
IPSJ SIG Technical Report

An ILP Formulation of Abductive Inference

for Discourse Interpretation

Naoya Inoue†1 and Kentaro Inui†1

Abduction is inference to the best hypothesis to explain observations. Hobbs
et al.6) demonstrate that abduction gives a reasonable formalization of the pro-
cess of discourse understanding, and several natural language processing (NLP)
tasks can be resolved with a single abduction-based framework. However, there
is a critical problem with this approach: the computational cost of abduction.
The task of abductive reasoning quickly becomes intractable as the amount of
background knowledge is increased to cover the millions of axioms necessary
for robust discourse processing. This computational bottleneck is preventing
abductive reasoning from benefiting from the recent advances in computational
resources for for commonsense reasoning. In this paper, we propose an efficient
implementation of Hobbs et al.’s abductive discourse interpretation framework,
weighted abduction. Our framework transforms the problem of explanation
finding in weighted abduction into a linear programming problem. Our experi-
ments showed that our approach efficiently solved problems of plan recognition
and outperforms an existing system for weighted abduction.

1. Introduction

Abduction is inference to the best hypothesis to explain observations using
background knowledge. Abduction is widely used for such artificial intelligence
systems as diagnostic systems that require finding an explanation to observations.

Applying abduction to NLP was pioneered by Hobbs et al.6) They demonstrate
that a wide range of tasks involved in discourse interpretation including anaphora
resolution, discourse relation recognition can be cast as the problem of finding
an explanation to the pieces of information observed from the discourse. Recent
work in their group12) conducts empirical evaluation of the framework through
recognizing textual entailment (RTE) tasks, and reports that the performance is
comparable to the state-of-the-art RTE systems. Plan recognition, the task of

†1 Graduate School of Information Sciences, Tohoku University

inferring an agent’s plan from observed actions or utterances, is also a potential
application to show the effectiveness of abductive discourse understanding4),5),11).

The abduction-based approach to discourse understanding has several good
advantages. It can inherently exploit background knowledge in the process of
creating a plausible interpretation of a given discourse. It is also expected to
provide a framework in which many types of linguistic processing can be for-
malized in an integrated fashion. In spite of those advantages, however, the
models proposed in the 1980s and 1990s have not been tested on open data since
they suffered from a shortage of background/world knowledge. In the several
decades since, however, a number of methods for large-scale knowledge acquisi-
tion have been proposed3),14),20),22), and the products of their efforts have been
made available to the public. Now we are almost ready to test the effectiveness
and robustness of abduction-based models with large-scale knowledge resources.

However, as the background knowledge is increased, the task of abductive rea-
soning quickly becomes intractable2),12). Since most of models that have been
proposed up to the present have not been designed for use with large-scale knowl-
edge bases, we cannot receive the full benefits of large-scale processing.

In this paper, we propose an efficient framework of abduction that finds the
best explanation by using the Integer Linear Programming (ILP) technique. Our
system converts a problem of abduction into an ILP problem, and solves the
problem by using efficient existing techniques developed in the ILP research com-
munity. Since our framework is based on Hobbs et al.’s weighted abduction6), our
framework is capable of evaluating the goodness of hypotheses based on their
costs.

The rest of this paper is organized as follows. In the next section, we briefly
review abduction and describe the motivation of this work in more detail. We
also discuss other existing implementation of abduction, including one of major
probabilistic logic frameworks, Markov Logic Networks18). In Section 3, we de-
scribe the framework of weighted abduction, and then propose ILP formulation
for weighted abduction in Section 4. We then apply our models to the exist-
ing dataset and demonstrate our approach outperforms state-of-the-art tool for
weighted abduction in Section 5. Finally, the conclusion is presented along with
possibilities for further study.

1 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

2. Background

In this section, we first give a brief review of logical abduction, and then elab-
orate on how abductive inference has been applied to framework of discourse
interpretation and why we commit weighted abduction. Finally, we explain how
our ILP-based framework relates to existing frameworks of abductive reasoning
with uncertainty.

2.1 Abduction
Abduction is inference to the best explanation. Formally, logical abduction is

defined as follows:
• Given: Background knowledge base B, observations O, where both B and

O are sets of first-order logical formulae.
• Find: A hypothesis H such that H ∪B |= O, H ∪B 6|=⊥, where H is also a

set of first-order logical formulae.
B is usually limited to a set of first-order Horn clauses, and both O and H

are represented as a conjunction of ground positive literals. Typically, there are
a number of hypotheses H that explains O. Abductive inference is to find the
best hypothesis among competing hypotheses by a specific evaluation measure.
We call each hypothesis H that explains O a candidate hypothesis, and a literal
h ∈ H as an elemental hypothesis. We call the best hypothesis H∗ the solution
hypothesis. The evaluation measures adopted by previous work range from the
number of elemental hypotheses to the cost or probability of a hypothesis etc.

2.2 Motivation
Applying abduction to NLP was pioneered by Hobbs et al.6) They demon-

strate that a wide range of tasks involved in discourse interpretation including
anaphora resolution, discourse relation recognition, etc. can be cast as the prob-
lem of finding an explanation to the pieces of information observed from the
discourse. Although lack of computational resources of world knowledge in 1990s
hampered empirical evaluation of this framework, recent work in his group12)

shows that the abduction-based framework is promising through empirical eval-
uation of Recognizing Textual Entailment (RTE) tasks on large dataset. It also
reports that performance of Semantic Role Labeling (SRL) solved as a by-product
of abductive inference is also comparable to systems designed specially for SRL.

Abduction-based frameworks are the subject of study also in the field of plan
recognition. Plan recognition is the task of inferring an agent’s plan from ob-
served actions or utterances, which is essential to tasks such as story understand-
ing and dialogue planning. This task can also be naturally viewed as abductive
reasoning, where an agent’s plan is inferred by finding an explanation of observed
actions or utterances. A number of papers have been published in this line of
study4),5),8),11),16),21).

Hobbs et al. extended the framework of abductive discourse interpretation to
evaluate both specificity and likelihood of hypothesis in best explanation find-
ing. This extended framework is called weighted abduction. It gives a cost to
each explanation as the evaluation measure to choose the best interpretation
which is an appropriate level of specificity and occurs most likely, as detailed in
Section 3. To the best of our knowledge, weighted abduction is the only frame-
work that has the mechanism of quantifying the appropriate level of hypothesis
specificity. In abduction-based discourse processing, it is crucial to discuss what
level of explanation specificity would be appropriate for abductive reasoning sys-
tem. Traditionally, two extreme modes of abduction have been considered. The
first is most-specific abduction. In most-specific abduction, what we can explain
from background knowledge is all explained, which is suitable for diagnostic sys-
tems. Most of plan recognition work falls into this group5),8),16). The second is
least-specific abduction. Literally, in this mode an explanation is just assuming
observations. We need this mode in some cases of natural language understand-
ing. Adopting only one of these levels is problematic. For example, suppose we
want to recognize character’s intention from his action: “Bob took a gun to a
bank.” If we adopt most-specific abduction, the plan recognition system yields
too specific explanation such as “Bob took a gun to a bank because he would rob
XYZ bank using a machine gun which he had bought three days ago.” We want
to avoid hypothesizing too specific information such as when he bought a gun or
which bank he went to, since the observation gives little evidence to the deter-
mination of such information. Conversely, if we adopt least-specific abduction,
the system assumes just observation, as in “Bob took a gun to a bank.” Although
uncertain explanation as described above should not be inferred, it is useless if
all of the observations are just assumed. We thus want to determine the suitable

2 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

specificity during inference so that more evidential hypothesis would be inferred,
and less evidential hypothesis would not be inferred. Therefore, we adopt Hobbs
et al6)’s weighted abduction in order to represent the specificity of hypotheses.

One issue of concern about weighted abduction is semantics of cost and weight.
It has long been pointed out that the semantics is unclear. However, we would
overcome this weakness by giving probabilistic interpretation such as Blythe et
al.’s semantics2)?1.

2.3 Related work
A number of frameworks that integrate logical inference and uncertainty have

been proposed in recent years. One of the major frameworks is Markov Logic
Networks18) (MLNs). There are several studies for performing probabilistic ab-
duction in MLNs2),8),21). For instance, Blythe et al.2) demonstrate that weighted
abduction can be mapped into weighted logical formulae in MLNs. MLN-based
approaches, however, require special procedures to convert abduction problem
into deduction problem because of the deductive nature of MLNs: an MLN
which consists of background axioms in abduction cannot be used for traditional
probabilistic inference for abduction, MAP estimation given observations. Thus,
the pioneering work of MLN-based abduction8) converts background axioms into
MLN logical formulae by (i) reversing implication and (ii) constructing axioms
representing mutual exclusiveness of explanation (e.g., the set of background
knowledge axioms {p1 ⇒ q, p2 ⇒ q, p3 ⇒ q} is converted into the following MLN
formulae: {q ⇒ p1 ∨ p2 ∨ p3, q ⇒ ¬p1 ∨ ¬p2, q ⇒ ¬p1 ∨ ¬p3, q ⇒ ¬p2 ∨ ¬p3}).
As you can imagine, MLN-based approach suffers from the slow inference speed
due to the increase of converted axioms; thus Singla and Mooney21) propose a
method to reduce the converted axioms.

However, we don’t see any particular reason to adopt the deduction-based
framework to perform abductive inference. One would think that MLN-based
approach has a several good points to perform probabilistic logical inference: it
has a framework of parameter learning in a supervised fashion and full First-
Order Logic (FOL) expressiveness. However, learning framework of weighted

?1 As far as we investigated, their interpretation is partially incomplete. However, we make
sure that the interpretation can be plausible by making small modification. We will not
discuss the semantics here since it is beyond the scope of this paper.

abduction weights can be independently developed, whatever inference frame-
work we use. We would think several possible ways of parameter learning: a
probabilistic learning based on semantics of cost and weight mentioned in Sec-
tion 2.2, perceptron-style learning etc. Regarding expressiveness, our framework
also accepts almost full FOL in natural way as described in Section 4. There-
fore, our ILP-based framework would be a promising alternative to MLN-based
approaches.

There are also other choices to implement abductive reasoning with uncer-
tainty7),13),15),19). One of the major frameworks followed by many other researches
is Santos Jr.’s ILP implementation19) of cost-based abduction5). He formalized
cost-based abduction as a linear constraint satisfaction problem, and efficiently
obtained the best hypothesis by solving the problem with the ILP technique. He
converted propositions generated during abductive inference into ILP variables,
and used the sum-product of these variables and the costs as the ILP objective
function. Our approach also adopts ILP formulation, and performs a similar
translation. However, his approach is based on propositional logic, and assumes
that set of assumable literals is given: it is incapable of evaluating appropriate
level of hypothesis specificity. The comparison with our approach is more de-
tailed in Section 4. For small-scale reasoning, Mulkar et al.’s Mini-TACITUS9)

would be a possible choice, however, it often fails to give an optimal solution
hypothesis to large dataset in practical time12) as shown in Section 5.

3. Weighted abduction

Hobbs et al.6) propose the framework of text understanding based on the idea
that interpreting sentences is to prove the logical form of the sentence. They
demonstrated that a process of natural language understanding, such as word
sense disambiguation or reference resolution, can be described in the single frame-
work based on abduction.

As mentioned before, abduction needs to select the best hypothesis, and hence
this framework also needs to select the best interpretation based on some eval-
uation measure. Hobbs et al. extended their framework so that it gives a cost
to each interpretation as the evaluation measure, and chooses the minimum cost
interpretation as the best interpretation. This framework is called weighted ab-

3 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

duction. In weighted abduction, observations are given with costs, and back-
ground axioms are given with weights. It then performs backward-reasoning on
each observation, propagates its cost to the assumed literals according to the
weights on the applied axioms, and merges redundancies where possible. A cost
of interpretation is then the sum of all the costs on elemental hypotheses in
the interpretation. Finally, it chooses the lowest cost interpretation as the best
interpretation.

3.1 The basics
Following 6), we use the following representations for background knowledge,

observations, and hypothesis in weighted abduction:
• Background knowledge B: a set of first-order logical formulae whose lit-

erals in its antecedent are assigned positive real-valued weights. In addition,
both antecedent and consequent consist of a conjunction of literals. We use
a notation pw to indicate “a literal p has the weight w.”

• Observations O: an existentially quantified conjunction of positive literals.
Each literal has a positive real-valued cost. We use a notation p$c to denote
“a literal p has the cost c,” and c(p) to denote “the cost of the literal p.”

• Hypothesis H: an existentially quantified conjunction of positive literals.
Each literal also has a positive real-valued cost. The cost of H is then defined
as c(H) =

∑
h∈H c(h).

In the Hobbs et al.’s framework, inference procedure is only defined on the formats
defined above, although neither formats of B, O nor H are mentioned explicitly.

3.2 Procedure of weighted abductive inference
Like logical abduction, H is abductively inferred from O and B, and the costs

of elemental hypotheses in H are passed back from O multiplying the weights on
the applied axioms in B. When two elemental hypotheses are unified, the smaller
cost is assigned to the unified literal. Let us illustrate how these procedure works
taking the following axioms and observations as an example:

B = {∀x(p(x)0.3 ∧ q(x)0.9 ⇒ r(x)), (1)
∀x∃y(p(y)1.3 ⇒ b(x)), (2)

O = ∃a(r(a)$20 ∧ b(a)$10) (3)

A candidate hypothesis that immediately arises is simply assuming O, i.e., H1 =

∃a(r(a)$20 ∧ b(a)$10), where c(H1) = $20 + $10 = $30. If we perform backward
inference on r(a)$20 using axiom (1), we get H2 = ∃a(p(a)$6 ∧ q(a)$18 ∧ b(a)$10)
and c(H2) = $34. As we said, the costs are passed back from r(a)$20 multiplying
the weights on axiom (1), and hence c(p(a)) = $20 · 0.3 = $6 and c(q(a)) =
$20 · 0.9 = $18.

If we perform backward inference on both r(a) and b(a) by using axiom (1) and
(2), we get another candidate hypothesis H3 = ∃a, b(p(a)$6 ∧ q(a)$18 ∧ p(b)$13),
in which p(a)$6 is unifiable with p(b)$13 assuming that a and b to be identical.
In weighted abduction, since the cost of unified literal is given by the smaller
cost, H3 is refined as ∃b(q(b)$18 ∧ p(a)$6), and c(H3) = $24. Considering only
these three candidate hypotheses, a solution hypothesis H∗ = H3, which has a
minimum cost c(H3) = $24.

We mentioned that weighted abduction is able to evaluate the specificity of
a hypothesis in Section 2.2. The mechanism of specificity evaluation is accom-
plished by the propagation of costs. We can see the working example of this
mechanism in the toy problem above: comparing c(H1) with c(H2) means deter-
mining if r(a) should be explained more specifically or not.

4. ILP Formulation of weighted abduction

Now we describe our ILP-based formulation of weighted abduction. Our frame-
work accepts the following format of input and output:
• a set of logical formulae?1 as background knowledge, and;
• an existentially quantified conjunction of literals or inequalities of existen-

tially quantified variables as observations, and;
• an existentially quantified conjunction of literals as a solution hypothesis.

In this section, we first show candidate hypotheses in weighted abduction can
be generated by applying three simple operations. Secondly, we then formulate
weighted abduction as an optimization problem based on these operations.

4.1 Operations for hypothesis generation
Let B be background knowledge, O be observations and H = {H1,H2, ...Hn}

?1 Non-Horn clauses in predicate logic, such as p(x)∧ q(z) ⇒ r(x)∧ s(y, z)∧ t(z)), cannot not
be processed correctly in the current formulation. However, there are several strategies for
handling this type of clause in a natural way.

4 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

B = {r1.3 ⇒ p,
t1.1 ⇒ q,

 t1.2 ⇒ r}

p$20 ∧ q$10	

r$26 t2
$11
	

t1
$31.2 	

H	 P	 c(H)	
p	 q	 r	 t1	 t2	

H1	 p∧q	 ●	 ●	 $30	

H2	 p∧t2	 ●	 ○	 ●	 $31	

H3	 r∧q	 ○	 ●	●	 $36	

H4	 r∧t2	 ○	 ○	 ●	 ●	 $37	

H5	 t1∧q	 ○	 ●	○	●	 $41.2	

H6	 t1∧t2	 ○	 ○	 ○	●	 ●	 $42.2	

H7	 t2	 ○	 ○	 ○	○	 ●	 $11	

Background knowledge:	

O = p$20 ∧q$10	

Potential elemental hypotheses:

P = {p, q, r, t1, t2}	

Observations:

Candidate hypotheses:	

← H*	

* t1 and t2 are unified in H7.	

Fig. 1 The combinatorial representation of candidate hypotheses by set P of potential ele-
mental hypotheses. The black circle indicate that a proposition is in Hi, while the
white circle indicate that a proposition is explained by Hi ∪ B.

be a set of candidate hypotheses, each of which is defined in Section 3.1. In
order to enumerate candidate hypothesis Hi, we can execute the following three
operations an arbitrary number of times (except Initialization).

Initialization

H ← O (4)
Backward reasoning ∧n

i=1 pwi
i ⇒ q ∈ B, q$cq ⊆ H∧n

i=1 p$wi·cq
(5)

H ← H ∧
n∧

i=1

p
$wi·cq

i (6)

B = {s0.4∧r0.7 ⇒ p,
t1.1 ⇒ q,

 t1.2 ⇒ r}

p$20 ∧ q$10	

s$8 ∧ r$14 t2
$11
	

t1
$16.8 	

H	 P	 c(H)	
hp	 rp	 hq	 rq hr rr hs	 rs ht1	 rt1 ht2	 rt2	 ut1,t2	

H1	 p∧q	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 $30	

H2	 p∧t2	 1	 0	 1	 1	 0	 0	 0	 0	 0	 0	 1	 0	 0	 $31	

H3	 s∧r∧q	 1	 1	 1	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 $32	

H4	 s∧r∧t2	 1	 1	 1	 1	 1	 0	 1	 0	 0	 0	 1	 0	 0	 $33	

H5	 s∧t1∧q	 1	 1	 1	 0	 1	 1	 1	 0	 1	 0	 0	 0	 0	 $34.8	

H6	 s∧t1∧t2	 1	 1	 1	 1	 1	 1	 1	 0	 1	 0	 1	 0	 0	 $35.8	

H7	 s∧t2	 1	 1	 1	 1	 1	 1	 1	 0	 1	 1	 1	 0	 1	 $19	

Background knowledge:	

O = p$20 ∧q$10	

Potential elemental hypotheses:

P = {p, q, r, s, t1, t2}	

Observations:

Candidate hypotheses:	

Example of constraints:	

C1: hp=1, hq=1
C2: rp≤hs+hr, hs = hr・1

 rt1 ≤ ut1,t2
C3: ut1,t2 ≤ ½ (ht1+ht2)

unifiable	

Fig. 2 ILP representation for the space of candidate hypotheses in the case for propositional
logic

Unification

p(X)$cx ∈ H, p(Y)$cy ∈ H, ∃θ(p(X)θ = p(Y)θ)
X = Y

(7)

H ← H \ p(X)max($cx,$cy) (8)
Our central idea of ILP formulation follows. Once we enumerate all elemental

hypotheses that would be generated by operations above (henceforth we call
potential elemental hypotheses), candidate hypotheses can be represented as an
arbitrary combination of potential elemental hypotheses. We use P to denote
a set of potential elemental hypotheses. This idea is illustrated in Figure 1.
Firstly set P of potential elemental hypotheses is initialized by observation O

and enumerated by backward reasoning on these hypotheses, and finally we get
P = {p, q, r, t1, t2}. We give an unique assignment to each literal generated by
backward chaining, since a hypothesis where unifiable literals are unified as in
H7 can be different from another where they are not as in H6 in the case of
predicate logic as a consequence of variable substitution. That is why we leave
two literals t1 and t2 in P for the back-chained proposition t, and consider distinct
two candidate hypotheses.

5 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

Based on this idea, it is quite easy to extend hypothesis finding to an opti-
mization problem. For each p ∈ P , if we had a 0-1 state variable that represents
whether or not the elemental hypothesis is included in a candidate hypothesis, as
in Figure 1, all possible H ∈ H can be expressed as the combination of these state
variables. Since our goal is to find a hypothesis that has a minimum cost, this
representation is immediately used to formulate weighted abduction as an opti-
mization problem which finds the assignment of state variables that minimizes
the cost function. Note that the number of candidate hypotheses is O(2n), where
n is the number of potential elemental hypotheses. We immediately see that
the approach which finds a minimal hypothesis by evaluating all the candidate
hypotheses is intractable.

4.2 ILP formulation
First of all, we show how candidate hypotheses are expressed in ILP variables.

We start with the simplest case, i.e., B, O and H are restricted to propositional
logic formulae. We describe our ILP variables and constraints by using a toy
problem illustrated in Figure 2.
Hypothesis inclusion We introduce an ILP variable h ∈ {0, 1} defined as

follows:

hp =

{
1 if p ∈ H or H ∪B |= p

0 otherwise
for each p ∈ P

For example, H2 in Figure 2 holds hp = 1, hq = 1, where p is included in H2,
and q is explained by t2 (i.e., H2 ∪ B |= q). Note that the state h = 1 is
corresponding to the black circle and white circle in Figure 1.

Zero cost switching If we perform backward reasoning on elemental hypothe-
ses, the back-chained literals are explained by the newly abduced literals,
which means that these elemental hypotheses do not pay its cost any more.
In addition, when two elemental hypotheses are unified, the bigger cost of the
elemental hypothesis is excluded. This also implies that this elemental hy-
pothesis does not pay its cost. We thus introduce an ILP variable r ∈ {0, 1}
defined as follows:

rp =

{
1 if p does not pay its cost

0 otherwise
for each p ∈ P

In Figure 2, rq in H2 is set to 1 since q is explained by t2.

State of unification We prepare an ILP variable u ∈ {0, 1} for expressing
whether or not two elemental hypotheses p ∈ P and q ∈ P are unified:

up,q =

{
1 if p is unified with q

0 otherwise
for each p, q ∈ P

In Figure 2, ut1,t2 in H7 is set to 1 since t1 and t2 are unified.
Now that we can define c(H) by the sum of the costs for p ∈ P such that p

is included in a candidate hypothesis (i.e., hp = 1) and is not explained (i.e.,
rp = 0), which is the objective function of our ILP problem:

minimize c(H) =
∑

p∈{p|p∈P,hp=1,rp=0}

c(p), (9)

where c(p) is the cost of a literal p passed back from observations according
to backward-reasoning operation in Section 4.1 when all potential elemental hy-
potheses are enumerated in advance. However, a possible world represented by
these ILP variables up to now includes an invalid candidate hypothesis (e.g., an
elemental hypothesis might not pay its cost even though it is neither unified nor
explained). Accordingly, we introduce constraints that limit a possible world in
ILP representation to only valid hypothesis space.
Constraint 1 Observation literals are always included in or explained by a

candidate hypothesis.
hp = 1 for each p ∈ O (10)

Constraint 2 An elemental hypothesis p ∈ P does not have to pay its cost
(i.e., rp = 1) only if it is explained or unified. Namely, in order to set rp = 1,
at least one literal e such that explains p is included in or explained by a
candidate hypothesis (i.e., he = 1), or p is unified with at least one literal q

such that c(q) < c(p) (i.e., up,q = 1). This can be expressed as the following
inequality:

rp ≤
∑

e∈expl(p)

he +
∑

q∈sml(p)

up,q for each p ∈ P , (11)

where expl(p) = {e | e ∈ P, {e} ∪ B |= p}, and sml(p) = {q | q ∈ P, c(q) <

c(p)}. In Figure 2, rp ≤ hs + hr is created to condition that q may not pay
its cost only if q is explained by s ∧ r. The constraint for t1, rt1 ≤ ut1,t2 ,

6 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

states that t1 may not pay its cost only if it is unified with t2. Note that this
constraint is not generated for t2 since c(t1) > c(t2).
Furthermore, if literals q1, q2, ..., qi obtained by expl(p) are the form of con-
junction (i.e., q1 ∧ q2 ∧ ...∧ qi), we use an additional constraint to force their
inclusion states are consistent with the others (i.e., hq1 = hq2 = ... = hqi

).
This can be expressed as the following inequality:∑

a∈and(p)

ha = hp · |and(p)| for each p ∈ P, (12)

where and(p) denotes a set of a ∈ P such that a is conjoined with p by
conjunction. In Figure 2, hs = hr · 1 is generated to represent that s and r

are literals conjoined by logical and. We need this constraint since inequality
(11) allows reducing even when one of literals obtained by expl(p) is included
in or explained by a candidate hypothesis.

Constraint 3 Two elemental hypotheses p1, p2 ∈ P can be unified (i.e.,
up1,p2 = 1) only if both p1 and p2 are included in or explained by a can-
didate hypothesis (i.e., hp1 = 1 and hp2 = 1).

up1,p2 ≤
1
2
(hp1 + hp2) for each p1, p2 ∈ P (13)

For example, in Figure 2, ut1,t2 ≤ 1
2 (ht1 + ht2) is generated for the condition

of unification of t1 and t2.
Now we move on to the slightly more complicated case where first-order logic

is used in B, O and H. The substantial difference from the case of propositional
logic is that we must account for variable substitution to control the unification
of elemental hypotheses. For example, if we observed wife of(John,Mary) ∧
man(John) and had a knowledge ∀x∃y(wife of(x, y)⇒ man(x)), we could gen-
erate the potential elemental hypothesis ∃z(wife of(John, z)), where John is a
non-skolem constant, and z is existentially quantified variable. Then the hypoth-
esis ∃z(wife of(John, z)) could only be unified with wife of(John,Mary) if we
assume z = Mary.

In order to take variable substitution into account, we introduce new ILP vari-
ables. Hereafter, we use V to denote a set of existentially quantified variables in

P , C to denote a set of non-skolem constants in P ?1, U to denote a set of pairs
of unifiable literals in P , and θU to denote all possible variable substitutions to
take place in U . We describe how to handle variable substitution by using Figure
3.

Our framework recasts the notion of variable substitution as clustering of each
element in V ∪ C to equivalent group: it has set E of clusters of equivalent
class (hereafter, equivalent cluster) such that variables and constants which are
assumed equal would belong to (e.g., if x = y, y = z are assumed, x, y, z are in
the same cluster)?2. For example, in Figure 3, we have three equivalent clusters,
and x1 = x2 is assumed. We first define new ILP variables to express the cluster
assignment of variable and constant, and then introduce constraints which are
imposed on unification variables.
Cluster assignment Each variable or constant x ∈ V ∪ C can be assigned to

the single equivalent cluster t ∈ E. We introduce the new variable c ∈ {0, 1}
defined as follows:

cx,t =

{
1 if x is assigned to the equivalent cluster t

0 otherwise
for each x ∈ V ∪ C

In Figure 3, cx1,1 and cx2,1 are set to 1 since the logical variables x1, x2 are
in the equivalent cluster 1.

In order to guarantee that (i) each variable or constant is assigned to at most
one cluster, and (ii) variable substitution is logically consistent (i.e., two distinct
constants must be assigned to different clusters), we also introduce two basic
constraints on c as follows.
Constraint 4 Each variable or constant x can be assigned to at most single

cluster (i.e., cx,t = 1 can be held for at most one t ∈ E). This constraint is
expressed as:∑

t∈E

cx,t ≤ 1 for each x ∈ V ∪ C (14)

?1 Henceforth, we use the terms “variable” and “constant” to represent an existentially quan-
tified variable and non-skolem constant for convenience.

?2 We adopt the notion of clustering instead of pairwise variable substitution x/y, because
we can avoid writing nC3 × 3 ILP constraints for transitivity relation of equality between
elements in V ∪ C, where n = |V ∪ C|.

7 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

x1	x2	

G1 = {x1, x2, x3}	 G2 = {y1, A, B}	
cluster 1	 cluster 2a	

C4: cy1,2a + cy1,2b ≤ 1
 cA,2a + cB,2a ≤ 1, cA,2b + cB,2b ≤ 1
C5: 0 ≤ cx1,1 + cx2,1 – 2ex1,x2,1 ≤ 1

C6: up(x1,y1),p(x2,A) ≤ ey1,A,2a + ey1,A,2b

Example constraints:	

∃x1, y1 p(x1, y1)$20 ∧ q(A)$20 ∧ r(B)$20	

∃x2 p(x2, A)$30
	

∃x3 p(x3, B)$22
	

P = { p(x1, y1), q(A), r(B), p(x2, A), p(x3, B) }
V = { x1, x2, x3, y1, y2, y3 }, C = {A, B}
U = { (p(x1, y1), p(x2, A)), (p(x1, y1), p(x3, B)) }
θU ={ (x1, x2), (y1, A), (x1, x3), (y1, B) }	

cluster 2b	

y1	
B	

Equivalent clusters for variable substitution:	

cx1,1	 1	

cx2,1	 1	

cx3,1	 0	

cy1,2a	 1	

cA,2a	 0	

cB,2a	 1	

cy1,2b	 0	

cA,2b	 0	

cB,2b	 0	

Example variable states:	

ex1,x2,1	 1	

ex1,x3,1	 0	

ey1,A,2a	 0	

ey1,A,2b	 0	

ey1,B,2a	 1	

ey1,B,2b	 0	

Test problem:	 : explains
: unifiable

E = {1, 2a, 2b}	

Fig. 3 Unification in ILP framework for the case of first-order logic

In Figure 3, cy1,2a+cy1,2b ≤ 1 is created because y1 can be assigned to at most
one cluster among {2a, 2b}. Note that the cluster 1 need not be involved here
since y1 would not be clustered to 1 as described later. The next constraint we
introduce is about clustering of constants: assuming that different constants
are equal is not allowed. Formally, the constants a1, a2, ..., an ∈ C must not
be assigned to the same cluster t (i.e., either ca1,t, ca2,t, ..., or can,t can be 1).
This constraint can be expressed as the following inequality:∑

a∈C

ca,t ≤ 1 for each t ∈ E (15)

In Figure 3, cA,2a + cB,2a ≤ 1 and cA,2b + cB,2b ≤ 1 are generated since the
constants A and B cannot be assumed equal.

Given set P of potential elemental hypotheses, we prepare ILP variable c as the
following procedure. First of all, we find out θU , i.e., what variable substitution
can potentially occur by scanning U . For instance, in Figure 3, we can see that
x1 = x2 can possibly occur etc. The second step is to group them by equivalent

class, which yields N equivalent sets Gi of variable or constants. Here we get
N = 2 sets: G1 = {x1, x2, x3} and G2 = {y1, A,B}. In the third step, we prepare
N equivalent clusters in E, and divide each cluster into the number of constants
included in each group since constants need to be in separate clusters. In Figure
3, the second cluster is divided into 2a and 2b since there are two constants A

and B in the group. Finally, we assign ILP variable c to each pair of x ∈ V ∪ C

and t ∈ E. Note that we don’t need to consider any combination of V ∪C and E,
because most of substitution in θU would be expressed as its partial combinations.
For instance, in Figure 3, it is not necessary to generate cy1,1 but only cy1,2a and
cy1,2b since y1 will not be substituted with the elements of G1.

As mentioned above, we also use additional constraints imposing on unification
so that the framework checks the states of variable substitutions needed for the
unification. One idea of writing unification constraint is: two literals p(x), p(y) ∈
U can be unified (i.e., up(x),p(y) = 1) only if both x and y are cluster 1 (i.e.,
cx,1 = 1 ∧ cy,1 = 1), both x and y are cluster 2 (i.e., cx,2 = 1 ∧ cy,2 = 1), etc.;
however, in order to write ILP constraints based on the idea, we would have
to generate R · 2T ILP constraints?1 for each pair of unifiable literals, where R

is the number of arguments in unified literals and T is the number of cluster.
In order to suppress this, we implement unification constraint by using another
ILP variable e expressing cx,t = 1 ∧ cy,t = 1 instead of c?2. We first introduce
the intermediate ILP variable e, and then define constraint that retains relation
between c and e.
Pairwise equality We introduce the new variable e ∈ {0, 1} defined as:

ex,y,t =

{
1 if x and y are assigned to the cluster t

0 otherwise
for each (x, y) ∈ θU

In Figure 3, ex1,x2,1 is generated since x1 and x2 are possible variable substi-
tution for p(x1, y1) and p(x2, A). The value is set to 1 because x1 and x2 are
in the cluster 1.

?1 The logical form of this idea is represented as up(x),p(y) = 1 ⇒ (cx,1 = 1∧cy,1 = 1)∨(cx,2 =
1∧ cy,2 = 1)∨ We need a conjunctive normal form (CNF) to generate ILP constraints,
and generate one ILP constraint for each conjunct17). In this case, the transformed CNF
would consist of 2T conjuncts.

?2 By using e, the former idea can be represented as: up(x),p(y) = 1 ⇒ ex,y,1 = 1 ∨ ex,y,2 =

1 ∨ Since it is already CNF, it can be expressed as a single ILP constraint, not 2T .

8 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

Constraint 5 ex,y,t is set to 1 if and only if x and y belong to the same equiv-
alent cluster t (i.e., ∃t(cx,t = 1 ∧ cy,t = 1)). To express this consistency, we
introduce the following inequality:

0 ≤ cx,t + cy,t − 2 · ex,y,t ≤ 1 for each (x, y) ∈ θU , t ∈ E (16)
In Figure 3, 0 ≤ cx1,1 + cx2,1 − 2 · ex1,x2,1 ≤ 1 is introduced to express both
x1 and x2 are assigned to the cluster 1.

We are now ready to introduce constraint imposed on unification of literals.
Constraint 6 Two unifiable literals (p1(x1, x2, ..., xn), p2(y1, y2, ..., yn)) ∈ U

are allowed to be unified (i.e., up1(x1:n),p2(y1:n) = 1)?1 only when all pairs
of i-th arguments of p1 and p2 are assumed equal (i.e., ∀i∃t(exi,yi,t = 1)).

up1(x1:n),p2(y1:n) ≤
∑
t∈E

exi,yi,t for each (xi, yi) ∈ θ, (17)

where θ denotes a set of pairs of i-th arguments of p1 and p2. In Figure 3, the
constraint up(x1,y1),p(x2,A) ≤ ey1,A,2a + ey1,A,2b is generated since y1 needs to
be substituted for A when p(x1, y1) and p(x2, A) are unified. Furthermore,
in order to prohibit that variables or constants are assumed equal without
unification of literals, we introduce the additional constraint: variables or
constants (x, y) ∈ θU are allowed to be assumed equal (i.e., ∃t(ex,y,t = 1))
only if at least one pair of unifiable literals (p1, p2) ∈ U which have x, y as
their i-th argument are unified.∑

t∈E

ex,y,t ≤
∑

(p1,p2)∈uni(x,y)

up1,p2 for each (x, y) ∈ θU , (18)

where uni(x, y) denotes set of pairs of unifiable literals requiring variable
substitution x, y for the unification?2.

Our approach is different from Santos19)’s LP formulation in terms that our
approach is capable of evaluating the specificity of hypotheses, as mentioned in
Section 2.3. Specifically, explaining a literal p to reduce its cost (i.e., rp = 1) by a

?1 x1:n is a short notation for x1, x2, ..., xn.
?2 Actually, formula (17), (18) can be reduced to the following inequality:

|uni(x, y)| + 1 ≤
X

(q1,q2)∈uni(x,y)

uq1,q2 − |uni(x, y)| ·
X

t∈E

ex,y,t ≤ 0 for each (x, y) ∈ θU

literal q forces us to pay another cost for q instead (i.e., hq = 1, see Constraint 2).
Therefore, usually this new hypothesis q is meaning-less and is not favored since
the cost of explanation does not change largely (i.e., less specific explanation is
favored as in H1 and H3 in Figure 1). However, once we get a good hypothesis
such that explains other hypotheses at the same time (i.e., unified with other
literals), it is then favored as a result of drastic decrease of the explanation
cost, as in H7 in Figure 1 (i.e., more specific explanation is favored). In our
framework, the specificity evaluation is successfully controlled by using the ILP
variable h, r, u. Furthermore, our framework can handle negation while Santos
Jr.’s framework assumes positive literals as its input.

Finally, let us describe how inequality of variables and negation of literal are
implemented in our framework. The inequality is simply expressed through con-
straint on ILP variable c similar to Constraint 4 to express mutual exclusiveness
of clustering of constants.
Constraint 7 Two variables x, y ∈ V are not allowed to be assumed equal

(i.e., cx,t and cy,t cannot be 1 simultaneously for each t) if x 6= y appears in
observations.

cx,t + cy,t ≤ 1 for each x 6= y ∈ O, t ∈ E (19)
In addition to this constraint, we need new procedure of preparing set E of
equivalent clusters described above. It is because x and y must belong to dif-
ferent clusters in E. The new procedure is similar to the separation of clusters
for constants: when we prepare E, we divide equivalent clusters in the number
of variables participating in inequalities in Gi. For instance, suppose we have
x1 6= x2 in observations. Then we would divide cluster 1 into 1a and 1b in the
preparation step so that x1 and x2 can be assigned to different clusters.

We then introduce how to handle negation of literal.
Constraint 8 For any combination of p(x) ∈ P and Q ∈ {Q | Q ⊆ P, ∃θ(Qθ ∪

B |= ¬p(x))}, a contradiction arises only if (i) p(x) and all the literals in Q

are hypothesized, and (ii) all the substitutions in θ take place. To avoid the
contradiction, we impose: all the literals in Q are allowed to be hypothesized
simultaneously (i.e., hp(x) +

∑
q(y)∈Q hq(y) = 1 + |Q|) can be held) only if

θ does not take place (i.e.,
∑

(x,y)∈θ

∑
t∈E ex,y,t ≤ |θ| − 1). This can be

expressed as the following inequality:

9 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

hp(x) +
∑

q(y)∈Q

hq(y) − |Q| ≤ |θ| −
∑

(x,y)∈θ

∑
t∈E

ex,y,t (20)

Note that if Q leads to a contradiction without variable substitution (i.e.,
θ = {}), inequality (20) is reduced to the following simple inequality:

hp(x) +
∑

q(y)∈Q

hq(y) ≤ |Q| (21)

However, it is still not clear how to control the overall process of searching the
set Q of literals that can cause a contradiction. This search requires us to con-
sider complicated cases; namely we need to implement forward reasoning (e.g.,
consider the axiom ∀x(male(x) ⇒ ¬female(x))). Its computational difficulty
comes from nature of logical inference. One possible and plausible heuristic is
that we consider first-order forward reasoning: searching (i) ¬p(y) ∈ P such that
∃θ(¬p(y)θ |= ¬p(x)), and (ii) Q ⊆ P such that ∃θ(Qθ ∪ B1 |= ¬p(x)), where B1

is set of background axioms that contain ¬p(x) as their consequent.

5. Evaluation

We evaluated the efficiency of our ILP-based framework on two datasets by an-
alyzing how the inference time changes as the complexity of abduction problems
increases. In order to simulate the diversity of the complexity, we introduced the
parameter d of experiment setting, which limits the depth of backward inference
chain. If we set d = 1 and had p in observation, the framework would apply
backward inference to p only once, i.e., it would not apply backward inference
to the abduced literals p′ any more. We also compared the performance with
Mini-TACITUS?19), which is the state-of-the-art tool of weighted abduction. To
the best of our knowledge, Mini-TACITUS is the only tool of weighted abduc-
tion available now. We have investigated (i) how many problems in our testset
Mini-TACITUS could solve in 600 seconds, and (ii) the average of its inference
time for solved problems. For solving ILP, we have a range of choices from
non-commercial solvers to commercial solvers. In our experiments, we adopted

?1 http://www.rutumulkar.com/

SCIP?2, which is the fastest solver among non-commercial solvers. SCIP solves
ILP problems using the branch-cut-and-price method.

5.1 Dataset
Story Understanding Our first test set was extracted from the dataset

originally developed for Ng and Mooney11)’s abductive plan recognition system
ACCEL. We extracted 50 plan recognition problems and 107 background ax-
ioms from the dataset. The plan recognition problems provide agents’ partial
actions as a conjunction of literals. For example, in the problem t2, the following
observation literals are provided:

(1) inst(get2, getting) ∧ agent get(get2, bob2) ∧ name(bob2, bob) ∧
patient get(get2, gun2) ∧ inst(gun2, gun) ∧ ...

This logical form denotes a natural language sentence “Bob got a gun. He got
off the bus at the liquor store.” The plan recognition system requires to infer
Bob’s plan from these observations using background knowledge. The back-
ground knowledge base contains Horn-clause axioms such as:

(2) inst(R, robbing) ∧ get weapon step(R, G)⇒ inst(G, getting)
From this dataset, we created two types of testsets: (i) testset A: Ng and

Mooney’s original dataset, (ii) testset B : a modified version of testset A. For
both testsets, we assigned uniform weights to antecedents in background axioms
so that the sum of those equals 1, and assigned $20 to each observation literal.
We created testset B so that the background knowledge base does not contain
a constant in its arguments since Mini-TACITUS does not allow us to use con-
stants in background knowledge axiom. Specifically, we converted the predicate
inst(X, Y) that denotes X is a instance of Y into a form of inst Y (X) (e.g.,
inst(get2, getting) is converted into inst getting(get2)). We also converted an
axiom involving a constant in its arguments into neo-Davidsonian style. For
example, occupation(A, busdriver), where busdriver is a constant, is converted
to busdriver(X) ∧ occupation(A, X). These two conversions did not affect the
complexity of the problems substantially.

Monroe Since story understanding dataset is fairly small, we explore the
scalability of our framework on a larger-scale dataset. We thus extracted plan

?2 http://scip.zib.de/

10 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

50!

60!

70!

80!

90!

100!

110!

d=1! d=2! d=3! d=4! d=5!

Av
er

ag
ed

 n
um

be
r o

f !
po

te
nt

ia
l e

le
m

en
ta

l h
yp

ot
he

se
s	

Depth parameter d	

Fig. 4 Complexity of each problem setting

recognition problems from Blaylock and Allen’s Monroe Plan Corpus1). This
corpus includes 5,000 plans, each of which consists of hierarchical goal-subgoal
relations artificially generated by SHOP2 planning system10). We extracted 202
background axioms, and used lowest-level actions of 500 plans as input of our
system. We assigned the weights of axioms equally so that the sum of the weights
is 1.2.

5.2 Results and discussion
First of all, let us show the complexity of abduction problems in testset A.

Figure 4 shows the number of potential elemental hypotheses, P described in
Section 4, averaged for all the problems. Recall that the number of candidate
hypotheses is O(2n), where n is the number of potential elemental hypotheses
(|P |). Therefore, in testset A, we roughly have 2100 ≈ 1.3 · 1030 candidate hy-
potheses for a propositional case if we set d = 5. Figure 5 illustrates the number
of variables and constraints of a ILP problem for each parameter d, averaged for
all problems. Although the complexity of the ILP problem increases, we can rely
on an efficient algorithm to solve a complex ILP problem.

The results of inference time in our framework on testset A is given in Figure 6 in
the two distinct measures: (i) the time of conversion to ILP problem, and (ii) the
time ILP technique had took to find an optimal solution. Figure 6 demonstrates
that our framework is capable of coping with larger scale problems, since the

0

200

400

600

800

1000

1200

1400

1600

d=1 d=2 d=3 d=4 d=5

A
ve

ra
g

ed
 n

um
b

er
 o

f
va

ri
ab

le
s/

co
ns

tr
ai

nt
s	

Depth parameter d	

variables

constraints

Fig. 5 Complexity of each ILP problem

inference can be performed in non-exponential time to the size of the candidate
hypotheses which increases O(2|P |).

Table 1 shows the inference time of ILP-based framework and complexity of
solved problems on Monroe Dataset. Again, the inference time indicates that our
framework solves abduction problems efficiently in the setting d = 1, d = 2. In
d = 3 setting, however, the inference time unexpectedly blows up. Our framework
could not solve 3.2% (16/500) of the problems in 600 seconds, and it took 17.4
seconds on average.

Our analysis revealed that the number of variables u, c, e and constraints im-
posed on these variables was very large. The reason was that Monroe Plan
Corpus had a couple of abstract actions entailed by a number of subgoals (e.g.,
get-to/2 is entailed by 24 subgoals), and many background axioms that have
existentially quantified variables. To avoid the undesirable growth of unifiable
literals, we could adopt heuristics to filter out unnecessary unification before we
apply abductive reasoning to a discourse. Since our goal is to develop the frame-
work of discourse understanding, we could definitely utilize some properties of
discourse for such filtering. For instance, we could use linguistic knowledge such

11 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

0

1

2

3

4

5

6

7

d=1 d=2 d=3 d=4 d=5

In
fe

re
nc

e
ti

m
e

[s
ec

o
nd

s]
	

Depth parameter d	

ILP

prepare

Fig. 6 Results of ILP-based inference time on Story Understanding dataset

“prepare” and “ILP” denote the time required to convert a weighted abduction
problem to ILP problem, and the time required to solve the ILP problem

respectively.

as the saliency of discourse entities. We could retain top-k entities based on its
saliency, and allow only them to be substituted.

Then we show the inference time of Mini-TACITUS on testset B and Monroe
Dataset. The complexity of testset B was quite similar to the testset A since
the modification affecting the original complexity occurred in only 2 axioms.
On testset B, we have confirmed that our framework had solved the 100% of
the problems for 1 ≤ d ≤ 5, and it took 5.5 seconds when averaged for the 50
problems of d = 5. The results of abductive reasoning on Mini-TACITUS is
shown in Table 2. In Story Understanding dataset, the results show that the
58.0% of the problems (29/50) could not be solved in 600 seconds for the easiest
setting d = 1. For the slightly complex setting d ≥ 2, 72.0% of the problems
(36/50) could not be solved in 600 seconds. We found that no additional axioms
were applied in the 14 solved problems for d ≥ 3: the search space did not change.
In Monroe Dataset, the results also show that Mini-TACITUS could not solve

Table 1 Results of ILP-based framework on Monroe Dataset

% of solved Avg. of inference times [sec.] P V C
d=1 100.0% (500/500) 0.02 (0.01/0.01) 19.3 44.8 35.5
d=2 100.0% (500/500) 0.03 (0.01/0.02) 29.2 66.2 68.2
d=3 96.8% (484/500) 17.4 (0.1/17.3) 176.5 1289.6 1662.9
d=4 75.2% (376/500) 59.2 (1.9/57.3) 265.4 2389.0 2935.4

“% of solved” indicates ratio of problems each system could solve in 600 seconds to all the
problems. “Avg. of inference times” indicates inference time averaged over solved problems,
with the time required to convert a weighted abduction problem to ILP problem, and the
time required to solve the ILP problem. P , V , C indicates the averaged number of potential
elemental hypotheses, ILP variables, and ILP constraints respectively.

Table 2 Results of weighted abduction on Mini-TACITUS

Dataset % of solved Avg. of inference times [sec.]
d = 1 42.0% (21/50) 63.7

Story d = 2 28.0% (14/50) 30.3
d = 3 28.0% (14/50) 30.3
d = 1 65.6% (328/500) 34.2

Monroe d = 2 32.2% (161/500) 34.6
d = 3 32.0% (160/500) 33.8

“% of solved” indicates that the ratio of problems Mini-TACITUS could solve in 600 seconds
to all the 50 problems. “Avg. of inference times” denotes the inference time averaged for the
solved problems.

34.4% of the problems (172/500) for the easiest setting d = 1 and 67.8% of the
problems (339/500) in the slightly complex setting d = 2. This indicates that
Mini-TACITUS is sensitive to the depth parameter, which means the growth rate
of inference time is very large. This becomes a significant drawback for abductive
inference using large-scale background knowledge. Note that the inference time
could not be directly compared with our results since our implementation is C++,
whereas Mini-TACITUS is Java-based.

6. Conclusion

Weighted abduction is promising as a universal framework for representing lin-
guistic information necessary for discourse understanding. However, discourse
understanding requires large amounts of world knowledge. As large-scale linguis-
tic resources have been developed and released to the public, there has been a
resurgence in research on abductive logic. Given these background, we have ad-
dressed the scalability issue of abductive reasoning, and proposed an ILP-based

12 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

IPSJ SIG Technical Report

framework for weighted abduction, which maps abductive inference problem to
a linear programming problem and efficiently finds an optimal solution. Our
qualitative comparison to other existing work showed that our framework can be
a good alternative to other work. The results of our experiments have demon-
strated that our approach efficiently solved the problems of abduction, and it is
an encouraging level of performance for investigating the scalability of our frame-
work to real world problems. Our future work includes testing on larger discourse
understanding dataset as used in 12), and exploring automatic assignment of ax-
iom weights. We also plan to explore how search heuristics such as contradiction
search mentioned in Section 4 and unification candidate reduction mentioned in
Section 5.2 can be incorporated into our framework.

Acknowledgments
The authors would like to thank Eric Nichols for valuable comments. This

work was supported by Grant-in-Aid for JSPS Fellows (22-9719) and KAKENHI
(23240018).

References

1) Blaylock, N. and Allen, J.: Generating Artificial Corpora for Plan Recognition,
UM, Springer (2005).

2) Blythe, J., Hobbs, J.R., Domingos, P., Kate, R.J. and Mooney, R.J.: Implementing
Weighted Abduction in Markov Logic, IWCS (2011).

3) Chambers, N. and Jurafsky, D.: Unsupervised Learning of Narrative Schemas and
their Participants, ACL, pp.602–610 (2009).

4) Charniak, E. and Goldman, R.P.: A Probabilistic Model of Plan Recognition,
AAAI, pp.160–165 (1991).

5) Charniak, E. and Shimony, S. E.: Cost-based abduction and map explanation,
Artificial Intelligence, Vol.66(2), pp.345–374 (1994).

6) Hobbs, J.R., Stickel, M., Appelt, D. and Martin, P.: Interpretation as Abduction,
Artificial Intelligence, Vol.63, pp.69–142 (1993).

7) Ishizuka, M. and Matsuo, Y.: SL Method for Computing a Near-optimal Solution
using Linear and Non-linear Programming in Cost-based Hypothetical Reasoning,
PRCAI, pp.611–625 (1998).

8) Kate, R.J. and Mooney, R.J.: Probabilistic Abduction using Markov Logic Net-
works, PAIRS (2009).

9) Mulkar, R., Hobbs, J.R. and Hovy, E.: Learning from Reading Syntactically Com-
plex Biology Texts, The 8th International Symposium on Logical Formalizations of
Commonsense Reasoning (2007).

10) Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D. and Yaman,
F.: SHOP2: An HTN planning system, Journal of Artificial Intelligence Research,
Vol.20, pp.379–404 (2003).

11) Ng, H.T. and Mooney, R.J.: Abductive Plan Recognition and Diagnosis: A Com-
prehensive Empirical Evaluation, KR, pp.499–508 (1992).

12) Ovchinnikova, E., Montazeri, N., Alexandrov, T., Hobbs, J.R., McCord, M.C.
and Mulkar-Mehta, R.: Abductive Reasoning with a Large Knowledge Base for
Discourse Processing, IWCS (2011).

13) Poole, D.: Logic Programming, Abduction and Probability: a top-down anytime
algorithm for estimating prior and posterior probabilities, New Generation Com-
puting, Vol.11(3-4), pp.377–400 (1993).

14) Poon, H. and Domingos, P.: Unsupervised Ontology Induction from Text, ACL,
pp.296–305 (2010).

15) Prendinger, H. and Ishizuka, M.: First-order diagnosis by propositional reasoning:
A representation-based approach, DX, pp.220–225 (1999).

16) Raghavan, S. and Mooney, R.J.: Bayesian Abductive Logic Programs, STARAI,
pp.82–87 (2010).

17) Raman, R. and Grossmann, I.E.: Relation between MILP modelling and logical
inference for chemical process synthesis, Computers & Chemical Engineering, Vol.15
(2), pp.73–84 (1991).

18) Richardson, M. and Domingos, P.: Markov logic networks, Machine Learning, pp.
107–136 (2006).

19) Santos, E.: A linear constraint satisfaction approach to cost-based abduction, Ar-
tificial Intelligence, Vol.65 (1), pp.1–27 (1994).

20) Schoenmackers, S., Davis, J., Etzioni, O. and Weld, D.: Learning First-order Horn
Clauses from Web Text, EMNLP, pp.1088–1098 (2010).

21) Singla, P. and Mooney, R.J.: Abductive Markov Logic for Plan Recognition, AAAI,
pp.1069–1075 (2011).

22) Suchanek, F.M., Kasneci, G. and Weikum, G.: Yago: A Core of Semantic Knowl-
edge, WWW, ACM Press (2007).

13 c© 2011 Information Processing Society of Japan

Vol.2011-NL-203 No.3
2011/9/16

