超高速動画像の解析によるµスケールの物体追跡

田中 士郎[†] 田中 弘美[†]

† 立命館大学理工学研究科 〒 525-8577 滋賀県草津市野路東 1 丁目 1-1 E-mail: †{stanaka,hiromi}@cv.ci.ritsumei.ac.jp

あらまし 実世界に忠実かつ物体操作が可能な仮想空間を実現するためには,物体の形状等の視覚情報だけでなく, 重量,摩擦,弾性等の触覚情報が必要である.我々は,摩擦の研究分野において提案されている摩擦モデルに基づい て,摩擦現象を仮想空間で再現する研究を進めている.実世界に存在する物体の摩擦特性を推定するには,外力を与え られた物体の変位を取得する必要があるが,特に予すべりはその変位が数マイクロと微小であるため,観測は非常に困 難である.そこで本論文では,安定姿勢に置かれている物体に対して,外力を与えた際の物体の変位を高精度に求める 手法を提案する.まず,物体に外力を与える手段としてロボットマニピュレータを使用し,物体が滑り出す過程を1秒 間に500フレームの撮影が可能な高速度カメラで観測し画像を取得する.次に1フレーム目の画像において基準領域 を指定し,他のフレーム画像の各ピクセルを中心とした領域との相関値を求める.本論文で提案する相関値のモデル式 を用いて,相関値分布とのフィッティングを行い,相関値の最も高い物体座標を推定する.各フレーム画像のフィッティ ングにおける評価値および真値からの誤差標準偏差から,物体変位の信頼性が高いことを確認した. キーワード 高速度カメラ,物体変位,サブピクセル,仮想空間,摩擦,相関法

1. はじめに

バーチャルリアリティ(VR)の新規性は、実世界に依拠 した「体験」を提供することにあり、実世界に存在する 種々の物体やその現象、振る舞いに忠実なシミュレータ を実現することが本質的な課題である.最近では触覚の 重要性から触覚や力覚デバイスも実用化され、VRをは じめ医療、ロボティクスや心理学の分野においても視覚 とさらに触覚に基づくインターフェース実現へ向けて勢 力的に研究が進められている.

仮想空間でリアリティの高い操作シミュレーションを 実現するには、対象の三次元形状、テクスチャなどの視 覚情報、重量、摩擦、弾性等の力学的物理特性、物体相互 の拘束関係、さらには機能を表す触覚および力フィード バックのためのデータが必要となる。そこで我々は、実世 界に忠実な仮想空間シミュレータを自動構築するために 「触れて見る」ハプティックビジョン構想を提案し、物体 の重量、摩擦、相互拘束関係などの触覚情報を自動獲得す る研究を進めている[1][2][3][4][5].

摩擦による機械部品の消耗を避けるための適切な潤滑 剤の注入や、多指ロボットハンドが安定した物体把持を 行うためのすべり覚センサの開発や、タイヤの摩耗、地震 など、様々な研究分野において摩擦の概念が必要とされ ており、摩擦やすべりに関する実験も行われている.ま た、摩擦現象をシミュレーションするために、摩擦のモ デル化の研究も行われている[6][7].我々は、実物体の持 つ情報を能動的に取得し、摩擦モデルに当てはめること で物体の摩擦特性を推定し、仮想空間内で摩擦現象を再 現する研究を進めている.摩擦特性を推定するためには, 外力を与えられた物体が滑り出すまでの変位が必要であ る.特に滑り出しにおける変化は瞬時に起こる現象であ るため,観測することは非常に困難である.

そこで本論文では、安定姿勢に置かれている直方体形 状の物体に対して、外力を与えた際の物体の変位を、1秒 間に数百~数千枚の撮影が可能な高速度カメラを用いて 100 倍ズームで観測し、画像処理を用いて物体の変位を 高精度に求める手法を提案する.本手法は、まず物体に 外力を与える手段としてロボットマニピュレータを使用 し,安定姿勢に置かれている物体が滑り出す瞬間を高速 度カメラで観測し画像を取得する.次に観測された画像 から、画像処理を用いて物体の変位を推定する、変位の 推定方法として、物体の側面に真円マーカーを貼り付け て、その重心計算を行うことでサブピクセルレベルで推 定することが比較的容易である.しかし、100 倍ズームで 観測を行っているため、観測範囲は横幅で数ミリ程度と 狭く、撮影範囲に収まる小さな真円精度の高いマーカー が必要となり、実装することは非常に困難である、そこ で、テンプレートマッチングによる物体変位の推定を行 う.1フレーム目の画像において特徴量の多い50×50 画素の基準領域を選択し、各フレーム画像に対してテン プレートマッチングを行い、各ピクセルを中心とした 50 × 50 画素の領域との相関値を求める.相関値分布の傾向 に基いたモデル式を提案し、各フレーム画像ごとに最小 二乗によるフィッティングを行うことで、相関値の最も高 い座標をサブピクセルレベルで求め,高精度な物体の変 位を推定する.

図1 物体に外力を与えた時の摩擦力と滑りの関係

各フレーム画像に対するフィッティングにより算出さ れた評価値および標準偏差から,推定された物体変位の 信頼性が高いことを確認した.

2. 外力によって作用される物体の摩擦力と運動の変化

安定姿勢に置かれている物体が運動するためには、物 体に対し外力を与える必要がある.本研究では物体の並 進運動における変位を解析するために、ロボットマニピュ レータを用いて、物体が水平方向に並進運動するように 外力を与える. クーロンの摩擦法則に基づくと、物体に働 く外力が、物体と支持面に働く摩擦力より大きくなると き、物体は滑り出す、物体の滑り出す直前の摩擦力を、最 大静止摩擦力と呼ぶ. ロボットマニピュレータの先端に は力覚センサが搭載されており、物体に接触した際に反 カデータを取得することで、物体と支持面との摩擦力を 測定することができる.図1に、等速で運動するロボット マニピュレータの先端が物体に接触し、物体が滑り出す までの概要と摩擦力の変化を示す. 摩擦力は力覚センサ 内部のひずみゲージが変形することで測定され、ロボッ トマニピュレータが物体に接触し摩擦力が増加している 間、力覚センサは反力を受けて収縮し続けており、物体 はほぼ静止状態を保つ (図1のB). 最大静止摩擦力に到 達すると物体は滑り始め (図1のC),物体と支持面の間 には動摩擦力が働いた状態となり (図1のD), 物体はロ ボットマニピュレータと同様、等速で運動する.

3. 高速度カメラ画像解析による物体変位推定

3.1 相関値分布のモデル式の定義

高速度カメラにより連続観測された画像の1フレーム 目において、マッチングのための基準領域を定義する.図 2(a)に示すように、1フレーム目の画像上にある対象物 体の表面の一部を選択し、これを基準領域とする.基準 領域は縦横同じ長さの正方形とし、ノイズによる影響と 空間周波数特性から50×50 画素と比較的大きなサイズ とする.この基準領域と、各フレーム画像との正規化相 互相関(ZNCC)によるマッチングを行う.正規化相互相 関は、画像全体の輝度変化に強い特徴を持つ.相関値を *R*とすると、正規化相互相関は次式で示される.

図 2 テンプレートマッチング (銅ブロック・画像幅は約 3mm)

図 3 相関値,X 変位,Y 変位のグラフ

$$R = \frac{\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} (f(x,y) - \bar{f})(g(x,y) - \bar{g})}{\sqrt{\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} (f(x,y) - \bar{f})^2 \times \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} (g(x,y) - \bar{g})^2}.}$$
(1)

f(x,y)は最初に定義した基準領域内の(x,y)座標における輝度値, g(x,y)は、マッチング対象となる画像領域内の(x,y)座標における輝度値を示す. \bar{f}, \bar{g} は、それぞれf(x,y), g(x,y)の平均値を示す.

図3に、各フレーム画像における相関値が最も高い値 と、その物体変位の整数座標(x,y)を示す. グラフのY 軸の左側が相関値、右側がX,Y変位(ピクセル)の目盛を 示す. グラフの左側の相関値が一定となっている部分は 物体には外力が作用していない状態を示し、相関値の減 少する部分から物体に外力が作用しており、Xの変位が 変化している部分から滑りが生じている.

相関値の変化に関しては、2種類の幅の異なる周期的 な変化があり、幅の大きい方はY軸方向の変位、小さい 方はX軸方向の変位に対応しており、相関値と変位に は関連性があることが確認できる.また、相関値上の点 A,B,C に着目すると、A,C 点についてはほぼ相関値が一 致しているのに対し、B 点においてはA,C よりも低い値

図 4 相関値分布

となっている. これは B 点では Y 軸方向ではマッチング が一致しているが, X 軸方向に関してはサブピクセルレ ベルでの変位が既に生じていることを示している.

次に物体の変位に関して、画像の X,Y 軸両方において 変位が生じている. これは物体の滑り方向である水平方 向と、観測された画像座標系に傾きがあることを示して おり、X,Y 変位から水平方向の成分を求める必要がある ことを示す. また、物体の変位は Y 軸方向から生じてい ることが確認できる.

しかし、各フレーム画像における相関値の最大値のみ では、物体追跡を整数値でしか求めることができない.相 関値は小数であるが、X,Yの2つの方向を含んでおり、相 関値をそれぞれを成分に分割できない.そこで、最も高 い相関値とその周辺のピクセルの相関値を含めた複数の 相関値から、相関値の最も高い座標をサブピクセルレベ ルで推定することにより物体変位を高精度に求める.相 関値の最も高い座標を推定するために、相関値分布のモ デル式を定義し、実際の相関値分布とのフィッティングを 行う.相関値の分布は、図3に示すように、最も高い値 から曲線状に減少し、ある程度離れていても輝度情報が ある限り相関値は値を持つため、その値に収束すること が予想されることから、最も相関値の高い座標(u,v)を 中心とした2次元のガウス関数である

$$G(x,y) = a \exp\left\{-\frac{(x-u)^2 + (y-v)^2}{2b^2}\right\}$$
(2)

で示される.

実際に相関値分布を確認するため、先ほどと同様の条件でテンプレートマッチングを行う.図4に、得られた 相関値の分布を示す.図4に示すように、相関値の分布 は傾いた楕円形状のような傾向を示す.これは、図2に 示す銅ブロック表面に見られる斜め方向の模様が原因で あり、模様に沿った方向に関しては相関値の減少が滑ら かになる.このような場合、式(2)は相関値の分布のモデ ル式として不十分であることが考えられる.また、本研 究で使用する対象物体は機械加工されたブロックを使用 しており、そのような物体は少なくない.そこで、式(2) の二次元のガウス関数に対し、楕円の半径b, cとその傾 き要素 θ と切片dを加えた式に変形すると、

$$G(x,y) = a \exp\left\{-\frac{1}{2}\left[\frac{\left((x-u)\cos\theta + (y-v)\sin\theta\right)^2}{b^2} + \frac{\left((-x+u)\sin\theta + (y-v)\cos\theta\right)^2}{c^2}\right]\right\} + d$$
(3)

となる. 切片 d を加えているのは, 相関値は常にある程度の値を持っているからである. また, 他のフレーム画像における相関値分布も, 相関値の最も高い部分を中心とした領域は, 同じ特徴量であるため, 画像のノイズが小さく安定している場合, 同様の傾向となることが予想される.

3.2 各フレーム画像における物体変位の推定

各フレーム画像において相関値の最も高い整数座標を中 心とする一定範囲の相関値分布を求め、提案した式(3)に 対し、非線形最小二乗法である Levenberg – Marquardt 法によるフィッティングを行うことで、各パラメータと物 体変位を示す相関値の最も高い座標(u,v)をサブピクセ ルレベルで推定する.フィッティングを行うための評価 式 J は,

$$J = \frac{1}{2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} (g(x,y) - G(x,y))^2$$
(4)

で示される. g(x,y)は、座標 (x,y)における相関値, G(x,y)は、式 (3)によって算出された相関値を示す.

各フレーム画像に対して最小二乗によるフィッティン グを行い、式(3)の未知のパラメータを推定する方法を、 1フレーム目の画像とそれ以外のフレーム画像で分けて 行う.1フレーム目の画像では、定義した基準領域と画 像より検出される領域が完全に一致し、その相関値は1.0 であることから、1フレーム目のフィッティングでは、式 (3)のu,vに相関値が1.0となる整数座標(基準領域の中 心座標)を固定パラメータとして代入し、残りの未知のパ ラメータ、 a,b,c,d,θ をフィッティングにより求める.一 方、2フレーム目以降の画像では、1フレーム目の画像で 求めたパラメータ a,b,c,d,θ を固定パラメータとして代 入し、u,vをフィッティングにより求める.得られた各フ レーム画像におけるu,vが、画像座標系における物体の 変位を示し、これらを順次記録する.

3.3 物体変位の水平成分の抽出

取得された物体変位は画像座標系に対する変位であり, 図5に示すように物体の滑り方向とは一致せず傾きがあ るため,水平成分の変位を求める必要がある.そこで,物 体が等速に滑っている状態での近似直線を求め,その傾 きから画像のX軸方向との回転角を算出し,等速滑り状 態の物体変位がX軸方向へ回転することで,床面に対す る物体の変位を求める.

図 5 画像座標系 (X,Y) と物体変位方向 H との関係

3.4 物体変位の実寸値変換

求めた物体変位の単位はピクセルなので、単位ピクセ ルあたりの実寸値 [mm] を算出することで、変位の単位を ピクセルから実寸値に変換する. 高速度カメラのフレー ム数を N とすると、1 枚の画像の撮影時間は 1/N[s] な ので、物体が等速に滑っている状態の物体変位データか ら、速度 [pixel/s] を求めることができる. 物体変位デー タは誤差を含んでいるため、算出される複数の速度デー タの平均値 v_o を使用する. ロボットの速度 [mm/s] を v_r とすると、単位ピクセルあたりの実寸値 s は、

$$s = \frac{v_r}{v_o} \tag{5}$$

となる.物体の変位 [pixel] を D_p とすると、実寸値での 変位 D_m は、

$$D_m = sD_p \tag{6}$$

となる.

4. 実 験

4.1 実験環境

図6に実験環境を示す.物体に対して外力を与え運動 させるために、ロボットマニピュレータ(三菱製 RV-E2) を使用する.また、物体変位の観測には、図7に示す、高 速度カメラ(キーエンス製 VW5000)を使用する.500fps の場合640 × 240 画素の解像度の撮影が可能で,fpsを 増やすと撮影範囲および解像度が減少する.保存形式は 非圧縮のAvi形式で、最大5秒まで保存可能である.高 速度カメラに使用するレンズは、同社製 VH-Z20R を用 いており、最大200倍までのズームが可能である.また、 テレセントリック性を持っているため、観測画像を歪み 補正や物体の表面部分の正面化処理をかけることなく、 物体の変位を測定することができる.物体の微小な変位 を観測するためには高倍率のズームレンズが必要となり、 図6に示すように物体表面に対し極めて近い位置からの 撮影となる.

4.2 実験方法

水平な支持面上で安定姿勢に置かれている物体に対し, ロボットマニピュレータを用いて物体が並進運動するよ

(a) 銅ブロック

図 8 高速度カメラによる観測画像

うに外力を加える.物体の変位を詳細に観測するために, ロボットの速度を最小速度である 0.1mm/s に設定する. 高速度カメラの撮影条件は 500fps の 640 × 240 画素の 解像度とし、レンズの倍率を 100 倍に設定し、物体変位の 観測を行う.実験の対象物体として、銅ブロック (980g) と鉄ブロック (848g)を使用する.図8に、高速度カメラ から観測された銅ブロックおよび鉄ブロックの画像を示 す.また、ロボットハンドが物体に接触した際に、互いの 接触面の傾きから物体に回転が生じないために、一旦低 速で既知の座標まで物体を押し、次の物体への押し操作 において高速度カメラの観測を行う.

式 (3) のパラメータおよび物体変位を推定するための 条件として、入力する相関値の範囲は、相関値が最も高 い整数座標を中心に±5ピクセルの合計 121 ピクセルと した.

4.3 相関値分布の結果

図 9, 図 10 に, 銅と鉄ブロックのそれぞれのマッチン グにおける相関値の結果を示す. 各物体ごとに4つのグ ラフを示しており, 図 1 に示す A,B,C,D における4つの 状態(初期・接触・すべり始め・すべり)において選択し た画像の相関値を示している. 相関値の範囲は, 相関値が 最大である整数座標を中心とした±5[Pixel]である. 実 際の相関値の値はメッシュの交点の部分であり, 交点か ら周辺の交点までは線形補完された等高線で表現してい るが, 図 3 で示すように, 変位に対する相関値の変化は線 形ではない. そのため, 例えば銅ブロックにおける(d) 図 においては、中心付近の相関値の分布が他よりも低く見

られるが、サブピクセル空間において高い値が存在する ことを示しており、問題ない. 銅ブロックでの相関値の 分布は全体的に緩やかな変化であり、鉄ブロックは中心 部分は激しく少し離れた部分においては緩やかに変化し ている. この分布の違いはブロック表面上の空間周波数 の違いに影響されていることがわかる. この空間周波数 の相違による相関値の変化と、式(3)に示すような楕円 形状で傾きのある変化が4つのグラフにおいて類似して いることから、画像のノイズが少なく安定していること と、式(3)に示すフィッティングのためのモデル式が有効 であることを示す.

4.4 物体変位の追跡結果

図 11(a), (b) に銅ブロックの変位 (水平・重力方向), 図 11(c), (d) に鉄ブロックの変位 (水平・重力方向) 結果を 示す. いずれの物体も類似したグラフ変化を示している. 水平方向の変位に着目すると, 物体変位が急激に上昇 した後では、線形に増加していることから物体は等速で 運動していることがわかる.また、物体が滑り出す瞬間 の速度はグラフの傾きから判断すると、等速運動時にお ける速度よりも大きいことが言える.これは力覚センサ のひずみゲージがスティック状態として徐々に収縮した のが最大静止摩擦力に到達することで解放されることに よって、スリップ現象が生じたからであると判断できる. さらに、変位が急激に上昇する前段階において、極めて 微小な変位が生じていることが確認される.図12に、物 体変位が急激に変化するまでの範囲における物体の水平 方向の変位グラフを示す.いずれの物体も、急激な変位 が生じるまで1~2µm 程度の極めて微小な変位が生じて いることがわかる.摩擦の研究分野では、このような巨 視的なすべりの前において生じる微小な変位を、予すべ り[8]と呼び、実際に起こる現象として報告されている.

次に, 垂直方向の変位に着目すると, 物体が等速に滑っ ている部分においては垂直方向の変位は一定を保ってお り, これは物体が水平方向のみ移動していることが判断 できる. 一方, 滑り出す前段階においては, いずれの物体 も上昇する傾向があり, その変位量は水平方向の予すべ りの変位量より大きく, 5~6µm 程度の変位が生じてい る. 重力方向の変位に関しては, なぜこのような現象が 生じているのかは現在不明で今後の課題となる.

4.5 物体変位の推定における信頼性評価

各フレーム画像において、最小二乗によるフィッティ ングによって式(3)のパラメータを推定した時に、評価 値および RMSE(真値からの誤差標準偏差)が算出され る.表1に、各フレーム画像において算出された RMSE に対する、平均値と標準偏差を示す.これらは推定され

	表 1	各画像の	RMSE	の平均と	標準偏差	(単位:pixel
--	-----	------	------	------	------	-----------

	平均	標準偏差
銅ブロック	0.007428	0.000554
鉄ブロック	0.029559	0.001076

たパラメータの信頼性を示す値であり, RMSE の平均は 鉄ブロックで 0.03 ピクセル程度と小さい値であり, その 標準偏差もさらに小さいことから各フレーム画像に対す るフッティングの結果は安定しており, 信頼性が高いこ とが判断できる.

5. ま と め

本論文では、高速度カメラを用いて高倍率ズームかつ、 高フレームレートで物体の運動の観測を行い、得られた 各フレーム画像に対して、まずテンプレートマッチング により相関値分布を求め、その相関値分布のモデル式を 提案し、フィッティングによって位相値が最も高い座標を サブピクセルレベルで推定した.推定結果を実寸値に変 換すると 1µm 以下の変位であり、比較的安定しているこ とを確認した.また、提案手法により、物体が見た目滑り

図 12 物体変位の推定結果 (予すべり部分)

始める初期段階において生じるとされる予すべりの観測 を確認した.

本論文における観測方法と画像解析方法は、摩擦の分 野に限定されず、幅広い分野において応用が可能である と考えられる.

今後は推定した物体変位を,現在研究中である摩擦特 性の推定に使用することを予定している.

献

文

- 田中士郎,西村憲吾,田中弘美: "安定姿勢における形状 対象性を用いた能動的三次元形状推定 - 機能から形状 を推定するアプローチ,"情報処理学会論文誌, vol. 44, No. SIG 9(CVIM 7), pp.38-45, July. 2003.
- [2] 田中士郎,谷川武市,安部慶喜,田中弘美: "ハプティック ビジョンに基づく能動的物体重量推定,"情報処理学会 論文誌, vol. 44, No. SIG 17(CVIM 8), pp.51-59, Dec. 2003.
- [3] 山岡勝,山崎佳代子,田中弘美: "仮想空間シミュレータ 自動構築のためのハプティックビジョンに基づく物体間 の水平支持接触拘束抽出,"信学論 (D-II), vol.J84-D-II, no.7, pp.1439-1447, July 2001.
- [4] 植田 直樹,櫛浜 斎延,平井 慎一,田中 弘美: " ハプティックビジョンに基づく能動的レオロジー物体モ デリングのための粘弾性特徴抽出" バーチャルリアリ ティ学会論文誌,TVRSJ Vol.8 No.3 pp.237-246,2003
- [5] 島田 伸敬,上條 真継,松下 浩一郎,松谷 剛,田中 弘美,"ハプティックビジョンに基づく関節物体のインタ ラクティブモデリング,"電子情報通信学会論文誌,D-II Vol.J89-D No.9 pp.2013-2024, Sep. 2006
- [6] C.C.deWit, H. Olsson, and K. Astrom, "A New Model for Control of Systems with Friction," *IEEE Trans. Automat. Contr.*, vol. 40, pp. 419-425, Mar. 1995.
- P.Dupont, V.Hayward, B.Armstrong, and F.Altpeter, "Single state elasto-plastic friction models," *IEEE Trans.Automat.Contr.*, vol.47, no.5, pp.787-792,2002.
- [8] 藤本隆士,清水陽介: "弾性体の微小変位特性(第1報)
 -接線力と変位の指標化の試みに関する基礎的研究-,"弓 削商船高等専門学校紀要, pp.89-95, Feb, 2007.