.

(33 edges, 33 all lengths)

This starter comprises a balanced (C5, C6)-6-foil decomposition of K67.

Example 1.4. Balanced (C5, C6)-8-foil design of K89.

{(89, 4, 60, 85, 37), (89, 5, 18, 50, 26, 9)} ∪

{(89, 3, 58, 84, 38), (89, 6, 20, 51, 28, 10)} ∪

{(89, 2, 56, 83, 39), (89, 7, 22, 52, 30, 11)} ∪

{(89, 1, 54, 82, 40), (89, 8, 14, 53, 32, 12)}.

(44 edges, 44 all lengths)

This starter comprises a balanced (C5, C6)-8-foil decomposition of K89.

Example 1.5. Balanced (C5, C6)-10-foil design of K111.

{(111, 5, 75, 106,46), (111, 6, 22, 62, 32, 11)} ∪

{(111, 4, 73, 105,47), (111, 7, 24, 63, 34, 12)} ∪

{(111, 3, 71, 104,48), (111, 8, 26, 64, 36, 13)} ∪

{(111, 2, 69, 103,49), (111, 9, 28, 65, 38, 14)} ∪

{(111, 1, 67, 102,50), (111, 10, 30, 66, 40, 15)}.

(55 edges, 55 all lengths)

This starter comprises a balanced (C5, C6)-10-foil decomposition of K111.

Example 1.6. Balanced (C5, C6)-12-foil design of K133.

{(133, 6, 90, 127, 55), (133, 7, 26, 74, 38, 13)} ∪

{(133, 5, 88, 126, 56), (133, 8, 28, 75, 40, 14)} ∪

{(133, 4, 86, 125, 57), (133, 9, 30, 76, 42, 15)} ∪

{(133, 3, 84, 124, 58), (133, 10, 32, 77, 44, 16)} ∪

{(133, 2, 82, 123, 59), (133, 11, 34, 78, 46, 17)} ∪

{(133, 1, 80, 122, 60), (133, 12, 36, 79, 48, 18)}.

(66 edges, 66 all lengths)

This starter comprises a balanced (C5, C6)-12-foil decomposition of K133.

Example 1.7. Balanced (C5, C6)-14-foil design of K155.

{(155, 7, 105, 148,64), (155, 8, 30, 86, 44, 15)} ∪

{(155, 6, 103, 147,65), (155, 9, 32, 87, 46, 16)} ∪

{(155, 5, 101, 146,66), (155, 10, 34, 88, 48, 17)} ∪

{(155, 4, 99, 145, 67), (155, 11, 36, 89, 50, 18)} ∪

{(155, 3, 97, 144, 68), (155, 12, 38, 90, 52, 19)} ∪

{(155, 2, 95, 143, 69), (155, 13, 40, 91, 54, 20)} ∪

{(155, 1, 93, 142, 70), (155, 14, 42, 92, 56, 21)}.

(77 edges, 77 all lengths)

This starter comprises a balanced (C5, C6)-14-foil decomposition of K155.

2. Balanced C11-Foil Designs

Let Kn denote the complete graph of n vertices. Let C11 be the 11-cycle. The C11-t-foil

is a graph of t edge-disjoint C11’s with a common vertex and the common vertex is

called the center of the C11-t-foil. When Kn is decomposed into edge-disjoint sum of

C11-t-foils and every vertex of Kn appears in the same number of C11-t-foils, it is called

that Kn has a balanced C11-t-foil decomposition and this number is called the replication

number. This decomposition is to be known as a balanced C11-t-foil design.
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Theorem 2. Kn has a balanced C11-t-foil design if and only if n ≡ 1 (mod 22t).

Proof. (Necessity) Suppose that Kn has a balanced C11-t-foil decomposition. Let b

be the number of C11-t-foils and r be the replication number. Then b = n(n−1)/22t and

r = (10t +1)(n− 1)/22t. Among r C11-t-foils having a vertex v of Kn, let r1 and r2 be

the numbers of C11-t-foils in which v is the center and v is not the center, respectively.

Then r1 + r2 = r. Counting the number of vertices adjacent to v, 2tr1 + 2r2 = n − 1.

From these relations, r1 = (n − 1)/22t and r2 = 10(n − 1)/22. Therefore, n ≡ 1 (mod

22t) is necessary.

(Sufficiency) Put n = 22st + 1, T = st. Then n = 22T + 1. Construct a C11-T -foil as

follows:

{ (22T + 1, T, 15T, 21T + 1, 9T + 1, 10T + 2, T + 1, 4T + 2, 12T + 2, 6T + 2, 2T + 1),

(22T + 1, T − 1, 15T − 2, 21T, 9T + 2, 10T + 4, T + 2, 4T + 4, 12T + 3, 6T + 4, 2T + 2),

(22T +1, T − 2, 15T − 4, 21T − 1, 9T +3, 10T +6, T +3, 4T +6, 12T +4, 6T +6, 2T +3),

...,

(22T + 1, 3, 13T + 6, 20T + 4, 10T − 2, 12T − 4, 2T − 2, 6T − 4, 13T − 1, 8T − 4, 3T − 2),

(22T + 1, 2, 13T + 4, 20T + 3, 10T − 1, 12T − 2, 2T − 1, 6T − 2, 13T, 8T − 2, 3T − 1),

(22T + 1, 1, 13T + 2, 20T + 2, 10T, 12T, 2T, 6T, 13T + 1, 8T, 3T) }.

(11T edges, 11T all lengths)

Decompose this C11-T -foil into s C11-t-foils. Then these starters comprise a balanced

C11-t-foil decomposition of Kn.

Example 2.1. Balanced C11 design of K23.

{(23, 1, 15, 22, 10, 12, 2, 6, 14, 8, 3)}.

(11 edges, 11 all lengths)

This stater comprises a balanced C11-decomposition of K23.

Example 2.2. Balanced C11-2-foil design of K45.

{(45, 2, 30, 43, 19, 22, 3, 10, 26, 14, 5),

(45, 1, 28, 42, 20, 24, 4, 12, 27, 16, 6)}.

(22 edges, 22 all lengths)

This stater comprises a balanced C11-2-foil decomposition of K45.

Example 2.3. Balanced C11-3-foil design of K67.

{(67, 3, 45, 64, 28, 32, 4, 14, 38, 20, 7),

(67, 2, 43, 63, 29, 34, 5, 16, 39, 22, 8),

(67, 1, 41, 62, 30, 36, 6, 18, 40, 24, 9)}.

(33 edges, 33 all lengths)

This stater comprises a balanced C11-3-foil decomposition of K67.

Example 2.4. Balanced C11-4-foil design of K89.

{(89, 4, 60, 85, 37, 42, 5, 18, 50, 26, 9),

(89, 3, 58, 84, 38, 44, 6, 20, 51, 28, 10),

(89, 2, 56, 83, 39, 46, 7, 22, 52, 30, 11),

(89, 1, 54, 82, 40, 48, 8, 24, 53, 32, 12)}.

(44 edges, 44 all lengths)

This stater comprises a balanced C11-4-foil decomposition of K89.

Example 2.5. Balanced C11-5-foil design of K111.

{(111, 5, 75, 106, 46, 52, 6, 22, 62, 32, 11),

(111, 4, 73, 105, 47, 54, 7, 24, 63, 34, 12),

(111, 3, 71, 104, 48, 56, 8, 26, 64, 36, 13),

(111, 2, 69, 103, 49, 58, 9, 28, 65, 38, 14),

(111, 1, 67, 102, 50, 60, 10, 30, 66, 40, 15)}.

(55 edges, 55 all lengths)

This stater comprises a balanced C11-5-foil decomposition of K111.

Example 2.6. Balanced C11-6-foil design of K133.

{(133, 6, 90, 127, 55, 62, 7, 26, 74, 38, 13),

(133, 5, 88, 126, 56, 64, 8, 28, 75, 40, 14),

(133, 4, 86, 125, 57, 66, 9, 30, 76, 42, 15),
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(133, 3, 84, 124, 58, 68, 10, 32, 77, 44, 16),

(133, 2, 82, 123, 59, 70, 11, 34, 78, 46, 17),

(133, 1, 80, 122, 60, 72, 12, 36, 79, 48, 18)}.

(66 edges, 66 all lengths)

This stater comprises a balanced C11-6-foil decomposition of K133.

3. Balanced (C10, C12)-Foil Designs

Let Kn denote the complete graph of n vertices. Let C10 and C12 be the 10-cycle and

the 12-cycle, respectively. The (C10, C12)-2t-foil is a graph of t edge-disjoint C10’s and t

edge-disjoint C12’s with a common vertex and the common vertex is called the center of

the (C10, C12)-2t-foil. When Kn is decomposed into edge-disjoint sum of (C10, C12)-2t-

foils and every vertex of Kn appears in the same number of (C10, C12)-2t-foils, we say

that Kn has a balanced (C10, C12)-2t-foil decomposition and this number is called the

replication number. This decomposition is to be known as a balanced (C10, C12)-2t-foil

design.

Theorem 3. Kn has a balanced (C10, C12)-2t-foil design if and only if n ≡ 1 (mod

44t).

Proof. (Necessity) Suppose that Kn has a balanced (C10, C12)-2t-foil decomposi-

tion. Let b be the number of (C10, C12)-2t-foils and r be the replication number. Then

b = n(n − 1)/44t and r = (20t + 1)(n − 1)/44t. Among r (C10, C12)-2t-foils having a

vertex v of Kn, let r1 and r2 be the numbers of (C10, C12)-2t-foils in which v is the

center and v is not the center, respectively. Then r1 + r2 = r. Counting the number of

vertices adjacent to v, 4tr1 + 2r2 = n − 1. From these relations, r1 = (n − 1)/44t and

r2 = 20(n − 1)/44. Therefore, n ≡ 1 (mod 44t) is necessary.

(Sufficiency) Put n = 44st+1 and T = st. Then n = 44T +1. Construct a (C10, C12)-

2T -foil as follows:

{(44T + 1, 2T, 30T, 42T + 1, 18T + 1, 36T + 3, 18T + 2, 42T, 30T − 2, 2T − 1),

(44T + 1, 2T + 1, 8T +2, 24T + 2, 12T + 2, 4T +1, 8T +3, 4T +2, 12T +4, 24T +3, 8T +

4, 2T + 2)} ∪

{(44T +1, 2T − 2, 30T − 4, 42T − 1, 18T +3, 36T +7, 18T +4, 42T − 2, 30T − 6, 2T − 3),

(44T + 1, 2T +3, 8T +6, 24T +4, 12T +6, 4T +3, 8T +7, 4T +4, 12T +8, 24T +5, 8T +

8, 2T + 4)} ∪

{(44T +1, 2T −4, 30T −8, 42T −3, 18T +5, 36T +11, 18T +6, 42T −4, 30T −10, 2T −5),

(44T + 1, 2T + 5, 8T + 10, 24T + 6, 12T + 10, 4T + 5, 8T + 11, 4T + 6, 12T + 12, 24T +

7, 8T + 12, 2T + 6)} ∪

... ∪

{(44T + 1, 2, 26T + 4, 40T + 3, 20T − 1, 40T − 1, 20T, 40T + 2, 26T + 2, 1),

(44T + 1, 4T − 1, 12T − 2, 26T, 16T − 2, 6T − 1, 12T − 1, 6T, 16T, 26T + 1, 12T, 4T)}.

(22T edges, 22T all lengths)

Decompose the (C10, C12)-2T -foil into s (C10, C12)-2t-foils. Then these starters com-

prise a balanced (C10, C12)-2t-foil decomposition of Kn.

Example 3.1. Balanced (C10, C12)-2-foil design of K45.

{(45, 2, 30, 43, 19, 39, 20, 42, 28, 1),

(45, 3, 10, 26, 14, 5, 11, 6, 16, 27, 12, 4)}.

(22 edges, 22 all lengths)

This starter comprises a balanced (C10, C12)-2-foil decomposition of K45.

Example 3.2. Balanced (C10, C12)-4-foil design of K89.

{(89, 4, 60, 85, 37, 75, 38, 84, 58, 3),

(89, 2, 56, 83, 39, 79, 40, 82, 54, 1)}

∪

{(89, 5, 18, 50, 26, 9, 19, 10, 28, 51, 20, 6),

(89, 7, 22, 52, 30, 11, 23, 12, 32, 53, 24, 8)}.

(44 edges, 44 all lengths)

This starter comprises a balanced (C10, C12)-4-foil decomposition of K89.

Example 3.3. Balanced (C10, C12)-6-foil design of K133.

{(133, 6, 90, 127, 55, 111,56, 126,88, 5),
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(133, 4, 86, 125, 57, 115, 58, 124,84, 3),

(133, 2, 82, 123, 59, 119, 60, 122,80, 1)}

∪

{(133, 7, 26, 74, 38, 13, 27, 14, 40, 75, 28, 8),

(133, 9, 30, 76, 42, 15, 31, 16, 44, 77, 32, 10),

(133, 11, 34, 78, 46, 17, 35, 18, 48, 79, 36, 12)}.

(66 edges, 66 all lengths)

This starter comprises a balanced (C10, C12)-6-foil decomposition of K133.

Example 3.4. Balanced (C10, C12)-8-foil design of K177.

{(177, 8, 120, 169,73, 147, 74, 168, 118,7),

(177, 6, 116, 167,75, 151,76, 166,114, 5),

(177, 4, 112, 165,77, 155,78, 164,110, 3),

(177, 2, 108, 163,79, 159,80, 162,106, 1)}

∪

{(177, 9, 34, 98, 50, 17, 35, 18, 52, 99, 36, 10),

(177, 11, 38, 100,54, 19, 39, 20, 56, 101, 40, 12),

(177, 13, 42, 102,58, 21, 43, 22, 60, 103, 44, 14),

(177, 15, 46, 104,62, 23, 47, 24, 64, 105, 48, 16)}.

(88 edges, 88 all lengths)

This starter comprises a balanced (C10, C12)-8-foil decomposition of K177.

Example 3.5. Balanced (C10, C12)-10-foil design of K221.

{(221, 10, 150, 211, 91, 183, 92, 210, 148,9),

(221, 8, 146, 209,93, 187,94, 208,144, 7),

(221, 6, 142, 207,95, 191,96, 206,140, 5),

(221, 4, 138, 205,97, 195,98, 204,136, 3),

(221, 2, 134, 203,99, 199,100, 202, 132,1)}

∪

{(221, 11, 42, 122,62, 21, 43, 22, 64, 123,44, 12),

(221, 13, 46, 124,66, 23, 47, 24, 68, 125, 48, 14),

(221, 15, 50, 126, 70, 25, 51, 26, 72, 127, 52, 16),

(221, 17, 54, 128, 74, 27, 55, 28, 76, 129, 56, 18),

(221, 19, 58, 130, 78, 29, 59, 30, 80, 131, 60, 20)}.

(110 edges, 110 all lengths)

This starter comprises a balanced (C10, C12)-10-foil decomposition of K221.

4. Balanced C22-Foil Designs

Let Kn denote the complete graph of n vertices. Let C22 be the 22-cycle. The C22-t-foil

is a graph of t edge-disjoint C22’s with a common vertex and the common vertex is

called the center of the C22-t-foil. When Kn is decomposed into edge-disjoint sum of

C22-t-foils and every vertex of Kn appears in the same number of C22-t-foils, it is called

that Kn has a balanced C22-t-foil decomposition and this number is called the replication

number. This decomposition is to be known as a balanced C22-t-foil design.

Theorem 4. Kn has a balanced C22-t-foil design if and only if n ≡ 1 (mod 44t).

Proof. (Necessity) Suppose that Kn has a balanced C22-t-foil decomposition. Let b

be the number of C22-t-foils and r be the replication number. Then b = n(n−1)/44t and

r = (21t + 1)(n− 1)/44t. Among r C22-t-foils having a vertex v of Kn, let r1 and r2 be

the numbers of C42-t-foils in which v is the center and v is not the center, respectively.

Then r1 + r2 = r. Counting the number of vertices adjacent to v, 2tr1 + 2r2 = n − 1.

From these relations, r1 = (n − 1)/44t and r2 = 21(n − 1)/44. Therefore, n ≡ 1 (mod

44t) is necessary.

(Sufficiency) Put n = 44st + 1, T = st. Then n = 44T + 1. Construct a C22-T -foil as

follows:

{ (44T + 1, 2T, 30T, 42T + 1, 18T + 1, 20T + 2, 2T + 1, 8T + 2, 24T + 2, 12T + 2, 4T +

1, 8T +3, 4T +2, 12T +4, 24T +3, 8T +4, 2T +2, 20T +4, 18T +2, 42T, 30T −2, 2T −1),

(44T +1,2T −2,30T −4, 42T −1,18T +3, 20T +6, 2T +3,8T +6,24T +4, 12T +6,4T +

3, 8T +7, 4T +4, 12T +8, 24T +5, 8T +8, 2T +4, 20T +8, 18T +4, 42T−2, 30T−6, 2T−3),

(44T + 1, 2T − 4, 30T − 8, 42T − 3, 18T + 5, 20T + 10, 2T + 5, 8T + 10, 24T + 6, 12T +
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10, 4T + 5, 8T + 11, 4T + 6, 12T + 12, 24T + 7, 8T + 12, 2T + 6, 20T +12, 18T + 6, 42T −

4, 30T − 10, 2T − 5),

...,

(44T +1, 2, 26T +4, 40T +3, 20T −1, 24T −2, 4T −1, 12T −2, 26T, 16T −2, 6T −1, 12T −

1, 6T, 16T, 26T + 1, 12T, 4T,24T, 20T, 40T + 2, 26T + 2, 1) }.

(22T edges, 22T all lengths)

Decompose this C22-T -foil into s C22-t-foils. Then these starters comprise a balanced

C22-t-foil decomposition of Kn.

Example 4.1. Balanced C22 design of K45.

{(45, 2, 30, 43, 19, 22, 3, 10, 26, 14, 5, 11, 6, 16, 27, 12, 4, 24, 20, 42, 28, 1)}.

(22 edges, 22 all lengths)

This starter comprises a balanced C22-decomposition of K45.

Example 4.2. Balanced C22-2-foil design of K89.

{(89, 4, 60, 85, 37, 42, 5, 18, 50, 26, 9, 19, 10, 28, 51, 20, 6, 44, 38, 84, 58, 3),

(89, 2, 56, 83, 39, 46, 7, 22, 52, 30, 11, 23, 12, 32, 53, 24, 8, 48, 40, 82, 54, 1)}.

(44 edges, 44 all lengths)

This starter comprises a balanced C22-2-foil decomposition of K89.

Example 4.3. Balanced C22-3-foil design of K133.

{(133, 6, 90, 127,55, 62, 7, 26, 74, 38, 13, 27, 14, 40, 75, 28, 8, 64, 56, 126,88, 5),

(133, 4, 86, 125, 57, 66, 9, 30, 76, 42, 15, 31, 16, 44, 77, 32, 10, 68, 58, 124,84, 3),

(133, 2, 82, 123, 59, 70, 11, 34, 78, 46, 17, 35, 18, 48, 79, 36, 12, 72, 60, 122, 80, 1)}.

(66 edges, 66 all lengths)

This starter comprises a balanced C22-3-foil decomposition of K133.

Example 4.4. Balanced C22-4-foil design of K177.

{(177, 8, 120, 169,73, 82, 9, 34, 98, 50, 17, 35, 18, 52, 99, 36, 10, 84, 74, 168, 118,7),

(177, 6, 116, 167,75, 86, 11, 38, 100, 54, 19, 39, 20, 56, 101, 40, 12, 88, 76, 166,114, 5),

(177, 4, 112, 165,77, 90, 13, 42, 102, 58, 21, 43, 22, 60, 103, 44, 14, 92, 78, 164,110, 3),

(177, 2, 108,163, 79, 94, 15, 46, 104, 62, 23, 47, 24, 64, 105, 48, 16, 96, 80, 162, 106, 1)}.

(88 edges, 88 all lengths)

This starter comprises a balanced C22-4-foil decomposition of K177.

Example 4.5. Balanced C22-5-foil design of K221.

{(221, 10, 150, 211,91, 102, 11, 42, 122, 62, 21, 43, 22, 64, 123, 44, 12, 104, 92, 210, 148, 9),

(221, 8, 146,209, 93, 106,13, 46, 124, 66, 23, 47, 24, 68, 125, 48, 14, 108,94, 208,144, 7),

(221, 6, 142,207, 95, 110,15, 50, 126, 70, 25, 51, 26, 72, 127, 52, 16, 112,96, 206,140, 5),

(221, 4, 138,205, 97, 114,17, 54, 128, 74, 27, 55, 28, 76, 129, 56, 18, 116,98, 204,136, 3),

(221, 2, 134,203, 99, 118,19, 58, 130, 78, 29, 59, 30, 80, 131, 60, 20, 120,100, 202, 132,1)}.

(110 edges, 110 all lengths)

This starter comprises a balanced C22-5-foil decomposition of K221.

5. Balanced C11m-Foil Designs

Let Kn denote the complete graph of n vertices. Let C11m be the 11m-cycle. The C11m-

t-foil is a graph of t edge-disjoint C11m’s with a common vertex and the common vertex

is called the center of the C11m-t-foil. When Kn is decomposed into edge-disjoint sum

of C11m-t-foils and every vertex of Kn appears in the same number of C11m-t-foils, it

is called that Kn has a balanced C11m-t-foil decomposition and this number is called

the replication number. This decomposition is to be known as a balanced C11m-t-foil

design.

Theorem 5. Kn has a balanced C33-t-foil design if and only if n ≡ 1 (mod 66t).

Example 5.1. Balanced C33 design of K67.

Starter: {(67, 7, 20, 38, 14, 4, 32, 28, 64, 45, 42, 44,

2, 43, 63, 29, 34, 5, 16, 39, 22, 8, 17,

9, 24, 40, 18, 6, 36, 30, 62, 41, 1)}.

Example 5.2. Balanced C33-2-foil design of K133.
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Starter: {(133, 13, 38, 74, 26, 7, 62, 55, 127, 90, 6, 89,

83, 88, 126, 56, 64, 8, 28, 75, 40, 14, 29,

15, 42, 76, 30, 9, 66, 57, 125, 86, 4),

(133, 16, 44, 77, 32, 10, 68, 58, 124,84, 3, 5,

2, 82, 123,59, 70, 11, 34, 78, 46, 17, 35,

18, 48, 79, 36, 12, 72, 60, 122, 80, 1).}.

Theorem 6. Kn has a balanced C44-t-foil design if and only if n ≡ 1 (mod 88t).

Example 6.1. Balanced C44 design of K89.

Starter: {(89, 4, 60, 85, 37, 42, 5, 18, 50, 26, 9, 19,

10, 28, 51, 20, 6, 44, 38, 84, 58, 55, 57,

2, 56, 83, 39, 46, 7, 22, 52, 30, 11, 23,

12, 32, 53, 24, 8, 48, 40, 82, 54, 1)}.

Example 6.2. Balanced C44-2-foil design of K177.

Starter: {(177, 8, 120, 169, 73, 82, 9, 34, 98, 50, 17, 35,

18, 52, 99, 36, 10, 84, 74, 168, 118, 111,117,

6, 116, 167, 75, 86, 11, 38, 100, 54, 19, 39,

20, 56, 101, 40, 12, 88, 76, 166, 114, 5),

(177, 4, 112, 165,77, 90, 13, 42, 102, 58, 21, 43,

22, 60, 103, 44, 14, 92, 78, 164, 110, 107,109,

2, 108, 163, 79, 94, 15, 46, 104, 62, 23, 47,

24, 64, 105, 48, 16, 96, 80, 162, 106, 1).}.

Theorem 7. Kn has a balanced C55-t-foil design if and only if n ≡ 1 (mod 110t).

Example 7.1. Balanced C55 design of K111.

Starter: {(111, 11, 32, 62, 22, 6, 52, 46, 106, 75, 70, 74,

4, 73, 105,47, 54, 7, 24, 63, 34, 12, 25,

13, 36, 64, 26, 8, 56, 48, 104, 71, 3, 5,

2, 69, 103,49, 58, 9, 28, 65, 38, 14, 29,

15, 40, 66, 30, 10, 60, 50, 102, 67, 1)}.

Example 7.2. Balanced C55-2-foil design of K221.

Starter: {(221, 21, 62, 122,42, 11, 102, 91, 211,150, 10, 149,

139, 148,210, 92, 104, 12, 44, 123, 64, 22, 45,

23, 66, 124,46, 13, 106, 93, 209,146, 8, 145,

137, 144,208, 94, 108, 14, 48, 125, 68, 24, 49,

25, 70, 126,50, 15, 110, 95, 207,142, 6),

(221, 26, 72, 127, 52, 16, 112, 96, 206, 140,5, 9,

4, 138, 205,97, 114, 17, 54, 128,74, 27, 55,

28, 76, 129,56, 18, 116, 98, 204,136, 133,135,

2, 134, 203,99, 118, 19, 58, 130,78, 29, 59,

30, 80, 131,60, 20, 120, 100, 202,132, 1).}.

Theorem 8. Kn has a balanced C66-t-foil design if and only if n ≡ 1 (mod 132t).

Example 8.1. Balanced C66 design of K133.

Starter: {(133, 6, 90, 127,55, 62, 7, 26, 74, 38, 13, 27,

14, 40, 75, 28, 8, 64, 56, 126, 88, 83, 87,

4, 86, 125,57, 66, 9, 30, 76, 42, 15, 31,

16, 44, 77, 32, 10, 68, 58, 124, 84, 3, 5,

2, 82, 123,59, 70, 11, 34, 78, 46, 17, 35,

18, 48, 79, 36, 12, 72, 60, 122, 80, 1)}.

Theorem 9. Kn has a balanced C77-t-foil design if and only if n ≡ 1 (mod 154t).

Example 9.1. Balanced C77 design of K155.

Starter: {(155, 15, 44, 86, 30, 8, 72, 64, 148, 105,98, 104,

6, 103, 147,65, 74, 9, 32, 87, 46, 16, 33,

17, 48, 88, 34, 10, 76, 66, 146, 101,96, 100,
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4, 99, 145,67, 78, 11, 36, 89, 50, 18, 37,

19, 52, 90, 38, 12, 80, 68, 144, 97, 3, 5,

2, 95, 143,69, 82, 13, 40, 91, 54, 20, 41,

21, 56, 92, 42, 14, 84, 70, 142, 93, 1)}.

Theorem 10. Kn has a balanced C88-t-foil design if and only if n ≡ 1 (mod 176t).

Example 10.1. Balanced C88 design of K177.

Starter: {(177, 8, 120, 169, 73, 82, 9, 34, 98, 50, 17, 35,

18, 52, 99, 36, 10, 84, 74, 168, 118, 111,117,

6, 116, 167, 75, 86, 11, 38, 100, 54, 19, 39,

20, 56, 101, 40, 12, 88, 76, 166, 114, 109,113,

4, 112, 165, 77, 90, 13, 42, 102, 58, 21, 43,

22, 60, 103, 44, 14, 92, 78, 164, 110, 3, 5,

2, 108, 163, 79, 94, 15, 46, 104, 62, 23, 47,

24, 64, 105, 48, 16, 96, 80, 162, 106, 1)}.

Theorem 11. Kn has a balanced C99-t-foil design if and only if n ≡ 1 (mod 198t).

Example 11.1. Balanced C99 design of K199.

Starter: {(199, 19, 56, 110, 38, 10, 92, 82, 190, 135, 126,134,

8, 133, 189, 83, 94, 11, 40, 111, 58, 20, 41,

21, 60, 112, 42, 12, 96, 84, 188, 131, 124,130,

6, 129, 187, 85, 98, 13, 44, 113, 62, 22, 45,

23, 64, 114, 46, 14, 100,86, 186,127, 5, 9,

4, 125, 185, 87, 102, 15, 48, 115,66, 24, 49,

25, 68, 116, 50, 16, 104,88, 184,123, 120, 122,

2, 121, 183, 89, 106, 17, 52, 117,70, 26, 53,

27, 72, 118, 54, 18, 108,90, 182,119, 1)}.

Theorem 12. Kn has a balanced C110-t-foil design if and only if n ≡ 1 (mod 220t).

Example 12.1. Balanced C110 design of K221.

Starter: {(221, 10, 150, 211, 91, 102, 11, 42, 122,62, 21, 43,

22, 64, 123,44, 12, 104, 92, 210,148, 139,147,

8, 146, 209,93, 106, 13, 46, 124,66, 23, 47,

24, 68, 125,48, 14, 108, 94, 208,144, 137,143,

6, 142, 207,95, 110, 15, 50, 126,70, 25, 51,

26, 72, 127,52, 16, 112, 96, 206,140, 5, 9,

4, 138, 205,97, 114, 17, 54, 128,74, 27, 55,

28, 76, 129,56, 18, 116, 98, 204,136, 133,135,

2, 134, 203,99, 118, 19, 58, 130,78, 29, 59,

30, 80, 131,60, 20, 120, 100, 202,132, 1)}.
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