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Let G be an additive group generated by an element G of prime order r. The
discrete logarithm problem with auxiliary input (DLPwAI) is a problem to find
α on inputs G, αG, αdG ∈ G for a positive integer d dividing r − 1. The in-
feasibility of DLPwAI ensures the security of some pairing-based cryptographic
schemes. In 2006, Cheon proposed an algorithm for solving DLPwAI which
works better than conventional algorithms. In this paper, we report our exper-
imental results of Cheon’s algorithm on a pairing-friendly elliptic curve defined
over GF(3127). Moreover, based on our experimental results, we estimate the
required cost of Cheon’s algorithm to solve DLPwAI on some pairing-friendly
elliptic curves over a finite field of characteristic 3. Our estimation implies that
DLPwAI on a part of pairing-friendly curves can be solved at reasonable cost
when the optimal parameter d is chosen.

1. Introduction

Let G be an additive group generated by an element G of prime order r (We
mainly consider the case where the group G is the Mordell-Weil group of an
elliptic curve defined over a finite field). The discrete logarithm problem (DLP)
is a problem to find α ∈ Z/rZ on inputs G, αG ∈ G. In general, the most
efficient algorithms for solving DLP require O(

√
r) in time, and DLP is considered

to be infeasible when parameters are properly chosen. The security of some
cryptographic schemes relies on the infeasibility of DLP.

In 2006, Cheon proposed an algorithm for solving DLP with auxiliary input
(DLPwAI). DLPwAI is a problem to find α ∈ Z/rZ on inputs G, αG,αdG ∈
G for a positive integer d dividing r − 1 6). Since the time complexity of
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Cheon’s algorithm is O(log r(
√

(r − 1)/d +
√

d)) and the space complexity is
O(max(

√
(r − 1)/d,

√
d)), Cheon’s algorithm may work better than conven-

tional algorithms. Especially, it only requires O( 4
√

r) in time and space when
d ≈ √r. Recently, new (possibly infeasible) problems are introduced to ensure
the security of some pairing-based cryptographic schemes, such as the �-WDH
problem 17), the �-SDH problem 3), the �-sSDH problem 5), the �-BDHI problem 4)

and the �-BDHE problem 5). Since a common property of these problems is that
the elements G, αG, α2G, . . . , α�G ∈ G are used as inputs, we can use Cheon’s
algorithm to solve these problems when � is larger than d.

When we implement Cheon’s algorithm, we choose either the kangaroo method
or the baby-step giant-step (BSGS) method as a subroutine algorithm 6),7). Jao,
et al. implemented Cheon’s algorithm with the kangaroo method 14) . Moreover,
Sakemi, et al. implemented Cheon’s algorithm with both methods 19). Note that
their works were implemented on elliptic curves over a prime field. We here focus
on elliptic curves over a finite field of characteristic 3. In Refs. 12), 13), Izu, et al.
implemented Cheon’s algorithm with the BSGS method on a pairing-friendly
elliptic curve defined over GF(3127) introduced in Ref. 2). In this paper, we
report our experimental results on Cheon’s algorithm with the kangaroo method
on the same curve, and compare the complexity of Cheon’s algorithm with both
methods. Moreover, based on our experimental results, we estimate the required
cost of Cheon’s algorithm to solve DLPwAI on some pairing-friendly elliptic
curves. As a feedback of our estimation, we can see that it is better to avoid using
some pairing-friendly curves when we implement pairing-based cryptographic
schemes based on the problems mentioned above.

The rest of this paper is organized as follows: In Sections 2 and 3, we intro-
duce the BSGS method 20) and the kangaroo method 18), respectively, and their
combination with Cheon’s algorithm. In Section 4, we report our experimental
results on Cheon’s algorithm with the kangaroo method. In Section 5, we com-
pare the complexity of Cheon’s algorithm with both methods. In Section 6, we
describe some speeding-up techniques. In Section 7, we estimate the required cost
of Cheon’s algorithm to solve DLPwAI on some pairing-friendly elliptic curves.
Finally, in Section 8, we conclude our work.
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2. Cheon’s Algorithm and the BSGS Method

Let G be an additive group generated by an element G of prime order r. DLP
in the group G is a problem to find α ∈ Z/rZ on inputs G,αG ∈ G.

2.1 The BSGS Method
The BSGS method of Shanks 20) can be used to solve DLP in G. Instead of

finding a solution α directly, the BSGS method searches two integers i, j such
that α = i + jm and 0 ≤ i, j < m = �√r�, where �x� denotes the ceiling of a
real number x. We note that such integers i, j are uniquely determined. Since
αG = (i + jm)G = iG + jG′ with G′ = mG, we have a relation G1 − iG = jG′

with G1 = αG.
The BSGS method are mainly composed of two steps as follows: In the first

step (= baby-step), we compute
G1, G1 −G, G1 − 2G, . . . , G1 − (m− 1)G

successively and store them in a table. In the second step (= giant-step), we
compute

G′, 2G′, . . . , (m− 1)G′

successively and store them in another table. Once we find a collision G1− iG =
jG′ from these tables, we can obtain a solution α = i + jm. Since O(m)-group
operations and O(m)-group elements are required in each step, the time and space
complexity of the BSGS method are O(

√
r)-group operations and O(

√
r)-group

elements, respectively.
2.2 Cheon’s Algorithm with the BSGS Method
DLPwAI is a problem to find α on inputs G, G1 = αG, Gd = αdG ∈ G

for a positive integer d dividing r − 1. Let us describe Cheon’s algorithm for
solving DLPwAI. Fix a generator ζ of the multiplicative group (Z/rZ)∗. Note
that the generator ζ can be found efficiently. The goal of Cheon’s algorithm is
to find an integer k with α = ζk. Such an integer k is uniquely determined up to
modulo r. To find k, Cheon’s algorithm tries to find two integers k1, k2 such that
k = k1 + k2(r − 1)/d satisfying 0 ≤ k1 < (r − 1)/d, 0 ≤ k2 < d in the following
two steps (The outline of Cheon’s algorithm is shown in Algorithm 1):

Step 1 searches an integer k1 such that αd = ζk1
d with ζd = ζd, or equivalently,

Algorithm 1. Cheon’s algorithm with the BSGS method.

Input: G, G1 = αG, Gd = αdG ∈ G

Output: α ∈ Z/rZ

1. Find a generator ζ ∈ (Z/rZ)∗
2. ζd ← ζd, d′ ← (r − 1)/d

3. [Step 1] d1 ←
⌈√

d′
⌉

4. Find 0 ≤ u1, v1 < d1 such that ζ−u1
d Gd = ζv1d1

d G.
5. k1 ← u1 + v1d1

6. [Step 2] d2 ←
⌈√

d
⌉

7. Find 0 ≤ u2, v2 < d2 such that ζ−u2d′
G1 = ζk1+v2d2d′

G.
8. k2 ← u2 + v2d2

9. Output α← ζk1+k2d′

searches two integers u1, v1 such that
αdζ−u1

d = ζv1d1
d

satisfying
0 ≤ u1, v1 < d1 =

⌈√
(r − 1)/d

⌉
.

Such u1, v1 are uniquely determined. In practice, we search u1, v1 such
that ζ−u1

d Gd = ζv1d1
d G. Similarly, Step 2 searches an integer k2 such that

α = ζk1+k2(r−1)/d, or equivalently, searches integers u2, v2 such that
αζ−u2

r−1
d = ζk1+v2d2

r−1
d

satisfying
0 ≤ u2, v2 < d2 =

⌈√
d

⌉
.

Such u2, v2 are uniquely determined. In practice, we search u2, v2 such that
ζ−u2(r−1)/dG1 = ζk1+v2d2(r−1)/dG. In searching u1, v1 in Step 1 and u2, v2 in
Step 2, we can use the BSGS method as a subroutine algorithm.

2.3 Complexity
The complexity of Cheon’s algorithm with the BSGS method is as follows 6),7):
• Time : O(log r · (√(r − 1)/d +

√
d))-group operations,

• Space : O(max(
√

(r − 1)/d,
√

d))-group elements.
Here, the term ‘log r’ is due to the complexity of a scalar multiplication on the
group G. Kozaki, Kutsuma and Matsuo introduced a precomputated table on
fixed points to Cheon’s algorithm (KKM method) 16). Their method can reduce
the time complexity to O(

√
(r − 1)/d +

√
d)-group operations.
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3. Cheon’s Algorithm and the Kangaroo Method

Pollard’s kangaroo method is one of the most efficient algorithms for solving
DLP in general (see Ref. 18) for detail). In Refs. 6), 7), Cheon also proposed
a combination with the kangaroo method. Compared with the combination of
the BSGS method, Cheon’s algorithm with the kangaroo method can reduce the
table size, using the distinguished points technique described later.

3.1 Techniques for Cheon’s Algorithm with the Kangaroo Method
In order to combine the kangaroo method with Cheon’s algorithm, the following

three techniques are needed:
3.1.1 Search-space Expansion
In Step 1 of Algorithm 1, the size of the search space is O(

√
(r − 1)/d). In

the search space, two integers u1, v1 are uniquely determined. Thus we examine
the entire search space and store all values. In the kangaroo method, Step 1 is
modified as follows: Search u1, v1 such that

αdζu1
d = ζv1

d

satisfying
0 ≤ u1, v1 < �(r − 1)/d �.

In this case, the size of the total search space is O(((r − 1)/d)2). However,
there are O ((r − 1)/d)-pairs of u1, v1 and the search space for one pair of u1, v1

is O((r − 1)/d) on average. By using the following random-walk function, a
substantive size of the search space is expected to be O(

√
(r − 1)/d) by the

birthday paradox (This expansion can be similarly applied to Step 2, however,
the details are omitted in this paper).

3.1.2 Random-walk Function
In order to reduce the search space by the birthday paradox, elements must be

randomly chosen. Consequently, a random-walk function is introduced in Refs. 6),
7). Requirements of the random-walk function for the kangaroo method are as
follows: an element is chosen pseudo-randomly, and an element can be calculated
using information from previously chosen elements. Additionally, an assumption
is required in Cheon’s algorithm, that is to describe a chosen element as ζxG.
The following random-walk function Fs: G→ G satisfies these requirements: For

s | (r − 1), we define

Fs(G0) = ζ
fs(G0)
s′ G0, s′ =

r − 1
s

, ζs′ = ζs′
,

where fs : G→ Z/sZ is a pseudo-random function. Given an element F
(0)
s (G0) ∈

G, set

F (i)
s (G0) = ζa

s′F (0)
s (G0), a =

i−1∑
t=0

fs(F (t)
s (G0)) (1)

for i ≥ 1.
3.1.3 Distinguished Points Technique
In the kangaroo method, all the subsequent pairs of elements collide after the

collision once happens. By using this property, the number of stored data can
be considerably reduced. This technique is called the distinguished points tech-
nique 11),21).

When a chosen element has a specified characteristic (e.g., the least significant
6 bits are all zero), the element is stored as a distinguished point. Even if the first
pair of points to collide is not stored, subsequent collided pair of distinguished
points are stored. Therefore, collided pairs can be searched with reduced data.

By using this technique, the space complexity (also the number of elements)
can be reduced by a factor of 1/w with arbitrary parameter w. For example, the
space complexity is O(

√
(r − 1)/d/w) in Step 1. On the other hand, the time

complexity is increased to O(log r
√

(r − 1)/d + w) (or O(
√

(r − 1)/d + w) with
the KKM method). If we choose w to be much smaller than

√
(r − 1)/d, then

the increase of the time complexity is negligible in general.
3.2 Cheon’s Algorithm with the Kangaroo Method
With these techniques, the kangaroo method can be combined with Cheon’s

algorithm (see Algorithm 2). For implementing Cheon’s algorithm with the
kangaroo method, further improvements are required. Since Algorithm 2 uses
the kangaroo method, a collision against own sequence of elements might occur,
which we call a ‘self-collision’. For example, F

(i1)
d′ (Gd) = F

(j1)
d′ (Gd). Once a self-

collision occurs, no new points can be subsequently generated by the random-walk
function. Therefore, Algorithm 2 should be modified in the following way: Initial
point F

(0)
s (G0) of the random-walk function is changed from G0 to ζc

s′G0 for a
constant value c 7). When a self-collision occurs, by changing c to a new value, a
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Algorithm 2. Cheon’s algorithm with the kangaroo method.

Input: G, G1 = αG, Gd = αdG ∈ G

Output: α ∈ Z/rZ

1. Find a generator ζ ∈ (Z/rZ)∗

2. ζd ← ζd, ζd′ ← ζd′
, d′ ← (r − 1)/d

3. [Step 1] F
(0)
d′ (Gd)← Gd, F

(0)
d′ (G)← G

4. Find 0 ≤ i1, j1 such that F
(i1)
d′ (Gd) = F

(j1)
d′ (G)

5. u1 ←
∑i1

i=0 fd′ (F (i)
d′ (Gd)) mod d′

v1 ←
∑j1

j=0 fd′ (F (j)
d′ (G)) mod d′

6. k1 ← v1 − u1 mod d′

7. [Step 2] G′ ← ζk1G, F
(0)
d (G1)← G1, F

(0)
d (G′)← G′

8. Find 0 ≤ i2, j2 such that F
(i2)
d (G1) = F

(j2)
d (G′)

9. u2 ←
∑i2

i=0 fd(F
(i)
d (G1)) mod d

v2 ←
∑j2

j=0 fd(F
(j)
d (G′)) mod d

10. k2 ← v2 − u2 mod d

11. Output α = ζk1+k2d′

Algorithm 2’. Improved Cheon’s algorithm with the kangaroo method.

Input: G, G1 = αG, Gd = αdG ∈ G

Output: α ∈ Z/rZ

1. Find a generator ζ ∈ (Z/rZ)∗

2. ζd ← ζd, ζd′ ← ζd′
, d′ ← (r − 1)/d

3. [Step 1] σ
(0)
d′,Gd

← c1,1, σ
(0)
d′,G ← c1,2 (c1,1, c1,2 are constant values)

4. Find 0 ≤ i1, j1 such that F
(i1)
d′ (Gd) = F

(j1)
d′ (G)

5. u1 ← σ
(i1)
d′,Gd

, v1 ← σ
(j1)
d′,G

6. k1 ← v1 − u1 mod d′

7. [Step 2] σ
(0)
d,G1

← c2,1, σ
(0)
d,G ← c2,2 (c2,1, c2,2 are constant values)

8. Find 0 ≤ i2, j2 such that F
(i2)
d (G1) = ζk1F

(j2)
d (G)

9. u2 ← σ
(i2)
d,G1

, v2 ← σ
(j2)
d,G

10. k2 ← v2 − u2 mod d

11. Output α = ζk1+k2d′

new sequence of elements is generated by the same random-walk function.
In addition, we modified the Eq. (1) as follows:

σ
(i)
s,G0

= σ
(i−1)
s,G0

+ fs(F (i−1)
s (G0)) mod s,

F (i)
s (G0) = ζ

σ
(i)
s,G0

s′ G0. (2)
In the Eq. (1), an element F

(i−1)
s (G0) is scalar multiplied to calculate F

(i)
s (G0).

In this case, the element is changed at each scalar multiplication. Therefore, it is
difficult to apply the KKM method to Algorithm 2. In the Eq. (2), the element
based on the scalar multiplication is not changed, and the KKM method can be
easily applied. The improved Cheon’s algorithm with the kangaroo method is
shown in Algorithm 2’.

4. Experimental Results

In this section, we report our experimental results of the improved Cheon’s
algorithm with the kangaroo method (see Algorithm 2’). Note that we did not
use the KKM method in our experiment.

4.1 Parameters
An additive group G is a subgroup of the Mordell-Weil group on a supersingular

elliptic curve defined by
E/GF (3127) : y2 = x3 − x− 1,

which is introduced in Ref. 2) and used for efficient pairing computation in prac-
tice. The followings are some parameters related to E:
• �E(GF(3127)) = 25312879 · 41757061638619 · 399164334498031 · r (202-bit),
• r = 9314856004986223962601399 (83-bit prime),
• r − 1 = 2 · 3 · 127 · 2251 · 5431 · 7485427 · 133582417,
• d = 2176458320181 = 3 · 5431 · 133582417 (41-bit),
• ζ = 12 (a minimum generator of (Z/rZ)∗).

Here �E(GF(3127)) denotes the number of the GF(3127)-rational points on the
elliptic curve E, and d is chosen optimal so as to minimize the time complexity
of Cheon’s algorithm. Note that these parameters are the same as in Refs. 12),
13).

In the computation, an element z ∈ GF (3127) = GF (3)[t]/(t127 + t8 − 1) is
represented as a polynomial z[126]t126 + · · · + z[1]t + z[0] (z[k] ∈ {0,±1}). In
addition, it is stored as a pair of 127-bit sequences

z+ = (z+[126], . . . , z+[1], z+[0])
z− = (z−[126], . . . , z−[1], z−[0])

where z+[k] and z−[k] are related to z[k]: (z+[k], z−[k]) = (1, 0) if z[k] = 1,
(z+[k], z−[k]) = (0, 1) if z[k] = −1 and (z+[k], z−[k]) = (0, 0) if z[k] = 0. The
case (z+[k], z−[k]) = (1, 1) never occurs.
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Moreover, we generated a base-point G in the following manner, exactly the
same as Refs. 12), 13). First, we generate a seed-point S such that all S.x+[k]
are 1 and all S.x−[k] are 0, where S.x is the x-coordinate value of the point S.
The y-coordinate value S.y is obtained by S.x and the curve equation. Then we
have

S.x+ = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,

S.x− = 0x00000000000000000000000000000000,

S.y+ = 0x5404923A08C020F08891241808610860,

S.y− = 0x22C2008457299A0025628A60210EB71C.

Since the order of S equals to the order of the curve itself, a base-point G is
obtained by G = #E/rS. Then we have

G.x+ = 0x0261508200007930A0412800212208D8,

G.x− = 0x081C8970DF7A0044149643D502CD9401,

G.y+ = 0x0BA754D97DEC657029806214815158B4,

G.y− = 0x24500826020108020025056924AEA20B.

Finally, the target points G1 = αG and Gd = αdG are computed for α = 3:
G1.x

+ = 0x68C314812A8103C102C48AAB02231B8A,

G1.x
− = 0x0320A82A9032CC0438284100C504E435,

G1.y
+ = 0x532856AA1C8C801140302268E2188786,

G1.y
− = 0x2C01A100614346823EC6410210C05040,

Gd.x
+ = 0x23154CC0519344D10C1D130C18200104,

Gd.x
− = 0x506AA00D0A6C802660800CB2A301B449,

Gd.y
+ = 0x02809B34240C8282A0244A7401070C04,

Gd.y
− = 0x356720C2585250784B43150ADCA0C301.

Here, α = 3 is a solution which is the same as in Refs. 12), 13).
4.2 Our Results
In Step 1 of Algorithm 2’, we establish the following two tables:

T1,L =
{(

σ
(i)
d′,Gd

, F
(i)
d′ (Gd)

)}

and

T1,R =
{(

σ
(j)
d′,G, F

(j)
d′ (G)

)}
.

Here, σ
(i)
d,Gd

, σ
(j)
d,G are 42-bit index values of chosen points. These values are

calculated from previously chosen points.
In a similar way of Step 1, we establish the following two tables in Step 2:

T2,L =
{(

σ
(i)
d,G1

, F
(i)
d (G1)

)}

and

T2,R =
{(

σ
(j)
d,G, F

(j)
d (G)

)}
.

In Cheon’s algorithm with the kangaroo method, the total search space is too
large to calculate all points. Thus, to establish two tables and to compare them,
they have to be concurrently created. Additionally, with the distinguished points
technique, we store only the points where the least significant 6-trit (ternary-
digit) of the x-axis values are all zero (w = 36). To save space, each F

(i)
s (G0) is

digested as LSB64(MD5(F (i)
s (G0))), and these digested values are stored, which

is the same technique as Ref. 12).
In this instance, we establish the two tables with 2 core of 3 GHz Core2Quad,

and compared these tables by using another core. For 3 hours, about 1,800
points (28KByte) were stored in every two tables in Step 1, and collided points
are recorded. At this time, u1 ← 1748512041946, v1 ← 2439349585203, and
k1 ← 2439349585203 − 1748512041946 = 690837543257. Since αd = ζk1

d =
2116715807584984875228271, this experiment has solved Step 1.

And for 2.75 hours, about 1,600 points (26KByte) were stored in every two
tables in Step 2. At this time, u2 ← 1559364007743, v2 ← 613947073386, and
k2 ← 613947073386− 1559364007743 = 1231041385824 (mod2176458320181).

Finally,
k ← k1 + k2 · d′ = 5268639026442339275434649,

and
α′ ← ζk (modr) = 3.

Since α′ = α, this experiment has solved Step 2. Therefore, it is confirmed that
Cheon’s algorithm with the kangaroo method works correctly.

Note that, 1800 × 36 � 220.3 and 1600 × 36 � 220.2 points were computed
for each table in practice respectively. And, in order to search i1, j1 such that
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F
(i1)
d′ (Gd) = F

(j1)
d′ (G) and i2, j2 such that F

(i2)
d (G1) = F

(j2)
d (G), a naive method

is used for comparing the two tables. Since the tables are small, the time for
table-comparison is negligible. Then, it is necessary to calculate F

(i)
s (G0) from

F
(i−1)
s (G0) for 8.2 msec on 1 core 3 GHz Core2Quad in our experiment.

5. Comparison

In this section, we compare Cheon’s algorithm with the BSGS method and that
with the kangaroo method.

5.1 Previous works
In Refs. 12), 13), Izu, et al. showed their experimental results of Cheon’s algo-

rithm with the BSGS method. Note that the curve used in Refs. 12), 13) is same
as the one in this paper. We briefly summarize their results �1: Their experiment
in Ref. 13) was conducted on 1 core of 3 GHz Core2Quad using a straightforward
implementation.
• In Step 1, total 34 MByte table-making for 7 hours.
• In Step 2, total 23 MByte table-making for 5 hours.

In their experiment, hash values of points are stored in these tables to reduce the
total size of the tables. For table-comparison, 1 hour in each step was required.

5.2 The BSGS Method vs. the Kangaroo Method
In Table 1, we summarize our experimental results of Cheon’s algorithm with

the BSGS method and the kangaroo method.
As mentioned above, the required space of Cheon’s algorithm with the kangaroo

method is more efficient than that with the BSGS method. Additionally, Table 1

Table 1 The complexity of Cheon’s algorithm with both methods.

Subroutine Step Time Space Calculating
algorithm points

The BSGS method 12) 1 8 hours 32,325 KByte 222.0

2 6 hours 23,051 KByte 221.5

The kangaroo method 1 6 hours 56 KByte 221.3

2 5.5 hours 52 KByte 221.2

�1 In Ref. 12), they showed their experimental results only on Step 1 of Cheon’s algorithm
with the BSGS method. Moreover, experimental results on Step 1 and Step 2 were shown
in Ref. 13). In this paper, we used the results in Ref. 13).

shows that the required time of Cheon’s algorithm with the kangaroo method is
also efficient. The reasons for this are as follows:
• In Ref. 12), it is shown that all points are calculated when using the BSGS

method.
• In our experiment, when points collide in both tables, the calculation is

stopped at once.
• In our experiment, collided points appeare as expected.

Therefore, it is concluded that the time complexity of these two methods are
almost the same.

6. Speeding-up Techniques

In this section, we describe some speeding-up techniques for Cheon’s algorithm
with the kangaroo method. Note that these techniques were not used in our
experiment. As mentioned in Section 2.3, the KKM method can reduce the time
complexity by a factor of 1/ log r. Besides the KKM method, we introduce the
following two techniques:

6.1 Using Automorphisms
Let E be an elliptic curve defined over GF(3). For a positive integer m, set

G = E(GF(3m)). The group G has the Negation map and the Frobenius map
as fast computable automorphisms. Note that the order of the Negation map
(resp. the Frobenius map) is equal to 2 (resp. m). Let φ be the Negation map
or Frobenius map, and let n denote the order of φ. We denote by G/ ∼φ the set
of equivalence classes of G defined by φ (see Ref. 11) [Chapter 4, pp.161–163] for
details). Fix a random-walk function F on G for the kangaroo method. If the
function F is well defined on G/ ∼φ, the kangaroo method can be sped-up by
a factor of

√
n (see Refs. 9), 11)). Hence, using both the Negation map and the

Frobenius map, the kangaroo method can be sped-up by a factor of
√

2m.
With respect to Cheon’s algorithm with the kangaroo method, the algorithm

is composed of two steps and each step is based on the kangaroo method. Since
our random-walk function is of the form

Fs(G) = ζa
s′G

with randomly chosen a ∈ Z/sZ (see Section 3.1 for details), our function is well-
defined on G/ ∼φ if the condition n | s is satisfied. Since n | (r−1) = s ·s′, we see
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that the automorphisms technique can be applied at least in either of two steps
of the algorithm. For a random-walk function F of additive type such as Teske’s
adding walk 22) or the function proposed by Ref. 9), the function F on G/ ∼φ can
fall into short cycles, which are called “fruitless cycles”, and hence the optimal
speed-up cannot be expected in general 8),9). However, since our random-walk
function is of multiplicative type as above, our function on G/ ∼φ rarely falls
into fruitless cycles. Therefore, using both the Negation map and the Frobenius
map, the time complexity of the algorithm can be reduced by a factor of about
4
√

2m in the case d ≈ √r.
6.2 Parallel Computing
In order to parallelize Cheon’s algorithm, plural computers (cores) have to com-

pute points in the group G independently. As mentioned in Section 3.2, constant
values c1,1, c1,2 in Step 1 and c2,1, c2,2 in Step 2 are used in Algorithm 2’ to change
initial points for the random-walk function. By changing the initial points, the
points calculated by the random-walk function constitute independent sequence.
Therefore, Algorithm 2’ can be parallelized by controlling these constant values.
With parallel computing, the time complexity can be reduced to 1/M with M

computers.
Note: with parallel computing, two computers occasionally calculate collided

point in a table (T1,L, T1,R, T2,L, or T2,R). At that time, the collision is detected
and one of these computer is re-initialize with new constant values using the same
procedure for self-collisions (see Section 3.2).

7. Cost Estimations

In this section, we estimate the required cost of Cheon’s algorithm to solve
DLPwAI on some pairing-friendly curves. Here we consider pairing-friendly el-
liptic curves on GF(3m) defined by

Eb : y2 = x3 − x + b, b ∈ [−1, 1].
Since the equation of Eb is defined over GF(3), we can use the automorphisms
technique (see Section 6.1).

7.1 Equation for the Computation Cost
Since the kangaroo method has an advantage in the space complexity, we can

solve DLPwAI with large size by using Cheon’s algorithm with the kangaroo

method (see Section 5). Here we estimate the required cost of Cheon’s algorithm
with the kangaroo method (We do not consider parallel computing here). Based
on our experimental results, we assume the followings:
• Parameter d ≈ √r (We focus on the optimal case for Cheon’s algorithm).
• Since the cost of a scalar multiplication on GF(3127) using a straightforward

implementation is 8.2msec (see Section 4.2), we assume that the cost of a
scalar multiplication on GF(3m) is equal to 8.2× (m/127)2 msec. Moreover,
the cost can be reduced by a factor of 1/ log r using the KKM method.

• We assume that the cost of Cheon’s algorithm with the kangaroo method
is 2.8 times of that with the BSGS-method (see Ref. 13)[Section 3.5] for de-
tails). Moreover, the cost can be reduced by a factor of 4

√
2m by using the

automorphisms technique.
Therefore, the equation for the computation cost is assumed to be as follows:

Cost = 2.8× 4× 4
√

r × 8.2/ log r × (m/127)2/ 4
√

2m msec.
7.2 Cost Prediction
In this subsection, we show the required cost of Cheon’s algorithm with the

kangaroo method to solve DLPwAI on some curves.
(1) The case m = 89, b = 1: Ref. 10)
• �E(GF(3m)) = 7 · 1069 · 2137 · r (142-bit),
• r = 181932967220635112252099081035759771 (118-bit),
• r − 1 = 2 · 3 · 5 · 7 · 89 · 8087 · 4139171 · 130108711 · 2235089484239.

Cost = 2.8× 4× 4
√

r × 8.2/118× (89/127)2/ 4
√

178 msec
� 22 hours.

(2) The case m = 97, b = 1: Refs. 1), 2), 10), 15)
• �E(GF(3m)) = 7 · r (154-bit),
• r = 2726865189058261010774960798134976187171462721 (151-bit),
• r−1 = 26·3·5·13·17·41·43·73·97·193·577·739·769·6481·59632043·42094721833.

Cost = 2.8× 4× 4
√

r × 8.2/151× (97/127)2/ 4
√

194 msec
� 254 days.

(3) The case m = 103, b = 1: Ref. 2)
• �E(GF(3m)) = 7 · 524683 · r (164-bit),
• r = 3788734765226760304517052348776005195050727 (142-bit),
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Table 2 Cost prediction of Cheon’s algorithm to solve DLPwAI in d ≈ √r.

m b �E r Cost Cost without speed-up∗

(1) 89 1 142-bit 118-bit 22 hours 395 days
(2) 97 1 154-bit 151-bit 254 days 392 years
(3) 103 1 164-bit 142-bit 63 days 92 years
(4) 127 −1 202-bit 83-bit 8 minutes 44 hours∗∗

∗ We list the cost prediction of our implementation.
∗∗ In our experiment, it required 11.5 hours (see Table 1 for details).

• r − 1 = 2 · 3 · 7 · 17 · 97 · 103 · 696239 · ·12353064397 · 61752419775112892603,

Cost = 2.8× 4× 4
√

r × 8.2/142× (103/127)2/ 4
√

206 msec
� 63 days.

(4) The case m = 127, b = −1: Ref. 2) (same parameter as our experiment)
• �E(GF(3m)) = 25312879 · 41757061638619 · 399164334498031 · r (202-bit),
• r = 9314856004986223962601399 (83-bit),
• r − 1 = 2 · 3 · 127 · 2251 · 5431 · 7485427 · 133582417,

Cost = 2.8× 4× 4
√

r × 8.2/83× (127/127)2/ 4
√

254 msec
� 8 minutes.

In Table 2, we summarize the above results. The costs are predicted using
a single-core CPU environment. As described in Section 6.2, Cheon’s algorithm
with the kangaroo method can be applied for parallel computing. For example,
when 100 cores of CPU are used, the costs can be reduced by a factor of 100.
Thus, when the optimal parameter d is chosen, DLPwAI on these pairing-friendly
curves can be solved by Cheon’s algorithm at reasonable cost.

8. Concluding Remarks

In this paper, we reported our experimental results of Cheon’s algorithm with
the kangaroo method on a pairing-friendly curves defined over GF(3127). More-
over, based on our experimental results, we estimated the required cost of Cheon’s
algorithm to solve DLPwAI on some pairing-friendly curves defined over a finite
field of characteristic 3. Our estimation showed that DLPwAI on a part of
pairing-friendly curves can be solved at reasonable cost when the optimal pa-

rameter d is chosen (see Table 2 for details). If we implement the pairing-based
cryptographic schemes based on the problems related with DLPwAI such as the
�-WDH problem, we should avoid using such weak parameters.

Here we only considered the case where the parameter d is optimal for Cheon’s
algorithm. Hence our future work is to estimate the required cost of Cheon’s
algorithm with d as a parameter.
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