
Efficient Implementation of the McEliece Cryptosystem

Takuya Sumi† Kirill Morozov‡ Tsuyoshi Takagi‡

†Department of Mathematics, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

‡Institute of Mathematics for Industry, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

Abstract The code-based McEliece public key cryptosystem (PKC) is a prospective candidate for postquantum
encryption. This paper presents a C++ implementation of the McEliece PKC for security parameters (m =
11, n = 2048, t = 31, 51, 81) and (m = 12, n = 4096, t = 41, 62, 101), for k = n−mt in each parameter set. For
example, the parameter set (n = 2048, t = 51) provides the security level equivalent to 95-bit AES, while the
others are chosen for comparision in various ways. Key generation and decryption are not much optimized,
moreover, we only implement the decoding of the Goppa code, and we only report the timing of decoding. For
example, in our implementation with (n = 2048, t = 51), key generation takes about 47 seconds, encryption
about 1 millisecond, and decryption (decoding) about 278 milliseconds. For comparison to the previous works,
for (n = 2048, t = 50), Strenzke at WISTP 2010 reports an implementation of a variant of the McEliece PKC
(which is somewhat more complicated than the original one), where encryption is performed in 1.2 millisecond
on an environment comparable to ours with 2GHz CPU against 3.2 GHz CPU with us. However his decryption
timing is 1.6 milliseconds, which rules our implementation not competitive in this aspect. Our future work is
to complete and to optimize our current implementation.

1 Introduction

The McEliece PKC [20] is a prospective candidate for
the future public key encryption [3, App. A]. Shor’s
algorithm can be implemented on a quantum com-
puter to break many PKC’s: RSA, ElGamal and their
derivatives, which appear in standards, and which are
widely used in practice. Quantum computers cur-
rently exist only as “proof-of-concept” prototypes, but
full-scale devices may appear in the upcoming decades.
The syndrome decoding problem [1] cannot be effi-

ciently solved even by quantum computers. Security
of the McEliece PKC is based on hardness of the prob-
lems related to syndrome decoding [26]. In details,
the syndrome decoding problem has long known to
be NP-complete [1], however the security of this PKC
is based on hardness of bounded distance decoding of
a permuted Goppa code [11, 19, 23]. Breaking of the
McEliece PKC is believed to be infeasible for properly
chosen parameters [9, 10, 3].
This paper presents a C++ implementation of the

McEliece PKC for security parameters (m = 11, n =
2048, t = 31, 51, 81) and (m = 12, n = 4096, t =
41, 62, 101), for k = n − mt in each parameter set.
Key generation and decryption are not much opti-
mized, moreover, we only implement the decoding of
the irreducible Goppa code, and we only report the
timing of decoding.
In the encryption algorithm, we use the SSE2 and

SSE4a operations [22] for optimizing matrix multipli-
cation. For decryption, we use Patterson’s decoding
algorithm [25] for binary irreducible Goppa codes. In
fact, we use standard efficient algorithms for finite
fields: the Extended Euclidean algorithm for comput-
ing inverses, a square root algorithm [13, p. 136] (see

also [4]) with table lookup and the Cantor-Zassenhaus
algorithm for finding roots of a polynomial [6, p. 127].
For example, the parameter set (n = 2048, t = 31),

provides the security level equivalent to 80-bit AES,
a commonly accepted minimum level of security. Key
generation, encryption and decoding take about 30
seconds, 1 millisecond and 116 milliseconds, respec-
tively. At the same time, the parameter set (n =
2048, t = 51) provides 95-bit security, but key genera-
tion now takes about 47 seconds and decoding about
278 milliseconds. This is about 1.57 and 2.4 times
more, respectively, as compared to the previous pa-
rameter set, while encryption takes about the same
time.
In the recent years, a few implementations of the

McEliece PKC and its variants have been reported.
The works by Döring [7], Biswas [4], Strenzke [27], and
Hoffmann [15] use a personal computer with CPU. An
implementation on GPU is introduced by Howenga
[16]. Implementations for embedded and memory-
constrained devides are presented by Eisenbath et al
[8], Strenzke [27], and Heyse [12]. Side-channel and
power analysis attacks are studied by Heyse et al [14]
(see also the references therein).
In general, it is hard to compare the CPU imple-

mentations to ours, as well as between each other,
because they implement different modifications of the
McEliece PKC. For a rough comparison, we chose the
CPU implementation by Strenzke [27, Sec. 2], which
implements the modification of the McEliece PKC
by Overbeck [24]. In fact, this work provides timing
for both smartcards and the personal computer with
CPU – we are only interested in the latter. Note that
this implementation is more involved as compared to
ours. For (n = 2048, t = 50), Strenzke reports [27,

Computer Security Symposium 2011
19-21 October 2011

- 582 -



Tab. 2] encryption in 1.2 millisecond on an environ-
ment comparable to ours with 2GHz CPU against 3.2
GHz CPU with us. However, his decryption timing
is 1.6 milliseconds, which rules our implementation
not competitive in this aspect. Some more details are
provided in Section 4.1.
Our future work is to complete and to optimize our

current implementation.

2 McEliece Cryptosystem

2.1 Notation and Definitions

For some q, k, n ∈ N, when working over Fq, a set of
vectors of size n is denoted by Fn

q , and a set of k × n

matrices is denoted by Fk×n
q . We write x ∈ Fn

q as
(x1, . . . , xn).
For an ordered subset {ji, . . . , jm} = J ⊆ {1, . . . , n}

we denote the vector (xj1 , . . . , xjm) ∈ Fm
q by xJ . Sim-

ilarly, we denote by MJ the submatrix of a (k × n)
matrix M consisting of the columns corresponding to
the indices of J .
The identity matrix of size n is written as In. De-

note by Diagn(·) the diagonal matrix of size n with
the arguments being the elements of the main diago-
nal. Denote by “[X|Y ]” a concatenation of matrices
X and Y of appropriate size.
Denote by “⊕” the bitwise exclusive-or.
A q-ary (n, k)-code C over a finite filed Fq is a k-

dimensional subspace of the vector space Fn
q ; n and k

are called the length and the dimension of the code,
respectively. We call C an (n, k, d)-code, if its so-called
minimum distance is d := minx,y∈C dH(x,y), where
dH denotes the Hamming distance (i.e. the number of
position where x and y are different). The distance of
x ∈ Fn

q to the zero-vector wt(x) := dH(0,x) is called
the weight of x.
We will work with the tower of finite fields F2mt ≃

F2m [X]/g(X), where g(X) ∈ F2m [X] is irreducible
and deg(g(X)) = t for some m, t ∈ N defined in the
next section.

2.2 Key Generation

In the McEliece PKC, the secret key is an (n, k, d)
irreducible binary Goppa code [11, 19, 23] correcting
up to t errors. The security parameters are (n, t).
Such the code is defined by the code support L =
(γ0, . . . , γn−1) ∈ Fn

2m , where m = log2 n, and an irre-
ducible polynomial g(X) ∈ F2m [X] of degree t. We
set k = n−mt.
Key generation is described in Algorithm 1.

2.3 Encryption

A plaintext is an arbitrary non-zero binary vector of
length k, i.e. m ∈ Fk

2 \ 0. A ciphertext c ∈ Fn
2

is the codeword of the code with generator matrix

Algorithm 1 Key Generation

INPUT: L = (γ0, . . . , γn−1) ∈ Fn
2m , g(X) ∈ F2m [X]

with deg(g(X)) = t
OUTPUT: The public key pk = (Gpub ∈ Fk×n

2 , t);
the secret key sk = (L, g(X), P ), where P ∈ Fn×n

2 is
a permutation matrix.

1: Y =


1 1 · · · 1
γ0 γ1 · · · γn−1

...
...

. . .
...

γt−1
0 γt−1

1 · · · γt−1
n−1


2: Z ← Diagn(g(γ0)

−1, g(γ1)
−1, . . . , g(γn−1)

−1)
3: H ← Y Z
4: Represent H ∈ Ft×n

2m as H ′ ∈ Fmt×n
2 by substitut-

ing each hij ∈ F2m with an element of Fm×1
2 .

5: Compute a reduced row echelon form of H ′
r =

[A|Imt], where A ∈ Fmt×k
2

6: G← [Ik|AT ]
7: Generate a random S ∈ Fk×k

2 of rank k
8: Generate a random permutation matrix P ∈

Fn×n
2

9: Gpub ← SGP
10: return pk = (Gpub, t), sk = (L, g(X), P )

Gpub, which is distorted by a random noise of weight
exactly t. We assume that the error vector e ∈ Fn

2 of
weight t has been pre-computed in advance from some
source of local randomness. Encryption is described
in Algorithm 2.

Algorithm 2 Encryption

INPUT: pk = (Gpub ∈ Fk×n
2 , t ∈ N), m ∈ Fk

2 ,
e ∈ Fn

2 with wH(e) = t
OUTPUT: c ∈ Fn

2

1: y←mGpub

2: c← y ⊕ e
3: return c

2.4 Decryption

The decryption procedure, described in Algorithm 3,
uses decoding of the irreducible Goppa code as its
main subroutine denoted by Decode(·). The latter
uses Patterson’s decoding algorithm [25], which is de-
scribed in Algorithm 4. On input c ∈ Fn

2 , it outputs
either y = c ⊕ e, where e ∈ Fn

2 is the error vec-
tor computed by the decoding algorithm, or a special
symbol “⊥” in the case of decoding error. In Step 1
of Algorithm 4, the values (X − γi)

−1 mod g(X) are
independent from the input, therefore we pre-comute
them in order to improve performance.
Inversion over F2m [X]/g(X) in Steps 1 and 3 of Al-

gorithm 4 is computed using the Extended Euclidean
Algorithm. For instance in Step 1, we are looking for
Inv(X) ∈ F2m [X]/g(X), such that (X−γi)Inv(X) ≡

- 583 -



1 mod g(X), so that this algorithm is used to com-
pute h(X) such that g(X)h(X)+(X−γi)Inv(X) = 1.
In the same manner, this algorithm is used also in
Step 3.
Square root over F2m [X]/g(X) is computed using

Algorithm 5 – an adaptation of the square-root algo-
rithm over F2m from [13, p. 136] (see also [4]). For
Step 3, we pre-compute a lookup table for the square
roots over F2m , also we pre-compute the polynomials
Ri(X) in Step 2.
The so called key equation in the decoding algo-

rithm is given by

β(X)τ(X) ≡ α(X) mod g(X), (1)

where τ(X) ∈ F2m [X]/g(X) is computed in Step 4
of Algorithm 4, α(X), β(X) ∈ F2m [X], degα(X) ≤
⌊t/2⌋, deg β(X) ≤ ⌊(t− 1)/2⌋.

Algorithm 3 Decryption

INPUT: sk = (L, g(X), P ) as described in Alg. 1;
c ∈ Fn

2

OUTPUT: m ∈ Fk
2 or ⊥

1: c← cP−1

2: y = Decode(L, g(X), c) /* See Alg. 4
3: if y = ⊥

return ⊥ /* Decoding error
4: Compute GJ ∈ Fk×k

2 with J ⊆ {1, . . . , n} s.t.
rank(GJ ) = k

5: m← yJ(GJ )
−1S−1

6: return m

3 Environment and Implemen-
tation

3.1 Environment

For implementation and calculation of timing, we use
a personal computer with the following environment:
CPU AMD Phenom II X6 1090T 3.20 GHz, RAM
4.00 GB, OS Windows 7 Enterprise 64 bit, compiler
Visual C++ 2010 Express Edition.

3.2 Implementation

In our implementation, we represent F2m as F2m ≃
F2[Y ]/f(Y ), where f(Y ) is an irreducible polynomial
and deg(f(Y )) = m.
For instance, for F2m , we take f(Y ) = Y 11+Y 2+1.

The elements of F211 are represented as polynomials
of degree at most 10 with coefficients in F2: ci ∈
F2, 0 ≤ i ≤ 10, A = c10Y

10 + c9Y
9 + · · · + c1Y

1 +
c0 ∈ F211 . We use a 32 bit integer to represent these
polynomials as a bit sequence: 0 · · · 0c10c9 · · · c0. The
four basic arithmetical operations are defined by using
bit operations.

Algorithm 4 Error correction of binary irreducible
Goppa codes

INPUT: L = (γ0, . . . , γn−1) ∈ Fn
2m ,

g(X) ∈ F2m [X] with deg(g(X)) = t
c = (c0, . . . , cn−1) ∈ Fn

2

OUTPUT: y ∈ Fn
2 or ⊥

1: /* Computation of the syndrome

Sc(X)←
∑n−1

i=0 ci(X − γi)
−1 ∈ F2m [X]/g(X)

2: /* Check if c is a codeword
if Sc(X) = 0 then

return c

3: /* Inverse over F2m [X]/g(X)
T (X)← S−1

c (X) ∈ F2m [X]/g(X)

4: /* Square root over F2m [X]/g(X) (See Alg. 5)
τ(X)←

√
T (X) +X ∈ F2m [X]/g(X)

5: /* Solving the key equation (See Alg. 6)
σ(X)← α(X)2 +Xβ(X)2 ∈ F2m [X],
deg(σ(X)) ≤ t; α(X), β(X) are defined in (1)

6: /* Root-finding for σ(X) (See Alg. 7)
Roots← Root-finding(σ(X)) ∈ Fn

2m

7: for i = 0 to n− 1 do
8: for j = 0 to n− 1 do
9: if Rootsi = γj then ei ← 1

else ei ← 0
10: /* If no roots were found, return an error

if e = 0 then
return ⊥

11: y← c⊕ e
12: return y

The C++ class template provides us with generic
programming. In our implementation, fields, field ele-
ments, polynomials and matrices are implemented by
using class template.
In matrix operations over F2, we use the template

specialization to override the default template imple-
mentation in order to realize fast computation. In
particular, we use operations SSE2 and SSE4a. If an
Intel CPU is used, one can also use SSE4 instead of
SSE4a. The matrices are stored in memory column-
by-column. Each column data are represented as a bit
sequence and stored in a continuous memory block.
Then, 128 bit SSE operations can be used to real-
ize matrix computations. In 128 bit SSE operations,
we use the mm loadu si128 instruction to load col-
umn data to a CPU register from memory and the
mm storeu si128 instruction to store the result-
ing data to memory from the CPU register. The
mm xor si128, mm and si128 and popcnt in-
structions are used in addition, multiplication and
bitwise exclusive-or operations. In order to measure
time, we use a performance counter.
This counter provides us with nano second resolu-

tion in our environment.

- 584 -



Algorithm 5 Computation of a square root over
F2m [X]/g(X)

INPUT: Q(X) = q0 + q1X + . . . + qt−1X
t−1 ∈

F2m [X]/g(X);
g(X) ∈ F2m [X] with deg(g(X)) = t
OUTPUT: τ(X) =

√
Q(X) mod g(X)

1: Sq(X)← X2mt−1

mod g(X) /* Sq(X) =
√
X

2: for i = 0 to ⌊t/2− 1⌋ do
Ri(X) = XiSq(X) mod g(X)

3: for i = 0 to t− 1 do
q′i = q2

m−1

i /* Computation over F2m

4: Qeven(X)←
∑⌊(t−1)/2⌋

i=0 q′2iX
i

5: Qodd(X)←
∑⌊t/2−1⌋

i=0 q′2i+1Ri(X)
6: τ(X)← Qeven(X) +Qodd(X)
7: return τ(X)

Algorithm 6 Solving the key equation

INPUT: τ(X) ∈ F2m [X]/g(X)
OUTPUT: σ(X) ∈ F2m [X] with deg(g(X)) = t

1: /* Extended Euclidean Algorithm
2: i← 0; r−1(X)← g(X); α−1(X)← g(X);

r0(X)← τ(X); α0(X)← τ(X);
β−1(X)← 0; β−1(X)← 1

3: while deg(ri(X)) ≥ ⌊t/2⌋ do
4: i← i+ 1
5: By polynomial long division ri−2(X)

ri−1(X) ,

compute qi(X) and ri(X) s.t.
ri−2(X) = qi(X)ri−1(X) + ri(X)
and deg(ri(X)) < deg(ri−1(X))

6: βi(X)← βi−2(X) + qi(X)βi−1(X)
7: αi(X)← ri(X)
8: end while
9: σ(X)← αi(X)2 +Xβi(X)2

10: return σ(X)

4 Timing

As pointed out in [9, Sec. 8.3]: “There is no simple
criterion for the choice of t with respect to n”. More-
over, since implementations of the McEliece PKC ap-
peared only in the recent few years, there are no com-
monly accepted benchmark parameters. The success-
ful attack against parameters proposed originally by
McEliece [20] (n = 1024, k = 524, t = 50) has been
carried out by Bernstein et al [2] in about 260.5 op-
erations, and the challenge ciphertext was decrypted.
However, no such attacks against the parameter sets
with n = 2048 has been devised fo far. The tim-
ing data, which are presented in this section, are an
average over 100 messages encrypted and decrypted
on the same public/secret key pair for each parame-
ter set. The code support and the irreducible Goppa
polynomial for the key pair were generated at ran-
dom. We note that Steps 4-5 of the decryption algo-
rithm (Alg. 3) have not been implemented, therefore
the timing for these steps is not provided.

Algorithm 7 Root-finding Algorithm

INPUT: f(X) ∈ F2m [X], deg(f(X)) ≤ t
OUTPUT: Roots of f(X) ∈ F2m [X]

1: d← m
2: k ← deg(f(X))
3: Normalize f(X) /* f(X) becomes monic
4: if k = 1 then
5: return free term of f(X) /* Output a root
6: else
7: T (X)← X2 +X
8: while true do
9: U(X) ← T (X) + T (X)2 + T (X)4 + · · · +

T (X)2
d−1

mod f(X)
10: B(X)← gcd(f(X), U(X))
11: Normalize B(X)
12: if deg(B(X)) = 0 or deg(B(X)) =

deg(f(X)) or B(X) = f(X) then
13: c0, c1 ← random element of F2m

14: /* Update T (X) for the next loop
T (X)← X2 + c1X + c0

15: continue /* Go to the next loop
16: else
17: S(X) = f(X)/B(X)
18: recursive call:

goto 2 with f(X)← B(X)
19: recursive call:

goto 2 with f(X)← S(X)
20: end if
21: end while
22: end if

First, we report timing for the parameters n = 2048
(m = 11) and t = 31, 51, 81. The results are summa-
rized in Table 1. The corresponding timing for the
key generation step (Algorithm 1) is 29.85, 46.76 and
96.43 seconds, respectively. These data include the
timing for all pre-computations: inverses for the syn-
drome, the square-root lookup table, etc.
In Table 1 and later, we compute the equivalent

length of AES key corresponding to the given McEliece
PKC parameters using the approximate bound from
[9, p. 196], omitting a multiplicative factor polynomial
in n:

O(n3)2−t log2(1−k/n). (2)

In Table 1 with n = 2048, we choose the first param-
eter set with t = 31 because it provides 80-bit security,
a widely accepted (de facto) standard for the minimal
level of security. Increasing t to 51 raises the security
to 95 bits, but the decryption time becomes about 2.4
times lower. A further increase of t to 81 raises the
decryption time about 2.5 times, compared to that of
with t = 51, but security is only raised by 2 bits. This
shows that if the system designer is flexible with re-
spect to security requirements, she can substantially
win in performance, sacrificing only a little in terms of
security. Note that this conclusion is only preliminary,

- 585 -



Table 1: Timing for n = 2048 (m = 11), in msec.
* Security level corresponding to the given parameters.

Algorithm
Running Time

t = 31 t = 51 t = 81
80 bit* 95 bit* 97 bit*

Encryption
Algorithm 2 (total) 1.06 1.01 1.00
Matrix multip.: St. 1 1.02 0.97 0.96
Error vector: St. 2 0.04 0.04 0.04

Decoding
Algorithm 4 (total) 116.41 278.20 702.82
Syndrome: Step 1 18.31 29.54 48.12
Inverse: Step 3 11.78 30.33 76.86
Square root: Step 4 10.39 43.87 179.52
Key equation: Alg. 6 4.56 11.76 30.21
Root finding: Alg. 7 71.37 162.70 368.11

since the contribution of solving the system of linear
equations in Steps 4-5 of decryption (Algorithm 3)
have not yet been evaluated. The encryption time is
about 1 millisecond for all t = 31, 51, 81. In fact, the
encryption time is decreasing from t = 31 to t = 81
by a few hundredth of a millisecond, but we explain
it as an effect of noise. The same effect is observed in
Table 2 as well.
Next, we present timing for the parameters n =

4096 (m = 12) and t = 41, 62, 101 in Table 2. The cor-
responding timing for the key generation step (Algo-
rithm 1) is 3 minutes 17 seconds, 5 minutes 15 seconds
and 9 minutes 12 seconds, respectively. As before,
these data include the timing for all pre-computations.

Table 2: Timing for n = 4096 (m = 12), in msec.
* Security level corresponding to the given parameters.

Algorithm
Running Time

t = 41 t = 62 t = 101
130 bit* 160 bit* 190 bit*

Encryption
Alg. 2 (total) 2.42 2.53 2.34
Multiplic.: St. 1 2.34 2.45 2.26
Error vector: St. 2 0.08 0.08 0.08

Decoding
Alg. 4 (total) 235.67 500.91 1300.61
Syndrome: Step 1 50.31 77.48 122.88
Inverse: Step 3 21.74 47.55 126.14
Square root: Step 4 24.84 86.73 367.33
Key eq.: Alg. 6 8.14 18.27 49.61
Root finding: Alg. 7 130.64 270.88 634.65

In Table 2, we see that the decoding time for (n =
4096, t = 41) is close to that of (n = 2048, t = 51), and
encryption is 2 times slower for the former. However,
the security level of the set (n = 4096, t = 41) is 130
bits, compared to only 95 bits for that (n = 2048, t =
51). This shows that increasing n, but decreasing t is
one of the tradeoffs for obtaining higher security.

In accordance with the trends shown in Table 1,
one can see also from Table 1 that increasing security
by 30 bits from 130 bits with (n = 4096, t = 41) to
160 bits with (n = 4096, t = 62) comes for the price
of increasing the decoding time by about 2.12 times.
At the same time, the next upgrade of secuirty to 190
bits with (n = 4096, t = 101) will result in increasing
of the decoding time by about 2.6 times.
The tendency in Tables 1 and 2 leads us to a prelim-

inary conclusion that for every n, there exists a range
of t, which allows us to efficiently realize a trade-off
between security level and decoding speed. For the
lower bound, t must provide the minumum required
security level (say 80 bit). For the uppr bound, an
increase of t must provide a substantial increase in
security level according to the function (2), yet not to
cause a prohibitively large decoding time.
For all the aforementioned parameters, the key pair

sizes as well the size of the pre-computed data are
provided in Table 3. Note that these are theoretical
data, meaning that an element of F2 is counted as
1 bit, the element of F211 as 11 bits and so on. In
practice, the memory taken by these data is typically
larger.

4.1 Discussion on Previous Works

As mentioned in the introduction, our implementa-
tion is not competitive with respect to the existing
one by Strenzke [27]. He reports [27, Table 2] en-
cryption in 1.2 millisecond and decryption in 1.6 mil-
lisecond for the parameters (n = 2048, t = 50) on
the personal computer with Intel Core Duo T7300
2GHz running Linux with kernel version 2.6.24, the
implementation compiled with GCC-4.1.3, optimiza-
tion level O2. Our timing for (n = 2048, t = 51) is
1.01 millisecond for encryption and 278.2 milliseconds
for decryption, while we use 3.2 GHz CPU.
Döring [7, Ch. 5] in his thesis implements the IND-

CCA2 secure conversion (for the McEliece PKC) by
Kobara and Imai [18]. His timing is obtained on a
personal computer with a Pentium M 1.6 GHz CPU,
2 GB of RAM, with Microsoft Windows XP. The
code is compiled with JDK 1.3 and run under JRE
1.6. Döring reports [7, Tab. 2.5] for parameters (n =
2048, t = 50), key generation in 3.8 seconds, encryp-
tion in 3.6 milliseconds and decryption in 40.6 mil-
liseconds.
Biswas in his thesis [4] implements the modified ver-

sion of the McEliece PKC called HyMES [5], which
was proposed by Biswas and Sendrier. The envi-
ronment for timing calculation was a personal com-
puter with Intel Core 2 processor with dual core, run-
ning a 32 bits operating system and a single core.
The C program was compiled with icc Intel compiler
with the options “-g -static -O -ipo -xP”. Biswas
[4, Table 2.1] reports encryption in 223 cycles/byte
and decryption in 2577 cycles/byte for the parame-

- 586 -



Table 3: Size of keys and pre-computed data
m = 11, n = 2048 m = 12, n = 4096

k 1707 1487 1157 3604 3352 2884

t 31 51 81 41 62 101

Public key pk 427 kB 372 kB 289 kB 1.76 MB 1.64 MB 1.41 MB

Secret key sk 5.54 kB 5.57 kB 5.61 kB 12.06 kB 12.09 kB 12.14 kB

Pre-computed data 86 kB 142 kB 227 kB 247 kB 375 kB 614 kB

ters (n = 2048, t = 40). A straight forward computa-
tions for the 3.2 GHz CPU (our case) would result in
0.02 milliseconds for encryption and 0.2 milliseconds
for decryption. This would be a remarkable perfor-
mance, but since we are not sure about the precise
meaning of “cycles/byte” in [4], we will refrain from
any futher comments.

5 Conclusion

We implemented postquantum McEliece PKC [20]. In
the decryption algorithm, we only implemented the
decoding part. Timing estimations show that our
work must be optimized in order to be competitive
with existing results.
Future works, apart from completion of the current

implementation, include realization of compact keys
[21], [17] and IND-CCA2 secure conversion [18].

References
[1] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the

inherent intractability of certain coding problems”, IEEE
Trans. on Inf. Theory 24, pp. 384-386, 1978.

[2] D.J. Bernstein, T. Lange, C. Peters, “Attacking and De-
fending the McEliece Cryptosystem”, PQCrypto 2008, pp.
31-46, 2008.

[3] D.J. Bernstein, T. Lange and C. Peters, “Smaller Decoding
Exponents: Ball-Collision Decoding”, CRYPTO 2011, pp.
743-760, 2011.

[4] B. Biswas, “Implementational aspects of code-based cryp-
tography”, Ph.D. thesis, Ecole Polytechnique, 2010. Avail-
able at: http://pastel.archives-ouvertes.fr/docs/00/

52/30/07/PDF/thesis.pdf

[5] B. Biswas, N. Sendrier, “Hybrid McEliece”, Available
at: http://www-rocq.inria.fr/secret/CBCrypto/index.

php?pg=hymes

[6] H. Cohen, “A course in computational algebraic number
theory”, Graduate texts in mathematics, Springer-Verlag,
1993.

[7] M. Döring, “On the Theory and Practice of Quantum-
Immune Cryptography”, Ph.D. thesis, Technical University
of Darmstadt, 2008.

[8] T. Eisenbarth, T. Güeysu, S. Heyse, C. Paar, “MicroEliece:
McEliece for Embedded Devices”, CHES 2009, pp. 49-64,
2009.

[9] D. Engelbert, R. Overbeck and A. Schmidt: A Summary of
McEliece-Type Cryptosystems and their Security, Journal
of Mathematical Cryptology, vol. 1 , pp. 151-199, Walter
de Gruyter, 2007.

[10] M. Finiasz, N. Sendrier, “Security Bounds for the Design
of Code-Based Cryptosystems”, ASIACRYPT 2009, pp. 88-
105, 2009.

[11] V. D. Goppa, “A new class of linear error-correcting code”
(in. Russian), Probl. Peredach. Inform., vol. 6, pp. 24-30,
Sept. 1970.

[12] S. Heyse, “Low-Reiter: Niederreiter Encryption Scheme
for Embedded Microcontrollers”, PQCrypto 2010, pp. 165-
181, 2010.

[13] D.R. Hankerson, S.A. Vanstone, and A.J. Menezes,
“Guide to elliptic curve cryptography”, Springer profes-
sional computing, Springer, 2004.

[14] S. Heyse, A. Moradi, C. Paar, “Practical Power Anal-
ysis Attacks on Software Implementations of McEliece”,
PQCrypto 2010, pp. 108-125, 2010.

[15] G. Hoffmann, “Implementation of McEliece us-
ing quasi-dyadic Goppa codes”, B.Sc. thesis, Tech-
nical University of Darmstadt, 2011. Available at:
http://www.cdc.informatik.tu-darmstadt.de/reports/

reports/Gerhard_Hoffmann.bachelor.pdf

[16] T. Howenga, “Efficient Implementation of the McEliece
Cryptosystem on Graphics Processing Units”, M.Sc. thesis,
Ruhr-University Bochum, Germany, 2009.

[17] K. Kobara, “Flexible Quasi-Dyadic Code-Based Public-
Key Encryption and Signature”, Cryptology ePrint
Archive: Report 2009/635, Available at: http://eprint.

iacr.org/2009/635.pdf

[18] K. Kobara, H. Imai, “Semantically Secure McEliece
Public-Key Cryptosystems - Conversions for McEliece PKC
-”, PKC 2001, pp.19–35, 2001.

[19] R. Lidl, H. Niederreiter, “Introduction to finite fields and
their applications”, Cambridge University Press, 1986.

[20] R.J. McEliece, “A Public-Key Cryptosystem Based on
Algebraic Coding Theory,” Deep Space Network Progress
Rep., 1978.

[21] R. Misoczki, P.S.L.M. Barreto, “Compact McEliece Keys
from Goppa Codes”, SAC 2009, pp. 376-392, 2009.

[22] Microsoft Developer Network, C/C++ Languages, Com-
piler Intrinsics. Available at: http://msdn.microsoft.com/
en-us/library/26td21ds.aspx

[23] F. J. MacWilliams and N. J. A. Sloane, “The Theory of
Error-Correcting Codes”, 7. edn. North-Holland Amster-
dam, 1992.

[24] R. Overbeck, “An Analysis of Side Channels in
the McEliece PKC (2008)”, Presentation available
at: https://www.cosic.esat.kuleuven.be/natoarw/

slidesparticipants/Overbeck_slides_nato08.pdf

[25] N. J. Patterson, “The algebraic decoding of Goppa codes”,
IEEE Trans. on Inf. Theory, Vol. IT-21, pp. 203-207, 1975.

[26] N. Sendrier, “On the security of the McEliece public-key
cryptosystem”, Information, Coding and Mathematics –
Proceedings of Workshop honoring Prof. Bob McEliece on
his 60th birthday, pp. 141-163, Kluwer, 2002.

[27] F. Strenzke, “A Smart Card Implementation of the
McEliece PKC”, WISTP 2010, pp. 47-59, 2010.

- 587 -


