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あらまし カーネルモジュールは、同じアドレス空間で実行しており、カーネルモジュールに対す
るアクセス制御や隔離がなく，カーネルルートキット (Kernel Rootkit)の根本的な発生原因となっ
ている。この論文で専用ハイパーバイザー (Barrier)設計し、カーネルモジュールを分離する。信
頼性と重要性に基づき異なるアドレス空間内にカーネルモジュールを分割し、それぞれに割り当
てられたメモリページを追跡する。実行時には、Barrier は現在のアドレス空間のためにホストレ
ベルのページテーブル (HPT)内に最小のメモリマッピングのみを提供する。結果として、カーネ
ルモジュールは、秘密裏に自分のアドレス空間外のメモリにアクセスすることはできない。
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Abstract The root-cause of kernel-rootkits is that current OSes lack of memory access control

within the kernel space: once a kernel module is loaded into the kernel, it is granted the highest

privilege and can access the whole kernel memory without any limitation. Targeting this prob-

lem, we present Barrier, a lightweight hypervisor designed for enhancing the kernel integrity by

isolating the kernel modules. Specifically, it leverages the hardware-supported memory virtual-

ization to isolate the memory pages of kernel modules with different importance and trustiness.

All the cross-address-space interactions have to go through a strict mediation according to some

access control policies, which will greatly increase the attacker’s hardness to compromise the

kernel integrity.

1 Introduction

Operating system (OS) is the core of a computer
system. However, these years the OS security is
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seriously threatened by a class of malware that di-
rectly run in the kernel space. They are known as
Kernel Rootkits. The hackers make use of them to
hide their malicious processes and files, steal pri-
vate data and even play the role of back doors to
wait and execute their commands from the remote.
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Because the kernel rootkits directly comprise the
kernel, it’s hard to defend them with traditional
antiviruses or IDSes that rely on the information
provided by the kernel. In fact, no security tools
within or above the OS kernel can well counter the
kernel rootkits. The reason is simple: if such a tool
can disable a rootkit, the rootkit can also disable
this tool because they have the same privilege. So
a better way is to move the countering measures
into a more privileged layer that is independent of
the OS kernel. By doing this, they are protected
from being affected by the kernel rootkits. A good
place to realize this idea is in the Hypervisor (i.e.,
Virtual Machine Monitor), which is an additional
layer between the OS kernel and the hardware. It
can help us intercept all the hardware accesses in-
cluding memory operations from the OS. We may
place some prevention logic here to safely capture
those illegal memory writings inside the kernel that
indicate the existence of kernel rootkits. Since the
hypervisor is of higher privilege compared with the
OS kernel, the kernel malware have no rights to
disable the prevention logic on this layer. This
method has become one of the major approaches
to protect the OS security. In this research, we
present Barrier, a lightweight hypervisor designed
for enhancing the kernel integrity by isolating the
kernel modules.

2 Related Works

The current hypervisor-based kernel protection
approaches can be mainly divided into three cate-
gories.

The first category works by preventing critical
kernel data in the memory from being tampered
with [6, 7, 14]. They mark those memory pages
containing critical data read-only in the page ta-
bles that are maintained by the hypervisor. By
doing this, any attempt to modify these read-only
pages will raise page faults and be further veri-
fied by the hypervisor. These systems suffer two
problems: firstly, it is hard to collect all the criti-
cal kernel data scattered across the kernel pages as
well as their access profiles. Secondly, many critical
data are co-located together with frequently mod-
ified data. If marking them as read-only, many
unnecessary page faults will greatly slow down the
execution of the guest system.

The second category works by preventing exe-
cuting unapproved kernel codes in the kernel space[3,
4, 5]. For example, in the SecVisor system [3], the
hypervisor assigns the rights of read and execute
to the memory pages occupied by the approved

kernel codes while marks all the other pages non-
executable. As a result, malicious codes out of the
original kernel are prevented from being executed.
This approach also has several critical disadvan-
tages: firstly, it’s hard to deal with those mixed
pages containing both code and data. Secondly,
some kernel malware such as the return-oriented
rootkits [1] do not load any new codes but just uti-
lize existing kernel codes to launch attacks. This
approach is helpless to such malware.

The last category including HUKO [9] and Gate-
way [10] works by isolating untrusted kernel ex-
tensions from the original kernel. However, they
only isolate dynamically loaded extensions but not
other modules in the kernel. In addition, neither
HUKO nor Gateway isolate untrusted extensions
themselves from each other. As a result, they can
freely attack each other.

3 Barrier Design

3.1 Overview

The root cause of kernel malware is the lack
of memory access control (MAC) within the ker-
nel space: each kernel module including the user
drivers is granted the highest privilege and can
access the whole memory space without any limi-
tation. So, Barrier aims to enhance the integrity
of the kernel by isolating the kernel modules and
preventing them arbitrarily access each other’s ad-
dress space.

Specifically, Barrier implements the MAC poli-
cies defined in Table 1 for different kernel modules.
We classify the kernel modules into three types
based on their trustiness and importance: Trusted
& Critical (T & C) modules, Non-Trusted & Criti-
cal (NT & C) modules and Non-Critical (NC) mod-
ules. We say a module is trusted when it is verified
benign and contains few vulnerabilities that can be
exploited by the attackers. So trusted modules are
allowed to read and write the whole guest mem-
ory. However, they are prevented from arbitrar-
ily executing code of non-trusted modules because
this will damage their trustiness. We say a module
is important (critical) when its code and data are
critical, and must be protected from being accessed
from non-trusted modules. On default, in Barrier,
core-modules are considered trusted and critical (T
& C), while all the other modules are considered
critical but non-trusted (NT & C). Since the NC
modules are not critical, we exclude them from our
protection. Fig.1 shows the basic architecture of
Barrier. We will describe how it enforces the MAC
policies defined in Table 1.
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表 1: MAC Policy used by Barrier within kernel space

Targets
T&C Modules NT&C Modules NC Modules

Read Write Execute Read Write Execute Read Write Execute

T&C Modules allow allow allow deny deny audit deny deny audit

NT&C Modules allow allow audit deny deny audit deny deny audit

NC Modules allow allow audit allow deny audit allow allow allow

User Space Content allow allow audit allow deny audit allow deny audit

3.2 Barrier Hypervisor

Barrier Hypervisor is the core of our system.
Most components of Barrier are located on this
layer. This prevents them from being affected by
the malicious codes in the OS. We can directly
use commodity hypervisors such as Xen and Vir-
tualBox. However, these general-purpose hypervi-
sors are designed for servers that have the require-
ment to run multiple operating system instances
concurrently on a single computer. They spend
great efforts on the isolation of different OS in-
stances and the coordination of concurrent hard-
ware accesses. If we directly construct Barrier on
these commodity hypervisors, we have to suffer
unnecessary performance overheads because Bar-
rier is mainly designed for enhancing the security
of personal computers, which rarely run multiple
OSes but just an exclusive OS. Thereby, we de-
cide to construct a specialized lightweight hypervi-
sor for Barrier. Nevertheless, Barrier can be easily
portable to the commodity hypervisors.

We make use of hardware virtualization support,
which is offered by both recent Intel processors
(Intel-VT [13]) and AMD processors (AMD-SVM
[15]), to implement the full virtualization. When
this hardware feature is turned on, the guest OS
becomes running in an additional VM mode. In
this mode, the page tables (PTs) in the OS can
be only used to translate linear addresses (LAs)
to guest physical addresses (GPAs), which are not
machine addresses (MAs) used by CPU. MMU has
to utilize another layer of PTs that are created and
maintained by the hypervisor to translate the in-
termediate GPAs to the final MAs. These hypervi-
sor PTs (HPTs) are invisible to the guest OS, and
only the hypervisor has the rights to update them.
Since each page table entry contains several bits
that can control the accesses to the corresponding
memory page, HPTs become a good place for Bar-
rier to perform module-level MAC provided that it
can accurately locate memory pages occupied by

each kernel module.
We reserve a region of x MB in the high memory

for the Barrier hypervisor. The remained memory
is used by the Guest system. From the perspec-
tive of the gust, the size of the physic memory is
(m - x) MB but not the original value m. The
HPTs created by the hypervisor for the guest sys-
tem are located within the hypervisor region. We
fill them with identity mappings, which means the
final MAs are identical to their GPAs after the
translation. Because the HPTs do not contain the
mappings for the VMM region, the guest system
is prevented from accessing this region. Any at-
tempts to violate this rule will raise page faults
and then be trapped into the hypervisor. So the
hypervisor is completely isolated from the guest
system.

3.3 Address Space Isolation

In this section, we describe the isolation com-
ponent in Barrier. It is responsible for isolating
the address spaces of different modules so as to
prevent one malicious module affecting modules in
other address spaces.

3.3.1 T&C Address Space

All the T&C modules are isolated into one ad-
dress space called T&C Address Space. Barrier
creates a separate set of HPTs (A-HPTs) for this
address space. The A-HPTs are filled in identical
mappings for the whole machine memory owned by
the guest system. However, different type of pages
are granted different access permissions in their
corresponding page table entries: code pages occu-
pied by the T&C modules are marked executable
and readable, while all the other pages are marked
writable but no-executable. This can ensure the
following issues when the host CR3 is made to
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point to A-HPTs: (1) only the codes belonging to
the T&C modules have the right to execute. This
protects the T&C modules from being modified by
malicious codes in other modules because they are
prevented from executing. (2) The T&C modules
can freely read and write the memory of other mod-
ules. We can find that they are consistent with the
MAC policies defined for T&C modules in Table 1.

3.3.2 NC Address Space

Similar with the T&C modules, all the NC mod-
ules are also isolated into a unified address space
called NC Address Space. They use another set of
HPTs named C-HPTs to access the machine mem-
ory. However, different from A-HPTs, C-HPTs are
only filled in identical mappings for the memory
pages occupied by the NC Modules as well as their
guest PTs. All the other entries are left blank.
As a result, the NC modules are limited to access
NC modules. And attempts to access other critical
modules will raise page faults and be trapped into
the hypervisor for mediation. This is also consis-
tent with the MAC policies defined for NC modules
in Table 1.

3.3.3 NT&C Address Spaces

NT&C modules are different from other mod-
ules: they cannot be isolated into a unified address
space because according to Table 1, they have to be
isolated from each other, i.e., one NT&C module
cannot freely access the code or data of another
NT&C module. Therefore, each NT&C module
should be put in a separated address space. For
efficiency, all these address spaces are still made
to share a common set of HPTs, called B-HPTs.
At first, B-HPTs are left empty. At runtime, when
the system control comes to a specific NT&C, Bar-
rier dynamically creates the corresponding map-
pings for memory pages occupied by this module:
its code pages are marked executable and read-
able, while its data pages are marked readable and
writable. Therefore, while a NT&C module gains
the CPU, it can only access its own code or data.
So it is completely isolated from any other mod-
ules, which is consistent with the MAC policies
defined in Table 1.

3.3.4 Address Space Profiling

From the above, we can find that in order to cre-
ate dedicated HPTs for an address space, Barrier

has first to accurately locate the memory pages oc-
cupied by its modules in the kernel memory. This
task is not hard for the static modules because
their locations are fixed at the compiling time. How-
ever, for the dynamic extensions, since their lo-
cations are never fixed until they are loaded into
the kernel at runtime, the situation becomes much
more complex. Barrier has to intercept the module
loading events so as to associate the memory pages
with the dynamic modules in time. In addition,
because both static and dynamic modules may dy-
namically allocate or deallocate memory, Barrier
is also required to trace these events so as to ex-
tend or shrink the corresponding address spaces.
Because the page limitation, we will not present
the detailed approach here. Based on the location
data, Barrier is made to maintain a profile for each
address space, which is composed of (1) the type of
the address space, (2) the machine address range of
each code and data block, and (3) the page number
range of each code and data block. These profiles
are used by the isolation component to create and
update the HPTs.

3.4 Address Space Switching

As the execution of the guest system, the con-
trol is keeping switching among different address
spaces. In general, Barrier has two kinds of ad-
dress space transitions: one involves the switching
of HPTs and another involves the dynamic updat-
ing of B-HPTs. Now, let’s discuss their details.

The first type of address space switchings hap-
pens when a kernel module jumps to execute the
codes in another module with different trustiness
or importance. For example, assume the guest sys-
tem is currently running in a T&C module M1,
and at some position, it calls a function in an-
other module M2, which is a NT&C or NC mod-
ule. In this case, since the A-NPTs, which are cur-
rently being used by MMU, do not grant execute
permission to the code pages of M2, a host-level
page fault is raised, and the guest system exits
and traps into the hypervisor. If this transition
passes the mediation in the hypervisor world, Bar-
rier reloads the hCR3 with the base address of the
target HPTs, which immediately switches the ad-
dress space. Then, Barrier can resume the execu-
tion of the guest system in M2.

The second type of address space switchings is
due to the control transitions within NT&C mod-
ules. Assume the guest system is running in M1,
which is a NT&C module, and at some position,
it calls a function in another NT&C module, M2.
Then, the control flow has to transfer from M1 to
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M2, which will trigger the address space switch-
ing: (1) Since the current B-HPTs do not con-
tain the mappings for the memory pages of M2,
a host-level page fault is raised by the CPU and
then the system traps in to the Barrier hypervisor.
(2) Barrier checks whether this interaction is legal.
If legal, Barrier quickly decides the target module
based on the address of the target function. And
then, it modifies the B-HPTs to make them map
the address space of M2. This mainly involves two
things: firstly, the corresponding entries for the
memory pages of M2 should be filled in; secondly,
the original mappings for M1 should be erased so
as to isolate these two modules. (3) Go back to the
guest system and begin to execute the function in
M2.

3.5 Mediation

With the above isolation component, the exe-
cution of instructions corresponding to the ”Au-
dit” and ”Deny” actions in Table 1 will cause page
faults and then be trapped into the hypervisor.
The goal of mediation is to validate these events
and then take appropriate actions.

When a hypervisor-level page fault is captured,
Barrier first decides which event in Table 1 occurs
by examining the following information: (1) the
qualification bits which reveal the actual type of
the violation, (2) the current module, and (3) the
target module. If it is a ”Deny” event, Barrier
directly denies it and triggers a protection alarm.
However, if it is ”Audit”, a more careful examina-
tion is needed before making any further decision.

The basic rule to approve those ”Audit” events is
that the fault addresses must point to some objects
that are exported by their owner modules. For
example, if the instruction is a function call, then
the target function must be exported and exist in
the symbol table of the kernel. This prevents one
module from accessing unauthorized functions or
jumping to arbitrary positions in another module
belonging to a different address space.

4 Evaluation

4.1 Protection Effectiveness

In this section, we evaluate the effectiveness of
Barrier for the kernel integrity protection against
the threats described in Sec. 2. We do this with

four representative real-world kernel rootkits 1 and
two self-designed malicious LKMs. When these
malware are loaded into the kernel, they are re-
garded as the only non-trusted modules and are
isolated into their own NT&C address spaces. The
results are presented in Table 1.

We evaluated the performance overheads of Bar-
rier by running a set of programs to compare their
performance with and without Barrier. All the
programs and their workloads are presented in Ta-
ble 2. The first three are I/O-bound (Disk and Net-
work), while the last three are CPU-bound. They
can test the performance of the guest system in
different aspects. For the cat and gzip, we marked
the concrete file system ext4 and the disk driver as
the NT&C modules and isolated them into their
own address spaces. The ext4 is a static module.
We located and isolated it based on the built-in.o
file in linux-src-dir/fs/ext4. The disk driver on
our system is composed by two dynamic modules,
ahci and libahci, which are both located in linux-
src-dir/drivers/ata. Because the workloads of cat
and gzip are disk I/O-bound, these modules are ac-
cessed most frequently and cause the highest rates
of address-space transitions. Hence, we can get
the worst-case performance of Barrier by isolating
them. For the ncft, since its workload is network
I/O-bound as well, we also isolated the network in-
terface card driver, which is the dynamic module
r8169 on our system. For the three CPU-bound
tests, since they only involve the core-kernel, it is
trivial to isolate any other kernel modules.

We did experiments on an HP notebook with
an AMD 1.66 processor, 2GB of memory and a
100Mbps ethernet card. The experiment results
are shown in Table 3. We ran each program for
five times and all the results are reported as their
average values. We can find that the performance
overheads introduced by Barrier in these programs
vary from 17% to 0% compared with their native
speeds. The performance overheads are propor-
tional to the frequency of address space transitions.
The three CPU-bound tests show a good result
because they involve no address space transitions.
This also demonstrates the high efficiency of the
memory virtualization based on AMD-SVM. The
overheads in the other three cases are much higher
because all of their workloads are (disk or network)
I/O-intensive, which brings the highest frequency
of address space transitions. Given that they are
the worst cases, they are acceptable.

1Note that the original versions of these rootkits
cannot be installed on the high version of Linux kernel
including 2.6.31. So we modified them according to our
kernel, but their basic ideas remain the same.
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表 2: Protection effectiveness of Barrier against a set of kernel malware

Kernel Malware Damaged Integrity Property Barrier HUKO Gateway

EnyeLKM Code Integrity of T&C AS yes yes yes

all-root Non-Control Data Integrity of T&C AS yes yes yes

adore-ng Control Data Integrity of T&C AS yes yes yes

lvtes Code Integrity (call unauthorized function) yes yes yes

MalLKM1 Data Privacy yes no no

MalLKM2 Data Integrity of NT&C AS yes no no

表 3: Performance results of benchmark programs

Benchmark # of Transitions Native Performance Barrier Performance %

Cat 231,327 14.7s 16.53s 88%

gzip 101,308 14.2s 15.87s 89%

ncftp 2,521,674 36.86s 44.27s 83%

Dhrystone 2 N/A 6,829,814lps 6,676,941lps 97%

Whetstone N/A 1351mwips 1350mwips 100%

Process Creation N/A 322ms 327ms 98%

5 Conclusion

We have presented the design and implementa-
tion of Barrier: a lightweight hypervisor designed
to enhance the kernel integrity. It leverages hard-
ware virtualization technology to isolate the kernel
modules into different address spaces so as to cap-
ture the malicious interactions among them caused
by the kernel malware. Since Barrier takes all the
kernel modules into consideration, it better pro-
tects the kernel integrity compared with those pro-
posals just isolate the dynamic extensions. Our
evaluations on Linux show that Barrier brings ac-
ceptable performance overheads to the running of
the protected system.
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