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Abstract This paper proposes a new approach to recover the 3-D shape of multiple color object via rotation.
Many empirical photometric approaches use a calibration object. In general, multiple light sources allow one to
recover both the color reflectance and the shape of a target object. Here, a new Fast Marching Method (FMM)
algorithm is proposed to recover 3-D shape for the case of a single parallel light source aligned with the viewing
direction. Color reflectance factors based on a dichromatic reflectance model are estimated using clustering. Sub-
sequently, a Lambertian shaded image is generated using a conversion table. Experiments with both synthetic and
real data are demonstrated.
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1. Introduction

3-D shape recovery is an important research topic
in computer vision, with many practical applica-
tions. Woodham [1] introduced photometric stereo as
a method to recover surface orientation from multiple
shaded images. Later, an entirely empirical approach to
photometric stereo [2] was demonstrated. Subsequently,
Hertzmann and Seitz [3] relaxed the requirement that
the calibration object have exactly the same reflectance
properties as the target object. The goal of that work
was to recover both shape and surface reflectance, for
application to computer graphics.

Iwahori et al. [4] developed a neural network (NN) im-
plementation of photometric stereo. Iwahori et al. [5] in-
troduced a method to obtain a virtual calibration sphere
by controlled, one degree of freedom (DOF) rotation of
the target object itself, calling this self-calibration.

Kimmel and Sethian [6] formulate the image irradi-
ance equation as an eikonal equation and solve it with
Sethian’s Fast Marching Method (FMM) [7]. Lamber-
tian reflectance was assumed. Iwahori et al. [8] ex-
tended the FMM approach to handle monotonic, non-
Lambertian reflectance. Shape is recovered with the
FMM by generating a lookup table, via self-calibration,

to convert to an equivalent Lambertian reflectance,
while [9] is a further extension of FMM under a point
light source illumination and perspective projection.
However, the approaches taken in [8] [9] still assume a
single reflectance function for all points on the target
object.

The empirical approaches in [2]～[4] all use explicit
calibration objects of known shape, a sphere in [2], [4],
spheres and cylinders in [3]. Multiple light source direc-
tions are required. In this paper, the FMM is further
extended using a conversion table. Self-calibration and
k-means clustering make it possible to recover spatially
varying color reflectance factors, based on a dichromatic
reflectance model. The FMM thus is extended to handle
multi-colored objects.

2. Previous Work

2. 1 FMM

Assume a single, parallel light source. Let s be a unit
vector in the light source direction. Let n be a unit
surface normal vector. Let v be a unit vector in the
viewing direction. Assume that the light source direc-
tion is aligned with the viewing direction and that both
are aligned with the z axis so that s = v = (0, 0, 1). Im-
age irradiance, E, for Lambertian reflectance becomes
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E = ρ(s · n) = ρ
1√

p2 + q2 + 1
(1)

where ρ is a reflectance factor, z(x, y) is the depth dis-
tribution, and (p, q) is the surface gradient given by
p = ∂z

∂x and q = ∂z
∂y . Eq.(1) can be rewritten as

√
p2 + q2 =

√
ρ2

E2
− 1 (2)

Eq.(2) is of the form |∇z(x, y)| = f(x, y) and is an
eikonal equation. The FMM is one approach to solve an
eikonal equation fast. The FMM algorithm is described
as follows (see Fig.1):

(a) Initialization

known{0}, far{∞},
trial{ }

(b) Determining 4 nearest

neighbor points

known{0}, far{∞},
trial{A,B,C,D}

(c) Selecting minimum

points among ABCD

known{0, A}, far{∞},
trial{B,C,D}

(d) Determining temporal

value of 4 nearest points

known{0, A}, far{∞},
trial{B,C,D,E, F,G}

Fig. 1 FMM

Step 1 (Initialization). (Fig.1(a)) All pixels are la-
beled as one of three lists, known, trial, far, according
to the following processes:
（ 1） First pixel is added to known list. Z is as-

signed to 0.
（ 2） Four nearest neighboring points not known are

labeled as trial and Z is assigned to fij .
（ 3） Other pixels are added to far list. Z is as-

signed as ∞.
Step 2. (Fig.1(b)) Select a pixel (imin, jmin) with the

minimum value of Z among trial list and remove the
pixel from trial list and add it to known list.

Step 3. (Fig.1(c)) Pixels which belong to far list
among four neighboring points around (imin, jmin) are
added to trial list.

Step 4. (Fig.1(d)) Z of the nearest neighboring
points of pixel (imin, jmin), which belongs to trial list,
is calculated and registered.

Step 5. If the trial list is empty, exit the procedure.
Otherwise, return to Step 2.

2. 2 Self-Calibration

The FMM has been applied when the reflectance
function does not vary from point to point on the tar-
get object. The effects of a spatially varying color re-
flectance factor and specular reflection still need to be
taken into account. In [5], target object images are ac-
quired over a full, 360 degree, one DOF rotation with a
single light source. Reflectance properties are measured
from the target object itself.

At points on the occluding boundary of the target
object, the surface normal is perpendicular to both the
tangent to the occluding boundary and the viewing di-
rection. Accordingly, the surface normal, n, at points
on an occluding boundary is uniquely determined by the
local geometry. These known points are tracked during
rotation and the corresponding surface normal, n, at
any rotation angle is thus also determined.

R

r
α

Gaussian

Sphere

Vector

θ

Vector

Feature Point

Feature Point

(on occluding 

boundary, angle 0)

Feature Point

(angle α)

Fig. 2 Gaussian Sphere and Feature Point

Gaussian sphere is defined as a virtual sphere with
its radius R = 1. θ represents the angle between the
normal vector of the feature point and the horizontal
axis (as shown in Fig.2).

From the relation of neighboring points for the tri-
angles in Fig.3 and Fig.4, the surface normal, n, of
the current feature point is determined using the cos θ.
cos θ takes plus or minus value. If the vector n is over
the horizontal axis, cos θ takes plus value. If the vector
n is under the horizontal axis, cos θ takes minus value
(as shown in Eq.3 and Eq.4).
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Fig. 3 Feature Point (a)

cos θ1 =
xc − xb√

(xc − xb)2 + (yc − yb)2
(3)

Fig. 4 Feature Point (b)

cos θ2 =
xe − xf√

(xe − xf )2 + (ye − yf )2
(4)

Except the points on the occluding boundary, the n
are given by

nx = cos θ cosα (5)

ny = sin θ (6)

nz = cos θ sinα (7)

where α is the current rotation angle.
In the end, a set of surface normals and corresponding

image irradiances is obtained. (For details, see [5]).

2. 3 Dichromatic Reflectance Model

The dichromatic reflectance model considers image ir-
radiance, E, to consist of two components, one for dif-
fuse (Lambertian) reflection, Ed, and one for specular
reflection, Em. The color of the diffuse component rep-
resents the color of object itself, while the color of the
specular component represents the color of light source.
The relative contribution of Ed and Em depends on n,
s and v at each surface point.

E = Ed(n, s)ρ+ Em(n, s,v) (8)

where ρ again is the object’s (diffuse) reflectance factor.

3. Color Clustering and Reflectance
Factors

To apply the FMM to a multiple colored object, it
is necessary first to obtain color reflectance factors, ρi,
i = R,G,B. According to Eq.(8), the color reflectance
factor at any target point can be calculated as

ρi = (Ei − Eim)/Eid, i = R,G,B.

The diffuse components, Eid, can be calculated from
the cosine of the incident angle (i.e., the angle between
n and s). Recall, the light source direction and view-
ing direction are assumed aligned so that, at all target
points, s = v = (0, 0, 1). Image irradiances, Ei, and the
corresponding surface normal vector, n, are obtained
for selected target points during self-calibration.

We are interested in estimating color reflectance fac-
tors, ρi, at all target points. To address this problem,
points are classified based on a clustering of color fea-
ture vectors into a fixed, finite number of color equiv-
alence classes. Normalized color coordinates (Rn =
R/Y,Gn = G/Y,Bn = B/Y ) are used to make the color
clustering simpler, where Y is the monochrome image ir-
radiance as follows: Y = 0.299×R+0.587×G+0.114×B
. Fig.6 shows a plot of (R,G,B) data and the associ-
ated (Rn, Gn, Bn) data.
K-means algorithm is used to cluster colors, where k

is given a priori. Here, k means the number of colors. k
becomes the number of colors of feature points, which is
equal to the number of colors of the target object. After
the number of colors of feature points are determined,
the number of colors k is given.

First, intensities of feature points are observed in HSV
color space. H (Hue) is one of the main properties of
color. Observing kinds of H gives the number of colors
k. Here the intensities of feature points are converted
from RGB color space to HSV color space using con-
version equation. For easy observation, H of feature
points are sorted, shown in Fig.5. When H in Fig.5
suddenly changes, H of one color is recognized. In this
case, k is determined as 5.

After k-means clustering is applied, the color re-
flectance factors for an arbitrary point are taken to be
those of the mean of the cluster to which the point be-
longs.

A standard k-means clustering algorithm is used.
Clustering is applied to each RGB component and color
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Fig. 5 Sorted Data for H

reflectance factors of all points on the object are thus
estimated. An example of color clustering for a real test
object is shown in Fig.7.
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Fig. 6 Sample Data Distribution

Fig. 7 Example of Color Clustering

4. Conversion Table for Color Textured
Object

A conversion table is generated during self-calibration
to transform actual measured irradiances of tracked fea-
ture points to those of an equivalent Lambertian reflec-
tor.

Feature points which lie on the equator line of a vir-
tual sphere are used to construct the conversion table.
This ensures that there will be one rotation angle at
which the feature point is brightest (i.e., n = s).

As the target object is rotated from -90 to 90 degrees,
the corresponding image irradiances, E, are recorded in

the conversion table together with the associated ro-
tation angle. Along the equator of the virtual sphere,
the conversion table maps the recorded value of image
irradiance, E, to the corresponding ideal value for Lam-
bertian reflectance. The generated conversion table is
used to interpolate Lambertian irradiance values from
the observed E. Here, E should be monotonically in-
creasing from -90 to 0 degrees rotation and monoton-
ically decreasing from 0 to 90 degrees rotation. Only
feature point data that satisfy this condition are used
to construct the conversion table.

The specular reflection component and the color re-
flectance factor are removed from E, based on the
dichromatic reflectance model, as follows. The specular
component includes points which have image irradiance,
E, over a threshold and with a sudden large change of
gradient. These points are removed from consideration.
The remaining points are used to estimate the diffuse
reflection component. Cubic spline interpolation is ap-
plied to these data. Then the diffuse component, Edρ,
is separated from E. The overall specular component is
estimated as Em = E − Edρ.

For multi-colored objects, the conversion table is ap-
plied separately to each color region. To construct the
conversion table itself, the effect of the reflectance factor
is first removed by computing an adjusted image irra-
diance E

′
= E−Em

ρ1
where ρ1 represents the reflectance

factor of the brightest feature point. For the given color
region, E

′
is multiplied by the reflectance factor, ρi, of

the associated color region to produce E
′′

= E
′
ρi+Em.

E
′′

then is used for the conversion table.
As shown in Fig.8, input (horizontal axis) of the con-

version table is the target object image irradiance. Out-
put (vertical axis) is the corresponding Lambertian im-
age irradiance.

Fig. 8 Lambertian Conversion Table for One Color Region

The overall algorithm is summarized as follows:
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Step 1. Acquire 37 images stepped 5 degrees in rota-
tion over the range -90 to 90 degrees.

Step 2. Apply K-means algorithm for color cluster-
ing.

Step 3. Separate specular components using cubic
spline interpolation.

Step 4. Calculate surface normal of feature points.
Step 5. Calculate color reflectance factors of feature

points using dichromatic reflectance model.
Step 6. Recover color reflectance factors for all object

points according to the values in the associated cluster
region.

Step 7. Generate conversion table (from object re-
flectance to Lambertian) from feature points.

Step 8. Generate (idealized) Lambertian image of
target object using conversion table.

Step 9. Use the Fast Marching Method algorithm to
recover 3-D shape from the Lambertian image.

5. Experiments

5. 1 Computer Simulation

A Phong reflectance model is used. Image irradiance,
E, is

Ej = 255× (ρj cos i+ t cosn s), j = R,G,B.

where ρj is the color reflectance factor for (R,G,B), s is
the off-specular angle, i is the incident angle, and t are
the overall weight of the specular component compared
to the diffuse component, (0 <= t <= 1), and n > 0 is
a parameter that determines the concentration (i.e., ef-
fective width) of the specular component.

In the simulation, t = 0.4 and n = 15. One of the
multi-colored synthetic input images is shown in Fig.9-
(a). Simulation incorporates the expected effect of noise
by adding 3% Gaussian noise to each input image. The
vase-like shape is defined mathematically by

r = 0.9 sinx+ 1.3

z =
√
r2 − y2

where −π < x < 9π/2 , and −0.9 sinx − 1.3 < y <

0.9 sinx+ 1.3.
For self-calibration, 37 images were synthesized and

the object rotated in 5 degree increments over the range
−90 to 90 degrees. These images were used to generate
the conversion table and to estimate color reflectance
factors. Fig.9-(b) shows the generated Lambertian
image. Fig.9-(c) shows the color reflectances.

The actual mathematically defined surface is shown
in Fig.9-(d). The maximum height of the true shape is

(a) Input Image (b) Lambertian Image

(c) Color Reflectance (d) Actual Surface

(e) 3-D Shape Using FMM

Fig. 9 Example of Phong Model

2.2. The shape recovered using FMM is shown in Fig.9-
(e). The mean error is 0.0163 and the maximum error
is 0.1854. Compared to the true shape, the recovered
result is is both qualitatively and quantitatively accu-
rate. The mean error of that method is 0.1237 and the
maximum error is 0.5165.

5. 2 Experiment with a Real Object

A real test object is shown in Fig.10-(a). Color images
were acquired and converted to monochrome as follows:

E = 0.299× ER + 0.587× EG + 0.114× EB

The monochrome image is shown in Fig.10-(b). The
generated Lambertian image is shown in Fig.10-(c). Es-
timated color reflectance factors are shown in Fig.10-
(d). The recovered 3-D shape is shown in Fig.10-(e).

Separation of specular components used 37 images
(from -90 to 90 degrees), and generation of the conver-
sion table used 19 images (from -90 to 0 degrees), 5
degrees of rotation apart. Thus, the number of images
now required is reduced.

To obtain the result shown in Fig.10-(e), initial
heights are given to two points on the target object,
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(a) Real Object (b) Monochrome Image

(c) Lambertian Image (d) Color Reflectance

(e) 3-D Shape Using FMM

Fig. 10 Results for Real Object

one at the top of the mouth and the other at the top of
the body. These initial heights were estimated during
calibration.

Experiments were done with an Intel Core2Duo
2.2GHz CPU with 2GB memory. Following calibration,
shape recovery with the FMM algorithm took 1.3 [sec],

The method uses k-means clustering to segment col-
ors. This is most effective when the colors on the
target object are distinct and the number of colors is
known. Clustering likely will fail if there is grada-
tion (i.e., blending) of color or if the number of colors
is large and unknown. The FMM algorithm assumes
smoothness and thus cannot handle surface discontinu-
ities. Concave regions also cause difficulties owing to
self-occlusion during rotation.

6. Conclusion

This paper demonstrates a new approach to recover
the 3-D shape of multi-colored objects. Self-calibration,

color clustering, a conversion table and the Fast March-
ing Method (FMM) combine to recover both color re-
flectance factors and 3-D shape. Self-calibration deter-
mines image irradiances and the corresponding surface
normal at selected target points. Rotation of the ob-
ject is used and all images are acquired with a single
light source direction aligned with the viewer. K-means
clustering segments color regions and allows recovery
of color reflectances from the dichromatic reflectance
model. A conversion table estimates the ideal Lam-
bertian image to which a FMM algorithm is applied.
Acceptable results were obtained on both synthetic and
real data. Concave regions are problematic since self
occlusion arises during calibration, limiting the ability
to track known feature points. Dealing with concavity
is a subject for future work.
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