

IPSJ SIG Technical Report

 1

Development of a code clone search tool
for open source repositories

Pei Xia†, Yuki Manabe†, Norihiro Yoshida††, Katsuro Inoue†

Finding code clones in the open source systems is one of important and demanding
features for efficient and safe reuse of existing open source software. In this paper, we
propose a novel search model, open code clone search, to explore code clones in open
source repositories on the Internet. Based on this search model, we have designed and
implemented a prototype system named Open CCFinder. This system takes a query code
fragment as its input, and returns the code fragments containing the code clones with the
query. It utilizes publicly available code search engines as external resources. Using
Open CCFinder, We have conducted various case studies for Java code. These
experiments show the applicability of our system.

1. Introduction

Open source repositories are growing fast. Millions of projects have been hosted in Open
source repositories such as Google code, SourceForge.net, GitHub. They are playing very
important roles in software development today. Even software systems in industry are
increasingly using the open source systems due to their reliability and cost benefits [1].

One of usages of the open source repositories is to reuse existing source code for new
systems. We can easily get source code files of various projects that hosted in open source
repositories on the Internet.

When reusing source codes, some problems about software compliance may happen.
� When we find a useful source code file, can we reuse it safely?
� Are our own open source projects illegally reused by other people?

These questions are important, but difficult to answer. For the first question, before
reusing the source code, developers should make sure that they will not violate the license.
A license violation may take them to court and cost them a lot. However, to tell the license
of a source file is not easy, because there are many code clones among open source projects
[2]. That means they also copy and modify source code from other projects. In extremely
cases they even change or remove the original license statement in the source files [3].

† Graduate School of Information Science and Technology, Osaka University
†† Graduate School of Information Science, Nara Institute of Science and Technology

Reusing such source files is risky. For the second question, even though some other projects
had reused source code while violating its license, the original code owner would hardly
know it, since it is hard to check other projects by hand.

In order to answer such questions, one solution is to find out all the cloned code in the
world, and compare the related information about them. Then we would be able to tell the
reuse relationship between those codes. In these days, various kinds of code clone detection
methods have been devised, and a lot of practical code clone detection tools have been
developed and used [4], [5].

Base on the code clone detection technology, we proposed a novel approach for open
source code clone search, and also implemented a prototype tool named Open CCFinder.
Open CCFinder takes a code fragment as its query input, and returns a list of files from
open source repositories that contain cloned code with the queried one, along with extra
information such as license, copyright, last modified time and so on. This tool can support
us to study the raised problems.

Using Open CCFinder, we have performed some case studies of source code exploration.
One is to identify a Java code file Base64.java [6] which is a public domain code file that
widely reused by other open source projects. Another case study is to search and collect
clone information for all the source files in SSHTools projects, which is a popular JAVA
SSH application [7].

In this paper, we first describe the overview of Open CCFinder including architecture
and search process in Section 2. Then we introduce tool feathers in Section 3. Section 4
shows our case studies. Section 5 discusses our approach and Section 6 shows the related
works. In Section 7, we conclude our discussions with some future works.

2. Overview of Open CCFinder

2.1 Architecture
Figure 1 shows the architecture of Open CCFinder. It takes an input query Q and returns

an output results set R. Input query Q is composed of code fragment qc and code attribute qa.
qc may be a complete source file or a part of a source code file, which is in question. qa is a
set of associated information characterizing qc, such as the file name. qa is optional and
could be added to improve the quality of the output results.

Given an input Query Q, Open CCFinder extracts useful information from it and
generates queries for external code search engine (e.g. Google code search, SPARS etc.).
And then analyze the returned candidate files from external search engines, at last form a
final result as output R. The detail of this search process will be introduced in section 2.2.

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

IPSJ SIG Technical Report

 2

Figure 1 Architecture of Open CCFinder

Output result R is composed of results r1, r2... rn. Each result ri is composed of a code
file ric and its code attribute ria. ric is code file that return by external code search engines,
and ria a set of associated information about ric, including URL, file path, LOC, license,
copyright, last modified time, clone cover ratio, shown as Table 1.

In addition, Figure 2 shows how we calculate cover ratio of a result file.
For the external code search engines, we use Google code search and SPARS in our tool

implementation. Google code search is a famous code search engine, it provides search

Table 1 Attributes of output results
URL where ric can be accessed on the Internet
File path the file path of ric in its project
LOC line of code of ric
License the software license of the source file
Copyright the copyright of the source file
Last modified time the latest committed time of ric in its repository
Cover ratio the code percentage of the queried code qc that reused by ric

Figure 2 Definition of Cover Ratio

service API to user, so we can easily integrate it to our tool; SPARS is a Java component
search engine with the keyword input and component rank mechanism developed by our
research group [8]. The Java class repository of SPARS is kept updated by us.

2.2 Search process of Open CCFinder
(1) Word Extraction

At the beginning, code fragment qc in input query Q is tokenized, the words from source
code and comments are separated. Camel Case (e.g. helloWorld) or Snake Case (e.g.
hello_world) words will not be decomposed into multiple words. User can choose to extract
words from source code or from comments, or from both.
(2) Keyword ranking

Next, the keywords used for query generation are selected from the extracted words. In this
step, first Open CCFinder filters out the words that considered being featureless. For example,
the reserved words of each source code language, the words in very short length, and the
words included in customized filter are filtered out. After the filtering, a simple words
importance ranking strategy is applied on the remaining words. Currently there are two
strategy implemented in the tool for ranking the words: frequency strategy and random
strategy. Frequency strategy is to rank the keywords by the times they appear in the source
codes or comment, while random strategy is just to rank the words randomly.
(3) Searching for candidates files

Using the ranked keywords, a search query SQ for the code search engines is created. As
the search engines, we use SPARS/R which is Java class file search engine built by our
research group, and Google Code Search whose API is well known of availability and
flexibility. Both of the two search engines accept keywords sequence as their query input, so
we use the combination of most frequently used words as SQ. If user wants, the additional

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

IPSJ SIG Technical Report

 3

Figure 3 The pseudo code of searching for candidate files with ranked keywords

input attribute file name also can be given to the search engines.

Then we generate several queries for each search engine to get appropriate candidate files.
For each query, the returned results set from search engines should not be very large, for fear
of including too many irrelevant results. When the returned results set are too large, we will
add one more keyword from the ranked keywords list to the query to narrow the results set. At
last we merge the returned results of several queries as the analysis candidate files.

The detail process is shown in Figure 3.
(4) Downloading Candidate files

All the candidate files in step 3 are downloaded from Internet. While downloading the file,
the tool is also crawling the web to extract useful information for the code attributes such as
file path, URL, LOC, License, Copyrights, and last modified time if available.
(5) Code Clone analysis.

The code clones between the input query code fragment qc and each source code sri
obtained at Step 4 are computed. We have used a code clone detection tool CCFinder [9], with
its parameter setting for the minimum token length 15. We calculate the cloned code cover
ratio of qc for each Candidates.
(6) Result Forming

All the Candidate files and their code attributes are combined and packed as the output
result R of this system, sorting by their cloned code cover ratio.

3. Implementation of Open CCFinder

Open CCFinder is implemented with Java language, which is platform independent. We
also provide a friendly GUI tool using Java swing components for Open CCFinder. Here we
mainly introduce it with this GUI tool. Besides, we also provide a command line tool for
Open CCFinder.

3.1 Configuration
First, we have to configure the basic parameters for this tool.

(1) Tokenize target
User can choose to extract keywords from code or from comments content, or from the both.

Default set is extracting from only source code while ignoring the comments content.
(2) Keyword filter
 Keyword filter contains the words that considered being less important, like reserved words
and featureless words such as “temp”, “str” etc. User can add or remove words from the filter.
(3) Minimum token length
 This configuration is used to filter out short length words such as “id”, “i” that also be
considered featureless. User can define the minimum length of tokens that used as keywords.
(4) Keyword sort strategy
 Choose the strategy of ranking extracted keywords. Frequency means to sort keywords by
the times they appear in the content. Random means just ranking them randomly.
(5) External search engine
 Choose external search engines to use. Currently we only support Google code search and
SPARS-J.
(6) Maximum result number
 This is the limitation of results number returned from search engines for each query. Too
large sized result set usually contains many irrelevant results. When the number of returned
results is larger than this limitation, the tool will add one more high ranking keyword to
current query and search more strictly to get a narrower result set.
(7) Maximum keyword number
 This limits the maximum keyword number used for one query. If the tool cannot get an
appropriate result set size with a query that had used maximum number of keywords, then no
more keyword would be added, and this query is force to over, only a part of the results are
returned.
(8) Language
 Choose file types for searching. Currently Open CCFinder only supports Java, C++ and C.

GetAppropriateCadidateFiles (keywordsList)
1. CadidateFiles = ɸ;
2. CurrentKeywords = ɸ;
3. While CadidateFiles is not appropriate //Judged by user
4. ParticalCadidateFiles = ɸ;
5. While ParticalCadidateFiles is empty or too large size
6. CurrentKeywords = CurrentKeywords keywordsList.nextTopKeyword
7. ParticalCadidateFiles = results searched with CurrentKeywords ;
8. End while
9. CurrentKeywords = ɸ;
10. Cadidates = Cadidates ParticalCadidateFiles
11. End while
12. Return Cadidates

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

IPSJ SIG Technical Report

 4

Figure 4 Candidates View
3.2 Searching
Users can input the code fragments they interested in into the query text area, or they can

choose a local file directly using a file chooser. Then the tool would extract and rank the
keywords of the input code fragment automatically. User can also adjust the keyword ranking
by hand. After keywords are decided and “search” button are pulled, the tool will start
searching with high ranked keywords in current keywords list and then return a partial
candidate files set.

User can repeat this searching process using different keyword combination and get several
partial candidate files sets, and then merge the partial candidate files together to get a large
result sets to improve the recall, as shown in Figure 4.

In figure 4, each package icon represents a partial candidate files set. And each file icon
represents a returned file. Use can then select the ones they would like to analyze by checking
the check boxes on left side. When “Analyze” button was pulled, Open CCFinder begins to
download the selected files. However, Some of the URLs returned by Google code search API
are repository URLs that start with “svn://”, “git://” etc., which cannot be downloaded through

Figure 5 Results View

http request directly. We have to find patterns to translate the repository address to http URLs
to get the raw file. Even though, a few files cannot be downloaded successfully, then Open
CCFinder just tags it as “failed” and skips this file.

While downloading, Open CCFinder is also crawling the web to collect information about
license and last modified time for each file. When all the files have been downloaded, code
clone detection is applied on these downloaded files along with the input query code, so clone
cover ratio for each file can be calculated.

3.3 Result
Final results are packed and shown in results view, as Figure 5.
In this view, each of the results is shown in one row, sorted by code clone cover ratio. High

ranked results indicate that this file has more possibility of reusing/being reused by queried
code fragment. Related information for each file including rank, external search engine, URL,
file path, license, copyright, line of code, cover ratio and last modified time are shown in
different column.

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

IPSJ SIG Technical Report

 5

When one row is double clicked, the source code of the file will be displayed in a text area
with pop-up dialog, from where user can view the detail content of the result file. And the
cloned source code fragments of the file are colored.

In the implementation, we notice that not all the information can be searched out
successfully. There are several “not sure” results in the license, copyright and last modified
time columns.
 The bottom panel in the tool displays the log information. It records keywords list,
downloading state, time cost for each search. It helps user to understand the results better.

4. Case study

We have conducted two case studies to explore applicability of Open CCFinder approach.
All these experiments of Open CCFinder have been performed under PC Workstation with
dual Xeon X5550 2.66GHz processors and 24 GB memory between Aug. 2011 and Sep.2011.

4.1 Case study 1: base64.java
Case study 1 is designed for the first raised question: When we find some useful source code,

can we reuse it safely?
Consider such a situation that we have found a file named base64.java in Apache

ObjectRelationBridge (Apache OJB) open source project [10] and we would like to reuse it.
The comments section in the source file represents that this file is under the Apache license.
But we wondered if this file is copied from somewhere else that may be under another license.
Then we take this base64.java file as input and search for similar files from open source
repositories using Open CCFinder.

Open CCFinder returns 57 other files from open source repositories that contain code clone
with the base64.java. For the limited space here, we cannot present all the detailed data of the
57 files. Instead we organized the data and draw a scatterplot view, as shown in Figure 6.

In the figure, the files are distributed by their cover ratio and last modified time. Licenses
are shown in different icon. From it we can observe the following:

� 55 source files from other projects contain code clones of base64.java. The last
modified time is varied from 2004 to current. The earliest file we can find in Open
CCFinder is under Apache license.

� In these files, the cover ratios are not the same, which may indicate these files reused
and modified from each other in different ways.

� Most of the licenses are found as not sure, while several files have been found under
MIT, LGPL, GPL, BSD, Apache or AGPL licenses.

Figure 6 Files that contain code clones with base64.java found by Open CCFinder

The “not sure” license means those files are under some licenses that Open CCFinder

cannot recognize. So we had to double click them in Open CCFinder and look into the
comments statement in source code. At last, we found that most of the “not sure” licenses are
described as “Public domain”. With further investigation by hand, we found a public domain
project named Base64 on the internet, which supposed to be the original one. With such
information, we are more confident to reuse the base64.java file of Apache OJB project. This
file is supposed to be a modified version from the public domain project base64 and legally
change it to the Apache license. So keep this file as Apache license is OK. Another choice is
to reuse the public domain code, and then we can change the file to some other license legally.

Though Open CCFinder cannot tell the answer of the first question directly, it helps us to
do the study easier.

4.2 Case study 2
Case study 2 is designed for the second question: Are our own open source projects

illegally reused by other people? In this case study, we investigate a Java project SSHTools,
try to find some files that illegally reused by other projects.

SSHTools is a Java SSH application providing Java SSH API, terminal and so on, which is
under the GPL license. We choose this project because it is widely used by other projects, and
its small project size which is easy to analyze.

0

0.2

0.4

0.6

0.8

1

Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12

C
ov

er
 R

at
io

Last modified time

not sure MIT license LGPL GPL BSD Apache AGPL

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

IPSJ SIG Technical Report

 6

Figure 7 The histogram of #input files in terms of #similar files found by Open CCFinder

Ignoring some tiny sized files, we have selected 339 files from SSHTools project (version
0.2.9, last modified time is 6-23-2007) as input files, and used the command tool of Open
CCFinder to analyses them. We counted the number of similar files found in open source
repositories for each SSHTools’ file, and also count the number of different license of similar
file. In this case study, we set up a threshold on cover ratio to filter out the similar files. Only
those files which cover more than 40% code of the queried file would be counted as similar
files. The result is shown as Figure 7. The figure shows the number of similar files found in
each of the 339 SSHTools’ files.

From this figure, we can observe that 305 of the 339 files contain code clones with other
files from open source repositories. 275 of them have less than 10 similar files found for each;
several files have 10-30 similar files found for each; one file has more than 30 similar files.

Besides, we also investigated the different licenses appeared in each similar file. SSHTools
is under GPL license. However, 285 files in SSHTools have similar files found with 1
different license, 10 files in SSHTools have similar files with 2 different licenses, and 1 file in
SSHTools have similar files with 3 different licenses.

We checked the detail of the data and found another project reusing SSHTools as a
third-party component, which named i-service project, stored in Google code repository is
under LGPL license. These two projects are both found out by Open CCFinder for most of the
searches. So it is not strange that there are many cloned files under 1 different license besides
GPL license. Those LGPL are almost from i-service project. We also checked the files whose
cloned files have 2 or 3 different licenses. There are several unusual source code reuse cases.
Here we only state one of them.

Table 2 The case that similar files are under 3 other license (partial results)
file path Project name Cover ratio license Last modified

/j2ssh-fork/src/com/sshtools/common/util/B
rowserLauncher.java

j2ssh-fork 0.91 GPL 2008/6/17

/de.fzj.unicore.rcp.terminal.ssh.gsissh/.../ss
htools/common/util/BrowserLauncher.java

unicore 0.89 LGPL 2010/2/3

/openfire/launcher/BrowserLauncher.java openfire-tomcat 0.88 Apache 2010/4/19

/dg/hipster/BrowserLauncher.java hipster 0.84 BSD 2006/10/12

… … … … …

Table 2 shows the similar files returned by Open CCFinder that 3 other different licenses

exist, along with extra information about file path, project name, cover ratio and last modified
time. For the space limitation, we only present a small part of the results here.

From this table, we can see the 4 files named BrowserLauncher.java with very high cover
ratio. It is reasonable for us to suppose some of them have been reused by each other. Beside
the GPL license, there are LGPL, Apache and BSD licensed similar files exist. But some of
the license changes should not happen. For example, to change a GPL license file to Apache
may cause legality problems.

This case study shows that Open CCFinder is helpful for answering the second raised
question. We can find candidates of the suspicious files easily and effectively by using this
tool.

5. Discussion

5.1 The availability of Open CCFinder
As shown in case study, Open CCFinder is helpful to analyze how source code is reuse. In

case study 1, from the open source repositories we search out many similar files of Apache
OJB’s file base64.java. With extra information about each file, we can know how the searched
code is used in different projects. Then developers’ reuse activity that we focus on become
easy and efficient. In case study 2, we analyzed a small java open source system named
SSHTools. Finally we search out thousands of other files from open source repositories
contains code clones with SSHTools’ files, among which there are several unusual cases that
may be illegal. Case study 2 also showed the availability of Open CCFinder.

However, this tool only provides some clues to get evidence, the final judgment on the
legality issue should be made by human after all.

34

143
132

16 10 1 2 1
0

20
40
60
80

100
120
140
160

0 1-4 5-9 10-14 15-19 20-24 25-29 >30

#i
np

ut
 fi

le
s

#similar files found by Open CCFinder

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

IPSJ SIG Technical Report

 7

5.2 Performance
It takes about 1-2 minutes for Open CCFinder to complete one search task, including

keyword extracting, downloading, collecting information and running CCFinder. Most of the
time is spend at downloading step. Network traffic and the size of file to be downloaded also
affect the executing time. Currently the tool is implemented as a single thread program,
therefor all the source files are downloaded sequentially. In the future we can improve it by
using multiple download threads, if not violate the terms of use of target repositories. Anyway,
the overall performance might be bounded by the performance of the code search engines and
the network environment.

5.3 Recall and precision
Open CCFinder searches for code clones in open source repositories using external code

search engines. So the recall and precision of this tool depends on those search engines. It is
difficult to evaluate recall of Open CCFinder quantitatively, because we could never know all
the files in open source repositories. In addition, the search process limits the recall. Open
CCFinder has to download files from the web, but considering the physical size of the disk
and searching performance, it cannot download all the files stored in open source repositories.
In the extremely case that millions of cloned files existing in open source space, Open
CCFinder would only download a small part of them and the recall would become very low.

The precision of Open CCFinder has been calculated. In this discussion, it is defined as the
ratio of files containing code clones to all the downloaded files. In case study 1, 62 files has
been downloaded, of which 55 files contain code clone with the queried file. The precision
can be simply calculated as 0.887; in the case study 2, overall we have downloaded 17054
files from internet, and 2480 of the files have been detected as containing code clone with the
files in SSHTools. So the average precision is 0.145. The precision in case study 2 is low.

Using filename as keywords can improve the precision a lot, but the recall will drop, for
missing some cloned files with different filename. Recall and precision highly depends on the
keyword select strategy.

5.4 Keyword ranking strategy
The most important question in keywords ranking is how to pick out the words that can

express the characteristics of cloned code fragment powerfully. We have discussed a lot about
it.

 However, for ease of implementation, currently there are only two strategies for keyword
ranking. One is to rank by frequency, another is to rank randomly. In the two case studies, we
applied the frequency strategy. But the low precision of 0.145 in case study 2 indicates that
this is not a good strategy. While randomly ranking sometimes get very good results, but not
stable.

In future work, we will implement some other keyword ranking strategy, for example, we
are about to apply the TF-IDF algorithm to build an incremental knowledge base in advance,
and then rank our words based on this knowledge base. This strategy is supposed to work
better.

6. Related work

6.1 Code clone detection
Code clone is one of very active research areas in software engineering [11]. There are

many research publications on detection algorithms, tools, empirical analyses, and
applications of code clones. Roy et. al. have summarized and categorized those researches
very well [12]; thus, we do not list up each of those here. Those studies mostly focus on the
efficiency, scalability, and accuracy of clone detection and analysis for the source programs
inside local repositories. We are interested in clone detection for the open source collection in
the Internet space.

6.2 Origin and Evolution of Code
There are many research studies on analyzing and tracing code origin, provenance,

evolution, genealogy, and so on through code clone analysis [13],[14],[15],[16],[17],[18].
Duala-Ekoko et. al propose Clone Tracker to trace and manage code clone history [19]. They
have developed a tool for supporting clone tracking, with abstract clone information named
clone region descriptor. Davies et. al. propose Software Bertillonage for determining the
origin of code entities with anchored signature matching method [20]. These researches are
closely related to our work. However, their objectives are different from ours in the sense that
they analyze various characteristics of code fragment in their local repositories. In our case,
we analyze the query code in Internet repositories.

6.3 Code Search Engines
Code search is not only a very emerging research area but also a very useful resource for

software engineers these days [21]. We have used Google Code Search and SPARS/R as the
code search engines in our Open CCFinder. Google Code Search provides search features
with keywords associated with optional attributes such as package names, languages, and
licenses. SPARS/R allows only keywords as its input. There are various different code search
engines with different types of query inputs and search mechanisms, but none of those
provides the code search features with both the code fragment query input and the code clone
detection.

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

IPSJ SIG Technical Report

 8

7. Conclusion

In this paper, we have proposed a novel concept for open code clone search, and presented
its search model and detailed processes for Open CCFinder which is a prototype system for
the open code clone search. We have conducted experiments with two case studies, which
show the applicability of our approach.

There are several future works. One is to improve the performance of the current prototype
implementation of Open CCFinder. Another would be to implement a new algorithm of
keyword extraction to get better recall and precision.

Acknowledgements This work was supported by KAKENHI (No.21240002,

No.23650015).

Reference

1) C. Ebert (ed.), “Open Source Software in Industry”, IEEE Software, Vol. 25, No. 3, pp. 52-53,
May/June 2008.
2) S. Livieri, Y. Higo, M. Matsushita, K. Inoue, “Very-Large Scale Code Clone Analysis and
Visualization of Open Source Programs Using Distributed CCFinder: D-CCFinder”, Proc. of 29th
International Conference on Software Engineering (ICSE 2007), pp.106-115, Minneapolis, MN,
May 2007.
3) Arne, P.H. 2008. "Jacobsen v. Katzer - Open Source License Validation: How Far Does It Go?," The
Computer & Internet Lawyer (25:11), pp 27-31.
4) J. Cordy, K. Inoue, R. Koschke, and S. Jarzabek (ed.), “4th International Workshop on Software
Clones (IWSC 2010)”, Cape Town, South Africa, May 2010.
5) C. K. Roy, James R. Cordy, R. Koschke, “Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach”, Science of Computer Programming, Vol. 74, No. 7, pp.
470-495, 2009.
6) Base64: Public Domain Base64 Encoder/Decoder, http://iharder.sourceforge.net/current/java/base64/
7) SSHTools Source Repository, http://sourceforge.net/projects/sshtools/.
8) K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto, “Ranking Significance of
Software Components Based on Use Relations”, IEEE Trans. on Software Engineering, Vol. 31, No. 3, pp.
213-225, Mar. 2005.
9) T. Kamiya, S. Kusumoto, K. Inoue: “CCFinder: A Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code”, IEEE Trans. on Software Engineering, Vol. 28, No. 7, pp. 654-670,

July 2002.
10) Apache e ObJectRelationalBridge – OJB, http://db.apache.org/ojb/
11) J. Cordy, K. Inoue, R. Koschke, and S. Jarzabek (ed.), “4th International Workshop on Software
Clones (IWSC 2010)”, Cape Town, South Africa, May 2010.
12) C. K. Roy, James R. Cordy, R. Koschke, “Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach”, Science of Computer Programming, Vol. 74, No. 7, pp.
470-495, 2009.
13) M. Godfrey, and L. Zou, “Using Origin Analysis to Detect Merging and Splitting of Source Code
Entities”, IEEE Tran. on Software Engineering, Vol. 31, No. 2, Feb. 2005.
14) C. Kapser, and M. W. Godfrey, “’Cloning considered harmful’ considered harmful: Patterns of
cloning in software”, Empirical Software Engineering, Vol. 13, No. 6, pp. 645-692, 2008.
15) S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABlue: An Automatic Categorization
System for Open Source Repositories”, J. of Systems and Software Vol. 79, No. 7, pp.939-953, 2006.
16) M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study of code clone genealogies,”
Proc. of Foundations of Software Engineering (ESEC/FSE 2005), Vol. 30, No. 5, pp. 187-196, Lisbon,
Portugal, Sep. 2005.
17) A. Lozano, M. Wermelinger, B. Nuseibeh, “Evaluating the Harmfulness of Cloning: A Change Based
Experiment”, Proc. of Mining Software Repositories (MSR 2007), p. 18-21, Minneapolis, MN, May
2007.
18) S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An empirical study on the
maintenance of source code clones”, Empirical Software Engineering, Vol. 15, No. 1, pp. 1-34, 2009.
19) E. Duala-Ekoko, M. P. Robillard, “Clone Region Descriptors: Representing and Tracking Duplication
in Source Code”, ACM Tran. on Software Engineering, Vol. 20, No. 1, Article 3, pp. 3.1-3.31, Jun. 2010.
20) J. Davies, D. M. German, and M. W. Godfrey, “Software Bertillonage: Finding the Provenance of an
Entity”, Proc. of Working Conference on Mining Software Repositories (MSR 2011), pp. 183-192,
Honolulu, Hawaii, May 2011.
21) S. Bajracharya, A. Kuhn, and Y. Ye (ed.), “Workshop on Search-driven Development: Users,
Infrastructure, Tools and Evaluation”, Cape Town, South Africa, May 2010.

ⓒ 2011 Information Processing Society of Japan

Vol.2011-SE-174 No.2
2011/11/1

