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Abstract We propose a new simple approach to represent and manipulate a mesh-based character animation

preserving its time-varying details. Our method first decomposes the input mesh animation into coarse and fine

deformation components. A model for the coarse deformations is constructed by an underlying kinematic skeleton

structure and blending skinning weights. Thereafter, a non-linear probabilistic model is used to encode the fine

time-varying details of the input animation. The user can manipulate the corresponding skeleton-based component

of the input, which can be done by any standard animation package, and the final result is generated including its

important time-varying details. By converting an input sample animation into our new hybrid representation, we

are able to maintain the flexibility of mesh-based methods during animation creation while allowing for practical

manipulations using the standard skeleton-based paradigm. We demonstrate the performance of our method by

converting and editing several mesh animations generated by the state-of-the-art performance capture approaches.

Key words 3D Character Animation, Mesh Animation, Motion Editing, Gaussian Process Latent Variable Mod-

els

1. Introduction

Recently, a variety of mesh-based approaches have

been developed that enable the generation of computer

animations without relying on the classical skeleton-

based paradigm [1]. The advantage of a deformable

model representation is also demonstrated by the new

performance capture approaches [2], [3], where both mo-

tion and surface deformations can be captured from in-

put video-streams for arbitrary subjects. This shows

the great flexibility of a mesh-based representation over

the classical one during animation creation.

Although bypassing many drawbacks of the conven-

tional animation pipeline, a mesh-based representation

for character animation is still complex to be edited

or manipulated. Few solutions are presented in the

literature [4]～[8], but in general it is still hard to in-

tegrate these methods into the conventional pipeline.

Other approaches try to convert or represent mesh an-

imations using a skeleton-based representation to sim-

plify the rendering [9] or editing tasks [2], [10]. However,

these editing methods are not able to preserve fine time-

varying details during the manipulation process, as for

instance the waving of clothes for a performing subject.

For editing mesh-based character animations, an un-

derlying representation (i.e. skeleton) is desired since it

simplifies the overall process. At the same time, the

time-varying details should be preserved during ma-

nipulation. These two constraints guide the design

of our new hybrid representation for mesh-based char-

acter animation. Our method decomposes the input

mesh animation into coarse and fine deformation com-

ponents. A model for the coarse deformation is con-

structed automatically using the conventional skeleton-

based paradigm (i.e. kinematic skeleton, joint param-

eters and blending skinning weights). Thereafter, a

model to encode the time-varying details is built by

learning the fine deformations of the input over time

using a pair of linked Gaussian process latent variable

models (GPLVM [11]). Our probabilistic non-linear for-

mulation allow us to represent the time-varying details

as a function of the underlying skeletal motion as well

as to generalize to different configurations such that we

are able to reconstruct details for edited poses that were

not used during training. By combining both models,

we simplify the editing process: animators can work

directly using the underlying skeleton and the corre-

sponding time-varying details are reconstructed in the

final edited animation.

We demonstrate the performance of our approach by

performing a variety of edits to mesh animations gen-

erated from the state-of-the-art performance capture

methods. As seen in Fig. 1 and in the results (Sect. 6.),

our approach is able to convert a mesh-based charac-

ter animation into a new hybrid representation that is

more flexible for editing purposes and it can be easily
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Fig. 1 Our approach represents an input mesh-based character animation (left -

three particular frames) into a new hybrid representation that simplifies

the editing process and preserves the important time-varying details (right

- edited frames).

integrated in the conventional animation pipeline.

The main contributions of our paper are:

• an approach to efficiently convert a mesh-based

character animation into a skeleton-based representa-

tion;

• a robust method to learn time-varying details us-

ing a non-linear probabilistic technique;

• a simple approach to represent and edit a mesh-

based character animation preserving its time-varying

details.

The paper is structured as follows: Sect. 2. reviews

the most relevant related work and Sect. 3. briefly de-

scribes our overall approach. Thereafter, Sect. 4. de-

tails our automatic method to convert a mesh-based

character animation into the skeleton-based format and

Sect. 5. describes how the time-varying details are

learned using a non-linear probabilistic technique. Ex-

periments and results are shown in Sect. 6. and the

paper concludes in Sect. 7..

2. Related Work

Creating animations for human subjects is still a

time-consuming and expensive task. In the traditional

framework, the character animation is represented by a

surface mesh and an underlying skeleton. The surface

geometry can be hand-crafted or scanned from a real

subject and the underlying skeleton is manually cre-

ated, inferred from marker trajectories [12] or inferred

from the input geometry [13]. The skeleton model is ani-

mated by assigning motion parameters to the joints and

the geometry and skeleton are connected via skinning

(see [14] for a review).

Given the complexity of this process, many related

methods have been developed to simplify this pipeline

bypassing many drawbacks of the conventional frame-

work [1]. In particular, the recent progress of defor-

mation transfer [15], [16], surface capture [17], [18] and

mesh-based performance capture methods [2], [3] is en-

abling the creation of an increasing number of mesh-

based animations for human subjects. As a result, edit-

ing and reusing these animations is becoming an impor-

tant issue.

A number of approaches have been developed to pro-

cess and edit general mesh animations [4]～[8], but un-

fortunately these methods can not be easily used by

animators or integrated into the conventional anima-

tion pipeline. For animations that can be represented

by an underlying kinematic skeleton, e.g. human sub-

jects, an underlying representation is more flexible for

editing operations, it enables its integration into a con-

ventional animation package and it simplifies the over-

all process. Recent techniques to simplify the render-

ing task for such mesh animations [9] and new meth-

ods to convert a sequence of mesh poses [10] or mesh

animations [2] to a skeleton-based format have been in-

vestigated. Our technique extends these latter editing

approaches by preserving the fine time-varying details

during the manipulation process, which increases the

quality of the final result (Fig. 1).

In our framework, surface time-varying details are en-

coded and preserved by a non-linear probabilistic tech-

nique. In contrast to related approaches dealing with

human skin deformations [19]～[21], our method is even

able to model deformations of loose apparel. Consider-

ing that the underlying subspace of deformations is in-

herently non-linear, we believe that a non-linear dimen-

sionality technique is appropriate to compactly repre-

sent these deformations. Among the non-linear dimen-

sionality reduction approaches, Gaussian Process La-

tent Variable Models (GPLVM [11]) has been shown to

robustly generalize well from small training sets and it

does not tend to over-fit as other techniques. Recently,

a variety of GPLVM approaches have been widely used

for learning human motion either using a dynamic rep-

resentation [22] or a shared latent structure [23]. These

techniques were also used to model large dimensional
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Fig. 2 Overview of our method: an input mesh-based char-

acter animation is decomposed into coarse (MCAC)

and fine (MCAF ) deformation components. This

enables the user to edit the underlying skeleton-

based representation and the time-varying details of

the input are faithfully reconstructed in the final an-

imation.

data, such as silhouettes [24], voxel data [25] and even

simple deformable models [26]. However, to the best

of our knowledge, such technique was never been used

to learn time-varying surface details for more complex

models like in our system.

3. Overview

An overview of our approach is shown in Fig. 2. The

input to our method is an animated mesh sequence com-

prising of NFR frames. The mesh-based character ani-

mation (MCA = [M,pt]) is represented by a sequence

of triangle mesh models M = (V = vertices, T =

triangulation) and position data pt(vi) = (xi, yi, zi)t

for each vertex vi ∈ V at all time steps t.

Our framework is inspired by Botsch and Kobbelt [27],

where a new representation for mesh editing is proposed

using a multiresolution strategy. In contrast to their

method, our system can be applied to a sequence of

spatio-temporal coherent meshes and it allows the ma-

nipulation of the entire animation by decomposing it

into coarse (MCAC) and fine (MCAF ) deformation

components. A model for coarse deformations is cre-

ated by automatically fitting a kinematic skeleton to

the input and by calculating the joint parameters and

blending skinning weights such that the input anima-

tion is reproduced as close as possible, Sect. 4..

Unfortunately, only a skeleton-based model is not

able to represent the fine time-varying details of the

input. In order to encode such details, a GPLVM-based

technique is used to learn the motion-dependent fine

non-rigid details, Sect. 5.. The combination of both

models not only enables the conversion of the input

mesh-based character animation in a new hybrid rep-

resentation, but it also enables its manipulation pre-

serving the important time-varying details, Sect. 6..

4. Skeleton-based Representation

Giving an input mesh-based character animation

MCA, a skinned model (MCAC) is created to repro-

duce the coarse deformation component of the input

animation. This is done by automatically fitting a kine-

matic skeleton to the input character model (i.e. trian-

gle mesh at first frame of the animation) and by cal-

culating the joint parameters (θ) and blending skinning

weights such that MCAC reproduces MCA approxi-

mately.

Our goal is to deal with human-like characters.

Therefore, we include prior knowledge in our frame-

work by means of a known kinematic skeleton struc-

ture, Fig 3(left). Our kinematic structure contains

NJOINTS = 18 joints connecting bone segments and

its joint hierarchy is presented in Fig. 3(right). We pa-

rameterize the skeleton by the translation of the root

joint and three angular degrees-of-freedom for all other

joints. We fit our kinematic skeleton to the input char-

acter model by using the method proposed in [13]. We

also use the approach proposed in [13] to compute ap-

propriate blending skinning weights to connect the char-

acter model to the underlying kinematic skeleton.

Thereafter, for each frame of the input animation,

joint parameters θ are estimated such that the recon-

structed skinned model MCAC best reproduces the in-

put poses in MCA. Starting from the root of the hierar-

chy and stepping down to the leaves, this is achieved by

optimizing the root translation and the angles for each

joint in order to minimize the average square deviations

between the vertices in the skinned model and the ver-

tices in the input pose for each frame. We perform this

optimization for each joint subsequently following the

skeleton’s hierarchy. In contrast to [2], [10], this simple

strategy is fast and it is more robust against artifacts

due to the non-rigid components of the input animation.

Although we are not as general as the related work re-

garding the estimation of the underlying skeleton struc-

ture, in our experiments, our automatic approach is able

to correctly convert animations of different human sub-

jects wearing a variety of clothing styles, Fig. 6.

Our final skinned model MCAC closely matches the

input animation. However, non-rigid time-varying de-

tails can not be accurately reproduced in this represen-

tation. In the next section, a new method is used to

learn such time-varying details which enables the faith-

ful reconstruction and manipulation of the input.
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Fig. 3 Prior knowledge is incorporated in our framework by

means of a known kinematic skeleton structure (left)

containing 18 joints organized hierarchically (right).

5. Learning Time-varying Surface De-
tails

We use a non-linear probabilistic technique to effi-

ciently learn the complex time-varying details of the in-

put, which is inherently non-linear, from a small number

of samples (i.e. frames). This is achieved by learning

the difference between the input mesh animation and

its corresponding skinned model representation. This

algorithm design is important because it makes our rep-

resentation more stable (i.e. by using the coarse skinned

animation) and it enables a more detailed and accurate

reproduction of the input (see Fig. 5(a) and Sect. 6.).

Another advantage is that while absolute coordinate

values of neighboring vertices may be completely differ-

ent, the fine deformations tend to be similar for neigh-

boring vertices, which improves the performance of our

learning scheme.

Giving the mesh animation MCA and its skinned

model MCAC , we create the details by subtracting for

each vertex vi its original position pt(vi) in MCA from

its position pst(vi) in MCAC at time step t: dt(vi) =

pt(vi)−pst(vi). Finally, yMt
= [dt(v1), · · · ,dt(vN )]T is

a component of MCAF at time t.

The skeletal motion (i.e. joint parameters) is linked

to the fine deformations of the input model using a

shared latent structure of GPLVM, Shared Gaussian

Process Latent Variable Models (SGPLVM) [23], via a

low-dimensional latent space X . In conjunction with

Gaussian Process Dynamical Models (GPDM) [22], the

smoothness of the temporal transitions of the latent

variables x is enforced. Latent variables are mapped

from the high-dimensional observation spaces fS(x) :

X → YS and fM (x) : X → YM , where YS represents

DS-dimensional joint parameters and YM represents the

DM -dimensional time-varying details, as illustrated in

Fig. 4. Inherence of the Gaussian Process technique al-

lows us to optimize our latent space increasing its gen-

eralization.

The estimation of the mapping functions fS(x)

and fM (x) is briefly described in the following. In

SGPLVM [23], d-dimensional latent variables X =

[x1, · · · ,xN ] corresponding to N given samples in YS

and YM (denoted by Ȳ S and Ȳ M , respectively) are ac-

quired by maximizing the joint likelihood of Ȳ S and

Ȳ M with respect to X. In this optimization, the simi-

larity between components of X (i.e., xi and xj where

i |= j) is evaluated by a non-linear kernel function. In

our particular case, the similarity is determined in ac-

cordance with our sampling data, namely mesh (ȳMi

and ȳMj
) and skeleton (ȳSi

and ȳSj
). We use RBF

for the non-linear kernel function and scaled conjugate

gradient (SCG) for the optimization of the non-linear

mapping functions fS(x) and fM (x).

GPDM [22], which consists of an observation space Y

(i.e. YS or YM ) and its latent space X , is defined by two

mappings. The first mapping is from the latent space

X to the observation space and the second one is from

a point at t − 1 to a point at t in X , fD(x), as illus-

trated in Fig. 4. Similarly to SGPLVM, these mapping

functions are acquired by maximizing the joint likeli-

hood of Y and Xt+1 with respect to X and Xt, where

Xt+1 = [x2, · · · ,xN ] and Xt = [x1, · · · ,xN−1].

In our framework, the shared space X under the dy-

namics constraint, is acquired by maximizing the prod-

uct of the joint likelihoods evaluated in SGPLVM and

GPDM. In contrast to previous work, where the ini-

tialization of X is achieved by canonical correlation

analysis (CCA) [28] or averaging the top eigenvectors of

PCA [23], in our method, X is initialized by computing

the principal components of Y S and then we optimize

the product of the joint likelihoods. Since DS � DM ,

this approach results in a better initialization and opti-

mization for Y M .

The goal of this learning scheme is to encode time-

varying details of the input mesh animation using the

joint parameters. In general, a given joint angle con-

figuration might correspond to multiple surface details.

GPDM allows us to properly model this situation and

obtain an improved latent space by mapping the data

with similar details but different motions to different

latent variables in X . In order to leverage this advan-

tage, a temporal history of the input skeletal motion

is mapped from YS to X and then to YM . In our im-

plementation, a concatenation of the joint parameters

for two frames is employed: ySt
= [θt, θt−1]

T , where θt

denotes the skeletal joint parameters at time t. Please

note that only joint angles are used for learning (i.e.

translation parameters are discarded) and that in our

IS3-43 : 1156



Fig. 4 The relation between joint parameters and surface

details is learned using a shared latent space with

dynamical constraints. Our model can generalize to

different input configurations, as seen by the color-

coded variance (blue=low → red=high).

experiments, we achieved better results by discarding

the joint angles for the root joint as well.

While the latent space X is optimized by embedding

with Gaussian Process, a mapping function from yS to

x (f−1(yS) : Y S → X) is not provided by the above

mentioned process. In this work, after the latent space

X is optimized, the mapping Y S → X is obtained by

a regression function, which is also learned by Gaussian

Process [29].

Using fS(x) and fM (x), a new model is generated as

follows: first the coarse deformation ps(vi) is estimated

from yS using our skinned model, Sect. 4.. Thereafter,

the joint parameters for time t and t− 1 are mapped to

YM via X : yM = fM (f−1
S (yS)) and the time-varying

details dt(vi) are calculated. Both terms are added to-

gether and the pose for the model is reconstructed. In

our experiments, the dimension of the latent space and

the number of iterations for the SCG technique are set

to be 4 and 100, respectively. These values enable con-

vergence and they are a good trade-off between training

speed and accuracy of the final model.

6. Experiments and Results

Our approach has been tested on several mesh-based

animation sequences generated from performance cap-

ture methods that are publicly available [3], [30]. The

animations contain walking sequences as well as dancing

and fighting sequences. The input meshes were gener-

ated at a resolution of around NV ERT = 7000−10000K

vertices and the animation sequences range fromNFR =

70-400 frames long. In order to evaluate the perfor-

mance of different algorithmic alternatives, we first ran

a series of experiments.

In our first experiment, we verified the efficiency of

our system’s design by comparing the performance of

our non-linear probabilistic model to learn the full range

of deformations in contrast to only encoding the time-

varying details in Sect. 5.. By encoding coarse and fine

deformations, our non-linear model is able to reproduce

the input, but unfortunately it is not able to general-

ize well to different pose configurations. Fig. 5(a) shows

the result when we use a model trained with the full de-

formations (red line) and one trained with only the fine

deformations to reconstruct the swing sequence [3]. The

graph shows the average distance error between the cor-

responding vertices of the human-size input animation

and our reconstructions. This demonstrates our correct

choice by using a non-linear model to encode only the

fine time-varying deformations, as described in Sect. 5..

Our second experiment was used to determine the

best combination of representations to be applied to

our GPLVM-based approach, Sect. 5.. Motion capture

data can be represented by euler angles, quaternions or

exponential maps. We applied all three representations

to our method and in our tests exponential maps per-

formed better. We also tested two common represen-

tations for positional data using the samba sequence:

vertex displacements in xyz space (XYZ ) and differ-

ential coordinates [1] (DIF ). In our experiments, both

mesh representations gave similar results. Therefore,

giving the fast generation of XYZ, in contrast to DIF

where a linear system needs to be solved for each frame,

for the remainder of this paper we use the combination

exponential maps and XYZ to generate the results.

Given the high dimension space of the input data

(i. e. DS = 3 × (NJOINTS − 1) × NFR and DM =

3×NV ERT ×NFR), our third and last experiment an-

alyzes the performance of our system to handle it, as

well as lower dimensional spaces (i.e. mesh resolutions)

generated by simplifying the original one. We gener-

ated a simplified version of the input animation by dec-

imating the character triangle mesh at the first frame

using a surface mesh simplification technique proposed

in [31]. We maintain the temporal connectivity in the

control mesh animation by saving the sequence of edge

collapses for the simplified character model and by ap-

plying the same sequence of operations for all meshes

in the input sequence. Thereafter, we apply our frame-

work to generate our hybrid representation and perform

some manipulations using the control mesh animation.

At the end, a radial basis function approach, proposed

in [30], is used to reconstruct the fine resolution models

based on the sequence of edited control meshes.

We tested the performance of our system in six differ-

ent resolution levels: full resolution or 100%, 75%, 50%,

25%, 10% and 5%. As seen in the graph in Fig. 5(b),
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Fig. 5 Experiments for the human-size samba sequence [3]:

(a) The graph shows that our system design, where

coarse and fine deformations are decomposed, is able

to reproduce the input swing sequence more accu-

rately. (b) A multiresolution approach can be used

in our framework delivering the same level of quality

for the final animation, while decreasing computa-

tional power and storage resources. (c) Graph com-

paring the reconstruction accuracy of our skinned

model (red line) and our hybrid representation (blue

line) demonstrating the advantage of our algorithm.

the reconstruction accuracy of our system for the chal-

lenging samba sequence is similar in all resolution levels.

In the accompanying video, we can also see that visu-

ally there is not much difference in the final result when

we manipulate the control mesh or the full fine reso-

lution animation. Therefore, in order to make our ap-

proach more efficient, decreasing its overall processing

time, we decided to perform the editing process follow-

ing a multiresolution strategy using the control mesh

at a resolution of 5% (NFR = 501). Please note that

our system can still be applied to any resolution level

and that for all sequences we tested, the time-varying

(a)

(b)

(c)

(d)

(e)

Fig. 6 Results of our editing mesh-based character anima-

tions: input mesh animations (a) and edited ani-

mations (b). Our framework allows a more faithful

manipulation. For a single frame, different surface

details for the skirt can be reconstructed based on

the underlying skeletal motion (c – different three

frames). We are also able to modify the proportions

of the underlying skeleton, simplifying the retarget-

ing of a mesh animation (d and e – left: original

frame, middle: skinning results, right: hybrid re-

sults).
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details of the input animations were preserved during

the process. We see this multiresolution scheme as an

advantage of our framework as it allows the reduction

of processing time and storage without decreasing the

overall quality of the animation.

The performance of our framework to automatically

convert an input mesh-based character animation to

our new hybrid representation is shown in Fig 5(c).

By using only the skinned model, as in related ap-

proaches [2], [10], time-varying details are not preserved

and the reconstruction is not accurate (red line in

Fig. 5(c)). Our hybrid solution preserves the details

of the input animation which yields a more accurate re-

construction of the input (blue line in Fig. 5(c)). This

property of our new representation is specially useful

during the manipulation of the input animation, where

the important time-varying details are preserved, and

a more realistic visual look for the resulting edited ani-

mation can be achieved, Fig. 6.

The advantages of our hybrid representation are pre-

sented in Fig. 1 amd Fig. 6 and in the accompanying

video. In Fig. 1, the motions of the arms, torso and

head of the girl dancing samba are edited and the skirt

waves faithfully in the final result, increasing the re-

alism of the edited animation. Fig. 6(a,b) shows the

input animation and the editing result using our hybrid

representation. Using our framework, we are able to

change the motion parameters of the underlying skele-

ton and generate convincing deformations for the skirt,

Fig. 6(c). We are also able to change the input skele-

ton dimensions, Fig. 6(d,e), which enables us to even

retarget the input animation to a different character

proportion.

The running time of our algorithm is dominated

by the training phase of the GPLVM-based technique

(around 30min for 100 frames) and by the joint param-

eter estimation in Sect. 4. (2.5s/frame). These steps

are done only once at the beginning for each sequence

and, thereafter, the editing operations run in real-time.

These timings were obtained with an Intel Core Duo

Laptop at 2.4 GHz. Another advantage of our approach

is its ability to compress a mesh-based character anima-

tion without losing its time-varying details. Using our

lowest multiresolution level (5%), the input animation

is compressed to around 5%-10% of its original size.

Despite our method’s ability to reproduce and manip-

ulate the input animation, there are a few limitations

to be considered. Our current framework is targeted to

kinematically-based subjects and therefore it would not

perform as well as other methods in the literature [5], [7]

for extreme non-rigid deformations, like purely deform-

ing cloth. Currently, the time-varying details can not

be directly edited and they are reconstructed based on

the motion of the underlying skeleton. Although our

system allows the animators to edit the input motion,

giving the limited amount and variety of training data

available, we are not able to generate details for mo-

tions that are too far from the original input. However,

we see this as a more general limitation of any learn-

ing method and believe that by increasing the variety

of training data our framework will be able to deal with

more general edits and motions.

Currently, linear blending skinning was used to cre-

ate the skinned model in Sect. 4., but we believe that

similar results can be achieved with a more advanced

skinning method [14] and we leave this for future work.

We are using a basic GPLVM implementation, but we

believe that improvements of this basic technique [32]

can increase the performance of our method even fur-

ther. Important parameters in Sect. 5. (i.e number of

iterations, number of latent variables) were found ex-

perimentally and kept constant for all sequences. We

would like to investigate better ways to determine such

parameters in the future as well. Nevertheless, we de-

scribed a simple framework to represent and manipulate

a mesh-based character animation using its underlying

kinematic structure and incorporating the reconstruc-

tion of its time-varying details.

7. Conclusions

We presented a simple and fast system to represent

and manipulate an input sequence of animated char-

acters preserving its important time-varying details.

By decomposing the input animation into coarse and

fine deformation components, a skinned model and a

GPLVM-based technique are used to reproduce the in-

put and to enable its meaningful manipulation. Our

new hybrid representation maintains the flexibility of

mesh-based methods while it allows for practical ma-

nipulations using the conventional animation tools.

As future work, we would like to extend our approach

to reconstruct a time-varying non-linear probabilistic

model to handle more complex edits and even different

input motions. For handling the complex animations,

more sophisticated modelings below would be useful:

• Modeling with additional constraints for smooth

mapping (e.g. smooth bidirectional mapping [33] and

constraints with regard to the topology of motionsc

[34]).
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• Using rank priors for automatically selecting the

dimension of a latent space [32].

The source codes of GPLVM were provided by cour-

tesy of Neil Lawrence.

References

[1] M. Botsch and O. Sorkine: “On linear variational sur-
face deformation methods”, IEEE TVCG, 14, 1, pp.
213–230 (2008).

[2] E. de Aguiar, C. Theobalt, S. Thrun and H.-P. Sei-
del: “Automatic conversion of mesh animations into
skeleton-based animations”, Computer Graphics Fo-
rum, 27, 2, pp. 389–397 (2008).

[3] D. Vlasic, I. Baran, W. Matusik and J. Popović:
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