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Inverse Composite Alignment

of a sphere under orthogonal projection

for ball spin estimation

Toru Tamaki,†1 Yukihiko Ushiyama,†2

Bisser Raytchev†1 and Kazufumi Kaneda †1

In this technical report, we propose a method for measuring the spin of a
table tennis ball in the framework of Inverse Composite Alignment (ICA). We
assume that the projection of the ball onto the image plane is orthographic, and
the shape of the ball is a rigid sphere. Under these assumptions we derive an
update rule for the motion parameters. Because of the precomputation of the
Hessian matrix in ICA and the simplifying assumptions, the motion parameters
estimation at each frame is very fast. We show experimental results obtained
by our prototype system for measuring spins in real image sequences of table
tennis rallies.

1. Introduction

In this technical report, we propose a method for measuring the spin of a table

tennis ball. In table tennis, the spin of the ball is one of the important indications

used to evaluate the skills of a player. For a skillful player, the spin exceeds 5000

rotations per minute (rpm), while it is typically around 3000 rpm for a novice3),4).

Presently, the spin is measured either by using a spinometer or by performing a

2D image analysis with a high-speed camera. For such an application, the use of

computer vision techniques can be very useful.

Tracking the motion of a rigid object, such as a ball, is a problem which has

been studied since the 1980s. Early works were based on calculating optical flow2),

while recent approaches seem to favor the use of local features1). However, the

small size of a table tennis ball, and motion blur (see Fig. 1), make it difficult to
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Fig. 1 An image of a table tennis player and a ball (with enlarged image).

compute optical flow, or to detect reliably features in the ball region. An image

registration-based method for spin measurement of a table tennis ball5),6) has

been proposed to overcome this problem, however, it is not very efficient, so that

computing time can take up to several minutes for each frame.

Here we propose a novel image registration-based method for measuring the

spin of a ball. The main contribution of this report lies in developing a spin

measurement method based on Inverse Composite Alignment (ICA)7),8) that ac-

celerates computation by precomputing the Hessian matrix. Moreover, we employ

several assumptions to simplify the problem formulation: the camera is ortho-

graphic and ball’s radius and location at each frame are given. Also, the 3D

shape of the ball is used to obtain depth information. This is similar to 2.5D

ICA9), but specialized to a sphere.

The organization of the report is as follows. In section 2, we briefly review

ICA. Then, we introduce several assumptions necessary to simplify the problem

formulation, define the motion parameters, and derive an update rule for their

estimation. In section 4, we show some experimental results obtained by our

prototype system for measuring spins in real image sequences of table tennis

rallies.

2. Inverse Composite Alignment

In this section, we describe ICA in brief. We have two successive images I1
and I2, and let I1(x) be the intensity value at location x = (x, y)T in image I1.

A registration minimizes the sum of squared difference between corresponding

intensities in I1 and I2.
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Fig. 2 Two frames relation.

In ICA, the objective function f to be minimized is given in the following form:

f =
∑
x

|I1(w(x; ∆p))− I2(w(x;p))|2 , (1)

where w(x;p) is a warping function that gives the location where a point x is

moved by a motion parameter p. Note that w should be an identity mapping

when the parameter is zero: w(x;0) = x. ∆p is obtained at each iteration step,

then an update rule for ICA w(x;p) ◦ w(x; ∆p)−1 → w(x;p) is used. Here ◦
denotes a composition of two warps that means that the warping functions should

form a group: if w1 and w2 are valid warp functions, so is w1 ◦w2.

∆p is calculated at each step of iterations. By using the first order Taylor

expansion of the term I1, f can be approximated as follows:

f =
∑
x

∣∣∣∣I1(x) +∇I1(x)∂w(x;0)

∂p
∆p− I2(w(x;p))

∣∣∣∣2 . (2)

To obtain the best update ∆p of the parameter that gives the minimum of the

function, we solve ∂f
∂∆p = 0. Then, we have

∆p = H−1
∑
x

[
∇I1(x)

∂w(x;0)

∂p

]T
[I2(w(x;p))− I1(x)] , (3)

where the Hessian H is given by

H =
∑
x

[
∇I1(x)

∂w(x;0)

∂p

]T [
∇I1(x)

∂w(x;0)

∂p

]
. (4)

The advantage of ICA is to avoid the computation of H in each iteration step.

Because computing H is very time consuming, precomputation and reuse of H

make the algorithm very fast.

3. Design of the System

In this section, we describe the assumptions, motion parameters, and the warp-

ing function used in our system for measuring the table tennis ball’s spin.

3.1 Assumptions

We assume that the camera is orthographic. This is a reasonable assumption

because the ball is much smaller (40 mm in diameter) than the distance to the

camera. In the experiments, the images are taken at a distance of 3 to 5 meters

from a player. Therefore, the depth of the ball can be ignored.

The radius r of the ball is assumed to be given. In the experimental setup, the

direction of the motion of the ball between the players is usually perpendicular

to the optical axis of the camera. Hence, the change of appearance of the ball

is negligible, and it is reasonable to assume that r is constant for all frames and

given in advance.

Also we assume that the center location c = (cx, cy)
T of the ball in every frame

is given by some other source: e.g. by using circle detection with the Hough

transform, or simply by user interaction.

3.2 Motion parameters

We choose the angular velocities about three axes to parameterize the spin of

the ball. Angular velocities are represented by the Euler angles α, β, γ between

successive frames. Then, a rotation matrix R is constructed by the angles: R =

RαRβRγ . However, note that the angles are not accumulated over frames, but

reset every frame to represent angular velocities (not angles) in order to avoid

error accumulation.

As we consider the translation of the ball only in the image plane, translation is

represented by a vector t = (tx, ty)
T . Because the direction of the ball’s motion

is approximately perpendicular to the optical axis and the depth of the ball is

relatively small as mentioned above, we can ignore the translation along the

depth direction.

Therefore, the motion parameter vector p we use includes the following five

parameters: p = (α, β, γ, tx, ty)
T .

3.3 Ball shape and depth

Since the motion parameters represent three-dimensional rigid motion, we also

use the depth of the ball to register the images. The depth is obtained as follows.

We assume that the target is a sphere with radius r: x2+y2+z2 = r2. Rewriting
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this equation, we obtain an equation for the depth at location x on the ball:

z(x) = ±
√
r2 − (x2 + y2). (5)

We simply use the positive values of the above equation. This enables a visibility

test easy because if the depth of a transformed point becomes negative, it is not

visible to the camera.

3.4 The warping function

We define the warping function as follows:

w(x;p) = Po

[
R

(
x− c

z(x− c)

)
+

(
t

0

)]
+ c, (6)

where z is obtained from Eq. (5), and Po is an orthographic projection matrix:

Po =

(
1 0 0

0 1 0

)
. (7)

The warp includes a 3D rigid transformation (rotation and translation) of a 2D

point x. First, x is centered at c (i.e., x− c), and the z component is added to

make a 3D vector. Next, it is rotated by R and translated by t. Then, the 3D

vector is projected to 2D by Po. Finally, c is added to move it back.

The components of the Jacobian ∂w(x;p)
∂p are as follows:

w(x;p)

∂α
= Po

[
∂Rα

∂α
RβRγ

(
x− c

z(x− c)

)]
, (8)

w(x;p)

∂β
= Po

[
Rα

∂Rβ

∂β
Rγ

(
x− c

z(x− c)

)]
, (9)

w(x;p)

∂γ
= Po

[
RαRβ

∂Rγ

∂γ

(
x− c

z(x− c)

)]
, (10)

w(x;p)

∂tx
= (1, 0)T , (11)

w(x;p)

∂ty
= (0, 1)T . (12)

3.5 Update rule for the motion parameters

An update rule in the form w(x;p) ◦ w(x;∆p)−1 → w(x;p) is derived as

follows.

Let two 2D points and their corresponding 3D points be:

x1 = w(x;∆p) = PoX1, (13)

x2 = w(x;p) = PoX2. (14)

Now the composition of two warps is obtained by writing x2 in terms of x1 by

traversing x1, x, and then x2.

Here X1 and X2 are as follows:

X1 = ∆R(X −C) + ∆T +C, (15)

X2 = R(X −C) + T +C, (16)

where

X =

(
x

z(x− c)

)
, C =

(c
0

)
, T =

(
t

0

)
. (17)

∆R and ∆T are parameters corresponding to ∆p.

First, we have

X = ∆R−1(X1 −C −∆T ) +C, (18)

then after substituting X in X2:

X2 = R((∆R−1(X1 −C −∆T ) +C)−C) + T +C, (19)

= (R∆R−1)(X1 −C) + (T −R∆R−1∆T ) +C. (20)

Thus, we obtain the updated motion parameters:

R← R∆R−1 (21)

t← Po(T −R∆R−1∆T ). (22)

4. Experimental Results

Here we describe experimental results of spin estimation for real image se-

quences of table tennis rallies.

Fig. 3 shows two image sequences of different players. Images were taken at

600 fps by a fixed high-speed camera with halogen lamps mounted from the side

of the player. An official 40 mm table tennis ball was randomly textured by

marker pens. The angle parameters α, β, and γ were measured in radian per

1/600 second because they were estimated by using two successive frames. Then

the angles were converted to rotation-per-minute (rpm). The radius and center

locations were obtained by manually in these experiments.

Fig. 4(a) shows the estimated spins in rpm. The spins α, β, and γ of are shown

separately, while the total spin,
√

α2 + β2 + γ2, is also shown. Both sequences
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(a)

(b)

Fig. 3 Sequences used in the experiments. (a) and (b) show two sequences for different
players.

start one or two frames before the racket hits the ball. As can be seen, the spins

are small in the first two frames, then increase rapidly at the third frame.

2D translations are shown in Fig. 4(b). The vertical axis represents translations

at each frame; e.g., velocities of the ball. At the beginning of the sequences, the

balls are falling vertically, then hit by the racket. Therefore, ty is large at first

(because y axis is downward), then tx increases (x axis is rightward) at the third

frame.

The accuracy of the estimates has not been evaluated yet, however, the results

are very useful for players and coaches who use the system for their training

because they can see the ball spins of the players quantitatively instead of impact

feelings or just watching the sequences.

5. Conclusions

We have proposed a method for measuring the spin of a table tennis ball with

Inverse Composite Alignment under some assumptions that are practical for this

application. The prototype system of the proposed method is useful and currently

used for training of players. Although in this report we have focused specifically

on table tennis, the proposed method has a large variety of potential applications
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Fig. 4 Estimated RPM and translations. (a) Spins in rpm. (b) 2D translations in pixels at
each frame.

in other sports too: football, baseball, golf, volleyball, and so on. Directions of

future work to make the system more practical include automatic detection of

the center and radius of the ball, use of information over three or more frames,

and evaluation of the accuracy of the estimated spins.

References

1) V. Lepetit and P. Fua, “Monocular Model-Based 3D Tracking of Rigid Objects:
A Survey”, Foundations and Trends in Computer Graphics and Vision, Now Pub-
lishers, Vol. 1, No. 1, pp. 1–89, 2005.

2) Johan Philip, “Estimation Three-Dimensional Motion of Rigid Objects from Noisy
Observations,” PAMI, Vol. 13, No. 1, pp. 61–66, 1991.

3) Wu Huan Qun, Qin Zhifeng, Xu Shaofa, Xu Enting, “Experimental Research in
Table Tennis Spin,” International Journal of Table Tennis Sciences, The ITTF,
Vol. 1, pp. 73–78, 1992.

4) Z. Xiaopeng, “An experimental investigation into the influence of the speed and
spin by balls of different diameters and weights”, Science and Racket Sports II, E
& FN Spon, pp. 206–210, 1998.

5) Yukihiko Ushiyama, Toru Tamaki, Osamu Hashimoto, Hisato Igarashi, “Measur-

4 c⃝ 2011 Information Processing Society of Japan

Vol.2011-CVIM-178 No.14
2011/9/5



IPSJ SIG Technical Report

ing the spin of a ball by digital image analysis,” Science and Racket Sports III,
Routledge, pp. 129–133, 2004.

6) Toru Tamaki, Takahiko Sugino, Masanobu Yamamoto, “Measuring Ball Spin by
Image Registration,” in Proc. of the 10th Korea-Japan Joint Workshop on Frontiers
of Computer Vision (FCV2004), pp. 269–274, 2004.

7) Bruce D. Lucas, Takeo Kanade, “An Iterative Image Registration Technique with
an Application to Stereo Vision,” in Proc. of IJCAI81, pp. 674–679, 1981.

8) Simon Baker, Raju Patil, Kong Man Cheung, Iain Matthews, “Lucas-Kanade
20 Years On: A Unifying Framework: Part 1,” Tech. Report CMU-RI-TR-02-16,
Robotics Institute, Carnegie Mellon University, 2002.

9) Simon Baker, Raju Patil, Kong Man Cheung, Iain Matthews, “Lucas-Kanade 20
Years On: Part 5,” Tech. Report CMU-RI-TR-04-64, Robotics Institute, Carnegie
Mellon University, 2004.

5 c⃝ 2011 Information Processing Society of Japan

Vol.2011-CVIM-178 No.14
2011/9/5


