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An Improvement of the Stochastic Algorithm for

Solving the Sum-of-Ratios Problem

Yangyang Hu∗1, Shinya Watanabe∗1,∗2,
Yongkang Ji∗1 and Jianming Shi∗1,∗2

There are many applications of Sum-of-Ratios (SOR) problem in the fields of
engineering and economy. Theoretically, the SOR problem is NP-hard. Most
existing deterministic algorithms are of branch-and-bound. When the number
of terms of ratios is greater than 30, the SOR problem can not be solved by
these algorithms within a reasonable time. On the other hand, recently, the
stochastic algorithm has been well developed to find an ε-optimal solution to the
SOR problem. We first improve such an algorithm by using line search method,
give some theoretical results for the convergence of the proposed algorithm, and
we apply the modified algorithm to solving the SOR problem. The results of
computational experiments we conducted show that the modified algorithm is
quite efficient than its ancestor.

1. Introduction

It is no need to mention that the importance of global optimization comes from
primarily the increasing needs of applications in engineering, finance, computa-
tional chemistry, bioinformatics, medicine and many other areas.

An algorithm called Pure Adaptive Search (PAS)7) gives that for convex pro-
grams the computational complexity of the algorithm increases at most linearly
in the dimension of the problem. These surprising results of PAS can be ex-
tended for solving global optimization problems under the Lipschitz condition10).
Although the theoretical result of linear time complexity for global optimization
is interesting in itself, there is no better alternative for efficiently generating uni-
form points in the region, so Improving Hit-and-Run (IHR) algorithm1),6),11) are
proposed to generate a sequence of random points by proving a random direction
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and a uniform random point in the intersection of that direction and the region.
In this paper, we 1) propose an improvement IHRLS of IHR by using line

search algorithm (LS); 2) give some theoretical convergent results; 3) do an
empirical study on the performance of the modified algorithm. As an application
we solve the Sum-of-Ratios (SOR) problem using two dynamic-multistart versions
of DMIHR and DMIHRLS of IHR and IHRLS, respectively.

The paper is organized as follows. In Section 2, we briefly review the back-
ground of relative topics and existing results we need through the paper. Algo-
rithms IHRLS and DMIHRLS will be proposed in Section 3. The convergence
results are also provided in this section. In Section 4, we investigate the effi-
ciency of the modified algorithm by conducing numerical experiments and report
the results. Finally, some conclusions including further work will be remarked in
Section 5.

2. A Brief Review of Background

In this section, we give a brief review of stochastic algorithm, line search method
and the Sum-of-Ratios problem. Hereafter we use the background to develop an
improvement of the algorithm using line search and its applications to Sum-of-
Ratios problem.

2.1 Stochastic Algorithms
We start with the following optimization problem (P ).

(P )

∣∣∣∣∣
minimize f(x)
subject to x ∈ S

In this paper, we assume that
• the objective function f : Rn → R is a continuous function
• S is a nonempty compact subset in Rn

• problem (P ) has an optimal solution x∗ with the optimal value y∗, that is,
y∗ = f(x∗) ≤ f(x),∀x ∈ S.

• the maximal value max{f(x) |x ∈ S} is given and denote by max(P ).
Therefore the optimal solution set

Sy∗ = {x ∈ S | f(x) ≤ y∗}
is nonempty.
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A stochastic algorithm cannot guarantee to find an exact global optimal so-
lution. For a given tolerance ε such an algorithm can give the probability of a
value of function that is not greater than y∗ + ε in the following fashion.

p(f(X) ≤ y∗ + ε,X ∈ S) ≥ 1− α, (1)
where α ∈ (0, 1) is a user-determined parameter, X is generated randomly and
uniformly in the algorithm. In this paper, a random variable is written in upper-
case.

Pure Adaptive Search (PAS) has some amusing theoretical properties. This
algorithm is the base of this research. The framework of PAS is described as
follows, where, as well as through this paper, Step 0 contributes to the initial
settings of parameters.
Pure Adaptive Search (PAS)

Step 0. Uniformly generate a point X0 ∈ S. Set Y0 := f(X0) and k := 0.
Step 1. Set SYk

:= {x ∈ S | f(x) ≤ Yk}. Uniformly generate Xk+1 ∈ SYk
.

Step 2. Set Yk+1 := f(Xk+1). Terminate if a terminal criterion is satisfied.
Otherwise, k := k + 1. Go to Step 1.

One of theoretical properties of PAS is that for a given y ∈ that is a real
number between y∗ and max(P ) the probability of objective function value Yk

that is generated by PAS and is less than or equal to y at iteration k can be
calculated as follows2).

p(Yk ≤ y) =
k∑

i=0

p(X ∈ Sy)(ln(1/p(X ∈ Sy)))i

i!
, (2)

where p(X ∈ Sy) is the probability that X obtained by PAS is in set Sy.
Recall that Lipschitz condition K of f(x) holds over S if and only if |f(x) −

f(y)| ≤ K ‖ x− y ‖ holds for all x, y ∈ S. When such Lipschitz condition K and
the diameter D of S are given, the probability p(X ∈ Sy) in (2) is bounded as
follows10).

p(X ∈ Sy) ≥
(

y − y∗
KD

)n

, (3)

where n is the dimension of x.
A multistart version of PAS is proposed recently5). With such a multistart

strategy, X obtained from the multistart algorithm has a probability p(f(X) ≤
y∗ + ε,X ∈ S) (refer to (1)) that is provided below2).

pε := 1−
j∏

k=0

(
1−

sk∑

i=0

(ε/KD)n(ln(KD/ε)n)i

i!

)
, (4)

where sk is a number of points obtained through PAS on improving level sets
in the kth restart execution, which is not predetermined at the beginning, but
determined during the execution. It implies that if pε ≥ 1 − α is satisfied then
the function value at point X obtained through the algorithm is expected less
than or equal to y∗ + ε with a probability at least 1− α, that is,

p(f(X) ≤ y∗ + ε,X ∈ S) ≥ pε ≥ 1− α (5)
In other words, the condition can serve as a stopping criteria. When this condi-
tion is satisfied, we can stop the algorithm and obtain that f(X) ≤ y∗+ ε with a
probability 1−α at least. Note that all values embedded in (4) are available, so it
is calculable! More detailed information about condition (5) for implementation
can be found in the references of this paper and therein.

Although the results in (2) as well as (4) are quite general and shirking, as
we mentioned in Section 1, PAS is not easy to implement. The difficulties of
implementing PAS come from primarily that generating uniformly in SYk

.
To circumvent such difficulties, Hit-and-Run is employed to serve an approx-

imation of implementing PAS. This method is called Improving Hit-and-Run
(IHR)11) and works as follows.
Improving Hit-and-Run (IHR)

Step 0. Initialize X0 ∈ S, Y0 := f(X0), and set k := 0.
Step 1. Generate a random direction Dk uniformly on the surface of the unit

hypersphere.
Step 2. If Lk = {Xk}, go to Step 1.

Generate a candidate point Wk+1 := Xk + λDk by sampling uniformly over
the line set

Lk := {x ∈ S : x = Xk + λDk, λ is a real scalar}
Step 3. Update the current point Xk+1 with the candidate point if it is im-

proving, i.e., set
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Xk+1 =

{
Wk+1 if f(Wk+1 < Yk)
Xk otherwise

and set Yk+1 = f(Xk + 1).
Step 4. If a stopping criterion is met, stop. Otherwise, k := k + 1 and return

to Step 1.

Lemma 1 11) Suppose that all level sets SYk
generated in IHR are elliptical

in shape, then the expected number of evaluations of f(x) needed to achieve an
ε-optimal solution is at most O(n5/2).
Proof: Note that SYk

:= {x ∈ S | f(x) ≤ Yk} and that ε-optimal solution xε
∗ is

defined as
f(xε

∗) ≤ y∗ + ε.

Set y = y∗ + ε then the desired result follows from Corollary 3.6 in11).

A mutlistart version of IHR has been proposed2) and works as follows.
Dynamic Multistart Improving Hit-and-Run (DMIHR)

Step 0. Set parameters ε, α and maximum number θ of function evaluations
for a single run of IHR. Calculate D, K. Set n and j = 1.

Step 1. Execute θ iterations for IHR. Account the number sj of points sampled
uniformly on the improving level sets, also record the best objective value
Ȳj = f(X̄j) and the best solution X̄j in the jth run.

Step 2. Update the current best object function values by taking minj{Ȳj} and
its associated current best solution.

Step 3. Calculate Pε defined in (4).
Step 4. If pε ≥ 1− α, stop. Otherwise, j := j + 1 go to to Step 1.

2.2 Line Search
Suppose that the objective f(x) in problem (P ) is differentiable on S. When

a point xk and a direction Dk are given at iteration k, a line segment lk can be
defined as follows.

lk := {x | (x = xk + λkDk, λk > 0) and (x ∈ S)}. (6)
The objective function f(x) restricted on lk turns into the following φ(·)

φ(λk) = f(xk + λkDk), λk > 0, xk + λkDk ∈ S (7)

φ′(λk) = ∇f(xk + λkDk), (8)
where ∇ stands for a gradient. We are interested in shrinking lk to the smaller
intervals that include optimal points of φ(λ) on lk and finding a point in the
interval. To this end, we use the following Wolfe conditions (9) and (10) to find
the potential intervals.

f(xk + λkDk) ≤ f(xk) + c1λk(∇fk)>Dk (9)
(∇f(xk + λkDk))>Dk ≥ c2(∇fk)>Dk (10)

with 0 < c1 < c2 < 1 and are predetermined by the user, > stands for the
transpose of a vector or matrix.

The following condition (11) can be used to impose α to lie at least a neigh-
borhood of a local minimizer or stationary point of φ on lk, if needed.

|∇f(xk + λkDk)T Dk| ≤ c2|∇fT
k Dk| (11)

Next we describe the Line Search Algorithm4) with help of Zoom subroutine
following immediately.
Line Search Algorithm (LS)

Step 0. Set λ0 = 0 and i = 1, choose λ1 > 0 and λmax according to the feasible
region.

Step 1. If [φ(λi) > φ(0) + c1λiφ
′(0)] or [φ(λi) ≥ φ(λi−1) and i > 1]

λ? = zoom(λi−1, λi) and stop;
Step 2. If | φ′(λi) |≤ −c2φ

′(0)
λ? = λi, and stop;

Step 3. If φ′(λi) ≥ 0
λ? = zoom(λi, λi−1) and stop;

Step 4. Choose λi+1 ∈ (λi, λmax). If a stopping criterion hold, stop. Other-
wise, i := i + 1 and return to Step 1.

Now we describe Zoom algorithm below. In each iteration we try to get an
acceptable λ? or replace the endpoint by λj which is between λlo and λhi.
Zoom Algorithm

Step 0. Interpolate (using quadratic, cubic, or bisection) to find a trial step λj

between λlo and λhi.
Step 1. Evaluate φ(λj)
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Step 1.1. If φ(λj) > φ(0) + c1λiφ
′(0) or φ(λj) ≥ φ(λlo)
λhi = λj ;

else, Evaluate φ′(λj)
Step 1.2. If | φ′(λj) |≤ −c2φ

′(0)
Set λ? = λj and stop;

Step 1.3. | φ′(λj) | (λhi − λlo) ≥ 0
λhi = λlo,λlo = λj

Step 2. If (λhi − λlo) is small enough, stop. Otherwise, return to Step 1.

Note that in Line Search, φ′(0) < 0 because it starts with a descent direction.
2.3 The Sum of Ratios Problem
Sum-of-Ratios (SOR) problem can be defined as follows

(SOR)

∣∣∣∣∣∣∣
minimize

q∑
s=1

gs(x)
hs(x)

subject to x ∈ S

(12)

where gs(x), hs(x) : Rn → R and s = 1, 2, . . . , q. Generally, g, h can be linear,
quadratic, or more general functions. The SOR problem has many applications,
such as the transportation problem, government contracting problem, portfolio
optimization, optimal clustering problems, etc8),9).

Up to now, we have been lacking in investigating the performance of IHR and
its multistart version to solve the SOR and related problems when we apply Line
Search. An improvement of IHR described in next section and the results of
numerical experiments reported in Section 4 are an attempt to contribute the
issue.

3. An Improvement of IHR and DMIHRLS

Considering an improvement of IHR, we replace Xk in IHR by xk that is
obtained through algorithm LS. It has been observed that Line Search has a high
ability to find a minimizer of φ(·) deterministically. By taking a small value of c2,
the condition (11) results in finding an interior minimizer or a stationary point
on lk. The advanced improvement described herein is inspired by the excellent
ability of global search of Line Search. Based on these observations, now we

propose a new algorithm, which is basically a stochastic one.
Improving Hit-and-Run with Line Search Algorithm (IHRLS)

Step 0. Initialize X0 ∈ S, Y0 = f(X0), set k = 0.
Step 1. Generate a random descent direction Dk uniformly distributed on the

surface of the unit hypersphere.
Step 2. Generate a candidate point Wk+1 = Xk + λ?Dk using line search as

follows.
Step 2.0. Set λ0 = 0 and i = 1, choose λ1 > 0 and λmax according to the

feasible region.
Step 2.1. If [φ(λi) > φ(0) + c1λiφ

′(0)] or [φ(λi) ≥ φ(λi−1) and i > 1]
λ? = zoom(λi−1, λi) and go to Step 3.

Step 2.2. If |φ′(λi)| ≤ −c2φ
′(0)

λ? = λi, and go to Step 3.
Step 2.3. If φ′(λi) ≥ 0

λ? = zoom(λi, λi−1) and go to Step 3.
Step 2.4. If DK/2i ≤ ε, go to Step 3. Otherwise, choose λi+1 ∈

(λi, λmax), i := i + 1, go to Step 2.
Step 3. Update the current point Xk+1 with the candidate point if it is im-

proving the function value, i.e., set

Xk+1 =

{
Wk+1 if f(Wk+1) < Yk

Xk otherwise

and set Yk+1 = f(Xk+1).
Step 4. If a stopping criterion is met, stop. Otherwise, k := k + 1, and go to

Step 1.

Denote a neighborhood of x̄ by
Nδ(x̄) := {y ∈ Rn | ‖ y − x ‖≤ δ}

and a set of local minimizers by
Sx̄(δ) := {z ∈ S | ∃Nδ(x̄) such that f(z) ≤ f(x), ∀x ∈ S ∩Nδ(x̄)}

and the set of the stationary point in S by Ss.
Assumption 1 : Problem (P ) has finitely many local minimizers and station-

ary points. Under Assumption 1 we have the following lemma.
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Lemma 2 Suppose that Assumption 1 holds, then a probability that there
does not exist a descent direction Dk generated randomly and uniformly in Step
1 is zero.
Proof: It is easy to see that the Lebesgue measure of both Sx̄(δ) and Ss is 0
due to Assumption 1. So a probability that a line lk meets Sx̄(δ) ∪ Ss is zero.
That implies the desired result.

Lemma 3 Suppose that a bisection is used in Zoom in Step 2 and that the
conditions for (3) holds, then Step 2 terminates within

Istep2 := dln(DK/ε)e

iterations, where d·e is the ceiling function.
Proof: The Lipschitz condition yields that after Istep2 iterations

|f(x)− f(y)| ≤ DK

2
Istep2

for all x, y ∈ Lk. So if Istep2 ≥ dln(DK/ε)e is satisfied then a stopping creterion

at Step 2.4 is met.

Theorem 1 Suppose that Assumtion 1 and conditions in Lemma 1 and 3 are
satisfied then the expected number of evaluations of f(x) needed to approximate
an ε-optimal solution is at most O(n5/2 ln(DK/ε))
Proof: It follows from Lemma 1 that the target expected number is not great
than

O(n5/2).

That is, the number of k in IHRLS is not greater than O(n5/2). Note that the
iterations in Step 2 will not exceed ln(DK/ε)). This implies the desired assertion.

The IHR procedure in DMIHR can be replaced by IHRLS to make a multstart
version, which is called herein DMIHRLS algorithm and works as follows.
DMIHR with Line Search (DMIHRLS)

Step 0. Replace IHR by IHRLS and execute Step 0 of DMIHR.
Step 1. Replace IHR by IHRLS and execute Step 1 of DMIHR.
Step 2. Execute Step 2-4 of DMIHR.

4. Numerical Experiments

In this section we conduce the numerical experiments to compare the efficiency
our improvement and its ancestor, namely, DMIHRLS and DMIHR. The prede-
termined parameters(α = 0.01, ε = 0.01 and 100 sets of the algorithms for each
θ) we used in our experiments are the same as they used2), where theses examples
and datasets are used for examining DMIHR algorithm.

Example 13) The first example is the sum-of-linear-ratios optimization problem.

(EX1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
+

4x1 − 2x2 + x3

7x1 + 3x2 − x3

subject to x1 + x2 − x3 ≤ 1
−x1 + x2 − x3 ≤ −1
12x1 + 5x2 + 12x3 ≤ 1
12x1 + 12x2 + 7x3 ≤ 1
−6x1 + x2 + x3 ≤ −4.1
−x1,−x2,−x3 ≤ 0

The optimal value 2.4714 is known, that is the objective function value at the
point (x1, x2, x3) = (1, 0, 0).

For the both of DMIHR and DMIHRLS, Table 1 shows that as θ increases the
number of restarts gradually decreases and the number of improving points per
restart becomes larger and larger. When the θ is large enough, we do not need
restart any more. It means the DMIHR is just a simple IHR and DMIHRLS

is only an IHRLS. Table 1 tells that algorithm DMIHRLS has a higher ability
to obtain a better solution than DMIHR. Figure 1 indicates that our algorithm
DMIHRLS finds a better solution robustly, while the lines of DMIHR are tossed
up-and-down especially for a θ less than around 70. We observe that the function
of Example 1 is relative simple, so line search finds a better solution easily than
a random search even for a smaller θ.
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Table 1 Results for Example 1 (DMIHR: A1, DMIHRLS: A2)

θ Number of restarts Number of improving Best value found
points per restart

Min Average Max Min Average Max Min Average Max
A1 50 1 6.02 29 6 15.78 26 2.2390 2.4095 2.4698
A2 50 1 4.69 19 1 13.55 33 2.1052 2.4291 2.4705
A1 60 1 2.46 9 10 18.33 31 2.1387 2.4010 2.4694
A2 60 1 2.80 12 1 16.67 37 2.2040 2.4446 2.4703
A1 70 1 1.49 5 11 20.71 33 2.1956 2.3900 2.4665
A2 70 1 1.97 13 1 17.15 42 2.0677 2.4463 2.4711
A1 80 1 1.06 2 13 23.02 33 2.1523 2.3973 2.4681
A2 80 1 1.66 6 1 20.59 48 2.1144 2.4444 2.4710
A1 90 1 1.03 2 15 25.91 36 1.9734 2.3943 2.4700
A2 90 1 1.48 5 1 25.08 55 2.2344 2.4562 2.4713
A1 100 1 1.03 2 13 26.92 39 1.8811 2.3735 2.4704
A2 100 1 1.44 4 3 25.37 53 2.1981 2.4572 2.4714
A1 150 1 1.00 1 22 40.08 53 2.1115 2.4231 2.4713
A2 150 1 1.21 5 4 28.72 90 2.0822 2.4602 2.4714
A1 200 1 1.00 1 32 51.02 74 1.9722 2.4255 2.4714
A2 200 1 1.15 3 6 40.09 103 2.3207 2.4637 2.4714
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Fig. 1 Best function value for Example 1

5. Concluding remarks

In this research we review the stochastic optimization, Line search and the
sum-of-ratios problem. We have proposed a new algorithm which improves its
ancestor. We also discuss the convergence of the new algorithm and give an ex-
pected number of iterations to get an ε-minimizer. Numerical experiments show
that the proposed algorithm find the best solutions better in average, especially
for a problem having a relative simple objective or with a larger θ.
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