
Computationally-Secure Regenerating Code

Hidenori Kuwakado† Masazumi Kurihara‡

†Kobe University
kuwakado@kobe-u.ac.jp

‡University of Electro-Communications
kuri@ice.uec.ac.jp

Abstract Regenerating codes have been developed for achieving a robust and efficient distributed stor-
age system. Regenerating codes not only reconstruct data but also regenerate a fragment of data stored
by a failed storage node using active storage nodes. Secure regenerating codes to protect data against
eavesdropping have recently shown. Since secure regenerating codes provide information-theoretic se-
curity against eavesdropping, the encoding rate is not sufficiently large. To solve this problem, this
paper proposes a computationally-secure regenerating code. The encoding rate of this code asymptot-
ically approaches to that of any non-secure regenerating code, and is independent of security parame-
ters. This paper also proposes a new informationally-secure regenerating code suitable for achieving the
computationally-secure regenerating code. The new code provides high security compared with previous
informationally-secure codes.

1 Introduction

Internet-based services such as video hosting service and search engine require a large amounts of storage.
Since their size is too large to store on one disk and disks may crash, distributed storage systems are
absolutely essential for such Internet-based services. Distributed storage systems provide reliable access
to data on individually unreliable nodes. A typical manner for achieving a reliable distributed storage
is to store data across n nodes in such a way that each node stores a fragment of data (share) in size
α and assembling k (< n) shares allows us to reconstruct data. Due to this mechanism, even if one of
nodes fails, we have no need to worry about losing data. However, we have to recover the failed node to
maintain the distributed storage system. In particular, it is desirable to regenerate the share of the failed
node efficiently as possible.

Dimakis et al. [1] have formalized not only the reconstruction of data but also the regeneration of the
share when a node fails (Fig. 1). They proposed the concept of regenerating codes such that the share
of the failed node can be regenerated by any d nodes. We call data for regenerating the share a piece,
which a node computes from a share by itself. The size of a piece is denoted by β. The major concern
of regenerating codes is two quantities: the size of k shares for reconstructing data (i.e., αk), the size of
d pieces for regenerating a share (i.e., βd). It is desirable that the two quantities are small as possible,
but Dimakis et al. showed that the two quantities are traded and βd can be smaller than αk. The later
fact means that the share can be regenerated without reconstructing data. The value of βd is usually
called the bandwidth. The regenerating code such that the bandwidth is minimized is called a minimum
bandwidth regenerating code (an MBR code). In contrast, the regenerating code such that the share size
per node is minimized is called a minimum storage regenerating code (an MSR code). The systematic
construction of MBR/MSR codes was given in articles [10, 12].

Regenerating codes may be similar to information dispersal algorithms [9] and secret sharing schemes
[7]. The differences between them are summarized below. The information dispersal algorithm was devel-
oped to provide reliable transmission of data in distributed networks. In the context of the information
dispersal algorithm, reconstructing data from k out of n shares is of concern, but regenerating the share of
a failed node is not covered by the information dispersal algorithm. The secret sharing scheme produces
shares in such a way that a share does not give any information about data. The share produced with
the regenerating code does not have such a property usually. In the context of the secret sharing scheme
as well as the information dispersal algorithm, regenerating the share of the failed node is not covered by
the secret sharing scheme.

Combining a regenerating code with a secret sharing scheme has recently been proposed in articles
[4, 5, 6, 8]. Such a code is called an informationally-secure regenerating code (an IS-R code). In addition to
properties of the regenerating code, the IS-R code provides the security such that even if an eavesdropper
knows some shares (or pieces), no information about data leaks to the eavesdropper. In order to achieve

Computer Security Symposium 2011
19-21 October 2011

- 131 -



Figure 1: Concept of regenerating codes. Figure 2: Proposed CS-R code.

the informational security, the IS-R code requires many random symbols. Hence, a previous IS-R code
with a high security provides a low encoding rate.

To improve the low encoding rate, this paper proposes a computationally-secure regenerating code (a
CS-R code). The proposed CS-R code consists of a computationally-secure encryption, an IS-R code, and
a non-secure regenerating code (Fig. 2). The encoding rate of the proposed CS-R code asymptotically
approaches to the underlying non-secure regenerating code as the size of data becomes large. The proposed
CS-R code requires the IS-R code that provides high security with respect to k. Since previous IS-R codes
cannot satisfy the requirement, this paper also proposes a new IS-R code.

2 Computationally-Secure Regenerating Code

2.1 Definition

We start by defining a regenerating code [1]. Let M be a random variable representing a message (data)
to be distributed. The message M is encoded to n shares S1, . . . , Sn in such a way that M can be
successfully reconstructed from any k out of n shares. This reconstruction property can be written as
follows: for random variables Si1 , Si2 , . . . , Sik

representing any k shares,

H(M |Si1 , Si2 , . . . , Sik
) = 0, (1)

where H is the Shannon entropy and symbols are random variables representing them. Suppose that a
node z fails. The failed node z (or a replacement node) tries to regenerate the share Sz by connecting any
d active nodes. The active node i computes a piece Pz,i from the share Si. Note that H(Pz,i|Si, z) = 0,
that is, Pz,i is uniquely determined from Si and z. The active node i gives the piece Pz,i to the failed
node z. This regeneration property can be written as

H(Sz|Pz,i1 , Pz,i2 , . . . , Pz,id
) = 0. (2)

In articles on regenerating codes, the share is called a stored message or stored data, and the piece is
often called downloaded data. Let α be the size of a share per node, let β be that of a piece per node, and
let B denote that of a message. The size is measured with the number of elements in a finite field over
which the encoding, the reconstructing, and the regenerating operation are performed. The regenerating
code is associated with the collection of parameters [n, k, d, α, β,B].

We call a regenerating code an informationally-secure regenerating code (IS-R code) if the regenerating
code satisfies the following conditions, which refine the definition of secrecy capacity [8]. Let M be a
random variable that is uniformly distributed, representing a secrete message.

• Let Si be a random variable representing the share of a node i. For any τ (≤ `c) random variables
Si1 , Si2 , . . . , Siτ ,

H(M |Si1 , Si2 , . . . , Siτ ) = H(M) (1 ≤ τ ≤ `c). (3)

Note that `c is implicitly less than k because of Eq. (1).

• Let Pz,i be a random variable representing the piece that a node i produces for regenerating the
share of a failed node z. For any z and any τ (≤ `g) random variables Pz,i1 , Pz,i2 , . . . , Pz,iτ ,

H(M |Pz,i1 , Pz,i2 , . . . , Pz,iτ ) = H(M) (1 ≤ τ ≤ `g). (4)

- 132 -



Secret capacity is subject only to Eq. (1) and Eq. (3). Since an eavesdropper can obtain pieces Pz,i when
a node z fails, we include Eq. (4) in the definition. Since Pz,i is uniquely determined from Si and z,
we have `c ≤ `g. The IS-R code is associated with the collection of parameters [`c, `g] that represents
resistance to eavesdropping.

We now proceed to define a computationally-secure regenerating code (CS-R code). Let κ be a security
parameter. Polynomial-time algorithms in κ for producing n shares Si and producing pieces Pz,i are
denoted by Encodes and Encodep, respectively. The reconstruction property and the regeneration one
are defined in the same way as Eq. (1) and Eq. (2), respectively. If the following conditions in addition
to them are satisfied, the regenerating code is called a computationally-secure regenerating code. Let
T = M (1) ‖ M (2) ‖ Z be a random variable representing two messages M (1),M (2) and additional
information Z that may depend on M (1),M (2) (e.g., Z = M (1) ‖M (2)).

• Let S(j)
i be a random variable representing the share of a node i for M (j). For every polynomial-time

(in κ) algorithm A, every positive polynomial poly(κ), every τ ≤ `c, and all sufficiently large κ,∣∣∣Pr
[
A(Z, S(1)

i1
, S

(1)
i2
, . . . , S

(1)
iτ

) = 1
]
− Pr

[
A(Z, S(2)

i1
, S

(2)
i2
, . . . , S

(2)
iτ

) = 1
]∣∣∣ < 1

poly(κ)
,

where the probability in the above terms is taken over the probability space underlying T and the
internal coin toss of Encodes and A. The above inequality means that it is hard to distinguish
between the space of τ shares corresponding to M (1) and that corresponding to M (2).

• Let P (j)
z,i be a random variable representing the piece that a node i produces for regenerating the

share of a failed node z for M (j). For every polynomial-time (in κ) algorithm A, every positive
polynomial poly(κ), every τ ≤ `g, any τ of n pieces, and all sufficiently large κ,∣∣∣Pr

[
A(Z,P (1)

z,i1
, P

(1)
z,i2

, . . . , P
(1)
z,iτ

) = 1
]
− Pr

[
A(Z,P (2)

z,i1
, P

(2)
z,i2

, . . . , P
(2)
z,iτ

) = 1
]∣∣∣ < 1

poly(κ)
,

where the probability in the above terms is taken over the probability space underlying T and the
internal coin toss of Encodes,Encodep, and A.

The CS-R code is associated with the collection of parameters [κ, `c, `g] that represents resistance to
eavesdropping.

2.2 Construction

Figure 2 illustrates the proposed CS-R code. In Fig. 2, ‘ENC’, ‘R code’, and ‘IS-R code’ denote a
computationally-secure encryption, a non-secure regenerating code, an IS-R code, respectively. Parame-
ters [n, k, d] of the non-secure regenerating code must be equal to those of the IS-R code. Any encryption
scheme, any non-secure regenerating code, and any IS-R code are available because they are used as black
boxes. This construction is similar to a computationally-secure secret sharing scheme that consists of a
computationally-secure encryption, an information dispersal algorithm, and a secret sharing scheme [3].
We intuitively understand that this code is the CS-R code. Since the key is encoded with the IS-R code,
the key is unknown unless k shares are collected. When the key is unknown, the ciphertext does not give
any information about the message in the sense of computational security. The proof is available from
authors.

The proposed CS-R code is associated with parameters [n, k, d, α, β] and [κ, `c, `g]. When the size of
data is much larger than that of the key, the share size α and the piece size β are primarily characterized
by the underlying regenerating code. In contrast, the security of data depends on the encryption and
the IS-R code. The key size κ is equal to that of the encryption scheme, parameters `c, `g are equal to
those of the IS-R code. The next section shows a new IS-R code that provides high security, that is,
`c = k − 1, `g = d− 1.

3 New Informationally-Secure Regenerating Code

3.1 Encoding, Reconstructing, and Regenerating

We propose a new IS-R code that is associated with the collection of parameters [n, k, d, α, β] = [n, k, 2k−
2, k − 1, 1] and [`c, `g] = [k − 1, 2k − 3]. Note that n and β are independent of k and other parameters

- 133 -



depend on k. The IS-R code with this parameters is important for two reasons: (1) data is protected
safely with respect to the parameter k, (2) No IS-R code with such a parameter has been shown.

Encoding Suppose that the key is k − 1 symbols that are chosen from a finite field Fq uniformly and
independently. Let ǩ = k(k − 1)/2. Consider the following 2(k − 1) × (k − 1) matrix U that consists of
two (k − 1) × (k − 1) symmetric matrices UT , UB .

U =
(
UT

UB

)
=



u1 u2 u3 . . . uk−1

u2 uk uk+1 . . . u2k−3

u3 uk+1 u2k−2 . . . u3k−6

...
uk−1 u2k−3 u3k−6 . . . uk(k−1)/2

uǩ+1 uǩ+2 uǩ+3 . . . uǩ+k−1

uǩ+2 uǩ+k uǩ+k+1 . . . uǩ+2k−3

uǩ+3 uǩ+k+1 uǩ+2k−2 . . . uǩ+3k−6
...

uǩ+k−1 uǩ+2k−3 uǩ+3k−6 . . . uǩ+k(k−1)/2


where the first k − 1 elements (u1, u2, . . . , uk−1) are the key and each other element is chosen from Fq

uniformly and independently. The matrix U essentially consists of k − 1 key elements and (k − 1)2

random elements. The structure of U is similar to that of the message matrix of the MSR code proposed
by Rashmi, Shah, and Kumar (called the RSK-MSR code) [10]. Assign a unique and public symbol xi in
Fq to a node i in such a way that the following three conditions are satisfied.

Condition of xi:
1. For any i, j, xk−1

i 6= xk−1
j . (for the reconstruction and the regeneration)

2. The matrix Υ defined by Eq. (6) is non-singular. (for the security of Eq. (3))
3. For any i, xi 6= 0. (for the security of Eq. (3) and Eq. (4))

The share of node i, denoted ci, is computed as

cti =
(
ci,1 ci,2 . . . ci,k−1

)
= (1, xi, x

2
i , . . . , x

2k−3
i )U =

(
φt

i
xk−1

i · φt

i

)
U (5)

where the superscript t denotes its transportation, φ
i
= (1, xi, . . . , x

k−2
i )t, and all the operations are done

over Fq. The complexity of encoding is O(k2).
The share size α, which is the number of elements in ci, is k − 1. Let us compare the share size with

that of a k-out-of-n threshold secret sharing scheme. Eq. (1) and Eq. (3) are properties that a k-out-of-n
threshold secret sharing scheme has to satisfy. The share size of any k-out-of-n threshold secret sharing
scheme is not smaller than the size of original data, and a secret sharing scheme is said to be ideal if the
share size is equal to the data size. Accordingly, the proposed IS-R code is the ideal k-out-of-n threshold
secret sharing scheme. Note that IS-R codes in articles [4, 5] are not k-out-of-n threshold secret sharing
scheme, and IS-R codes in articles [6, 8] are not ideal.

We leave a generic method for the second condition of xi as an open problem. The determinant of
Υ of Eq. (6) for k, denoted det(Υk), depends on the value of k. Examples of det(Υk) are given below.
Symbols x1, x2, . . . instead of generic symbols xi1 , xi2 , . . . are used.

det(Υ2) = x1, det(Υ3) = x3
1x

3
2 (x1 − x2)

(
x2

2 − x2
1

)
,

det(Υ4) =
3∏

i=1

x5
i

∏
1≤i<j≤3

(xi − xj)2(x3
j − x3

i ), det(Υ5) =
4∏

i=1

x7
i

∏
1≤i<j≤4

(xi − xj)3(x4
j − x4

i ).

Since Υ is a (k − 1)2 × (k − 1)2 matrix, the complexity for computing det(Υk) is O(k6). We were not
able to obtain a general formula for det(Υk). In the above cases, the first and the third condition of xi

are included by the second condition.

- 134 -



Reconstruction and Regeneration The reconstruction of the key is similar to the reconstruction of
the RSK-MSR code. Unlike the RSK-MSR code, it is sufficient to reconstruct only the first row of U (i.e,
key elements). The regeneration of a share is the same as that of the RSK-MSR code. The complexity
of reconstructing and that of regenerating are O(k3).

3.2 Security

We first prove the security condition of Eq. (3), that is, H(M |Si1 , . . . , Sik−1) = H(M) where Sij is
a random variable representing the share of a node ij , denoted cij

. For simplifying the notation, let
(i1, i2, . . . , ik−1) = (1, 2, . . . , k − 1). Since ci is computed by Eq. (5), we have

ct1
ct2
...

ctk−1

 =


φt

1
xk−1

1 · φt

1

φt

2
xk−1

2 · φt

2
...

φt

k−1
xk−1

k−1 · φ
t

k−1

U,

We can transform the above equation into

c1,1 − g1,1

...
c1,k−1 − g1,k−1

...
ck−1,1 − gk−1,1

...
ck−1,k−1 − gk−1,k−1


= Υ


uk

uk+1

...
uk(k−1)

 , (6)

where gi,j is a polynomial that includes only key symbols u1, u2, . . . , uk−1 and xj
i , and all the elements in

the matrix Υ are in {0, xj
i}, that is, the matrix Υ does not include any ui. Recall the second assumption

on the choice of xi: each xi is chosen in such a way that Υ is non-singular. If (uk, uk+1, . . . , uk(k−1))

is uniformly chosen from F(k−1)2

q , then (c1,1, . . . , ck−1,k−1) is uniformly distributed over F(k−1)2

q . This
completes the proof.

We next prove the security condition of Eq. (4), that is, H(M |Pz,i1 , Pz,i2 , . . . , Pz,i2k−3) = H(M). For
simplifying the notation, let (i1, i2, . . . , i2k−3) = (1, 2, . . . , 2k− 3). The piece Pz,i is denoted by dz,i. The
following system of equations is obtained from 2k − 3 pieces dz,i.

dz,1

dz,2

...
dz,2k−3

 =


φt

1
xk−1

1 φt

1

φt

2
xk−1

2 φt

2
...

...
φt

2k−3
xk−1

2k−3φ
t

2k−3

Uφ
z

=


1 x1 . . . xk−2

1 xk−1
1 . . . x2k−3

1

1 x2 . . . xk−2
2 xk−1

2 . . . x2k−3
2

...
1 x2k−3 . . . xk−2

2k−3 xk−1
2k−3 . . . x2k−3

2k−3

ψ
z
, (7)

where ψ
z

= Uφ
z

= (ψz,1, ψz,2, . . . , ψz,2k−2)t. The key is related only to ψz,1, ψz,2, . . . ψz,k−1 because key
symbols locate on the first row and the first column of UT . Since each diagonal element in UT below the
second row is random, each ψz,i for 2 ≤ i ≤ k−1 is distributed on Fq uniformly and independently. Each
ψz,i for k ≤ i ≤ 2k − 3 is independent of the key, and is distributed on Fq uniformly and independently.
Equation (7) is transformed into

dz,1 − ψz,1

dz,2 − ψz,1

...
dz,2k−3 − ψz,1

 =


x1 . . . xk−2

1 xk−1
1 . . . x2k−3

1

x2 . . . xk−2
2 xk−1

2 . . . x2k−3
2

...
x2k−3 . . . xk−2

2k−3 xk−1
2k−3 . . . x2k−3

2k−3




ψz,2

ψz,3

...
ψz,2k−2

 = Ṽ


ψz,2

ψz,3

...
ψz,2k−2

 .

The matrix Ṽ is non-singular when the conditions of xi are satisfied. Hence, since each ψz,i (i ≥ 2) is
distributed on Fq uniformly and independently, each piece dz,i is also distributed on Fq uniformly and
independently. This completes the proof.

- 135 -



Table 1: Achievable parameters for k (β = 1).
Code R d α `c `g

article [4] (k − 2)/k 2(k − 1) k − 1 2 d
article [5] (α − 1)/(α + 1) k α k/α d k is a multiple of α.
article [6] 2/(k(k + 1)) k k k − 1 d − 1 `c is maximized.

article [8] (d + 1 − k)/
Pk

i=1(d + 1 − k) d d − 1 k − 1 d `c is maximized. n = d − 1.
this paper 1/k 2(k − 1) k − 1 k − 1 d − 1

Table 2: Throughput of the reconstruction. [cycles/bit]
κ \ k 3 5 9 17 Fq

128 1,010 4,351 23,491 188,778 GF(28)
256 891 2,188 14,674 105,134 GF(216)
512 833 2,009 7,343 64,238 GF(232)

1024 985 2,176 7,152 35,939 GF(264)

Table 3: Throughput of the regeneration. [cycles/bit]
κ \ d 4 8 16 32 Fq

128 813 3,555 13,614 70,847 GF(28)
256 705 1,622 8,347 38,701 GF(216)
512 717 1,534 4,353 22,633 GF(232)

1024 931 1,800 4,488 14,142 GF(264)

4 Comparison and Implementation

We define the encoding rate R of an IS-R code as R = Nd/(Nd +Nr) where Nd is the size of data and Nr

is the size of random symbols. The size is measured with the number of elements in Fq. Table 1 shows
achievable parameters of IS-R codes for a given k. We see that the proposed IS-R code is as secure as
previous codes in terms of [`c, `g]. Compared with the IS-R codes proposed in articles [6, 8], the encoding
rate is improved by a factor of k.

We implemented the proposed IS-R code using NTL [11] on the 32-bit Linux (CPU: Intel Celeron 560,
2.13 [GHz]). Table 2 and Table 3 show the throughput of the reconstruction and that of the regeneration,
respectively. In these tables, κ denotes the bit length of data (a key) and the throughput is the number
of CPU cycles for the reconstruction (or the regeneration) per one bit of data (or share). For example,
when κ = 128, k = 17, the reconstruction and the regeneration are completed in 0.012 [s] and 0.0045 [s],
respectively. The complexity of throughput for small k seems to be less than O(k3), which is the time
complexity of the reconstruction and that of the regeneration. As κ is large, the throughput is improved
in almost all cases. This suggests that the overhead of operations over the finite field is not negligible.

References

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for
distributed storage systems,” IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[2] O. Goldreich, “A uniform-complexity treatment of encryption and zero-knowledge,” Journal of Cryptogra-
phy, vol. 6, no. 1, pp. 21–53, 1993.

[3] H. Krawczyk, “Secret sharing made short,” Advances in Cryptology - CRYPTO ’93, Lecture Notes in
Computer Science, vol. 773, pp. 136–146, 1993.

[4] M. Kurihara and H. Kuwakado, “On regenerating codes and secret sharing for distributed storage,” IEICE
Technical Report, vol. IEICE-110, no. IEICE-IT-363, pp. 13–18, 2011.

[5] M. Kurihara and H. Kuwakado, “On an extended version of Rashmi-Shah-Kumar regenerating codes and
secret sharing for distributed storage,” IEICE Technical Report, vol. IEICE-110, no. IEICE-IT-442, pp. 303–
310, 2011.

[6] M. Kurihara and H. Kuwakado, “On ramp secret sharing schemes for distributed storage systems under
repair dynamics,” IEICE Technical Report, vol. IEICE-111, no. IEICE-IT-142, pp. 41–46, 2011.

[7] R. J. McEliece and D. V. Sarwate, “On sharing secrets and Reed-Solomon codes,” Communications of the
ACM, vol. 24, no. 9, pp. 583–584, 1981.

[8] S. Pawar, S. Y. E. Rouayheb, and K. Ramchandran, “On secure distributed data storage under repair
dynamics,” http://arxiv.org/abs/1003.0488, 2010.

[9] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,” Journal
of the ACM, vol. 36, no. 2, pp. 335–348, 1989.

[10] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at
the MSR and MBR points via a product-matrix construction,” http://arxiv.org/abs/1005.4178, 2010.

[11] V. Shoup, “NTL: A library for doing number theory,” http://shoup.net/ntl/, 2005.

[12] C. Suh and K. Ramchandran, “Exact regeneration codes for distributed storage repair using interference
alignment,” http://arxiv.org/abs/1001.0107, 2010.

- 136 -


