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Distance-based Graph Linearization and
Sampled Max-sum Algorithm for
Efficient 3D Potential Decoding of Macromolecules
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Masakazu Sekijima †2 and Sadaoki Furui †2

Three-dimensional structure prediction of a molecule can be modeled as a minimum
energy search problem in a potential landscape. Popular ab initio structure prediction
approaches based on this formalization are the Monte Carlo methods represented by the
Metropolis method. However, their prediction performance degrades for larger molecules
such as proteins since the search space is exponential to the number of atoms. In order
to search the exponential space more efficiently, we propose a new method modeling the
potential landscape as a factor graph. The key ideas are slicing the factor graph based on
the maximum distance of bonded atoms to convert it to a linear structured graph, and the
utilization of the max-sum search algorithm combined with samplings. It is referred to
as Slice Chain Max-Sum and it has an advantage that the search is efficient because the
graph is linear. Experiments are performed using polypeptides having 50 to 300 amino acid
residues. It has been shown that the proposed method is computationally more efficient than
the Metropolis method for large molecules.

1. Introduction

Molecular structure prediction has been a popular topic of research among biologists,
physicists, chemists, computer scientists, and researchers from many other fields. Know-
ing the tertiary structure of macromolecules such as protein is a key in understanding the
function of them. There have been many approaches for structure prediction of macro-
molecules. Among them, molecular dynamics (MD)1) and Monte Carlo methods2) are
two main approaches for ab initio tertiary structure prediction that does not require pre-
viously solved structures of similar molecules.

MD is a method of predicting motions of molecules by using Newtonian physics. It
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tracks down atom movements by calculating the numerical integrations over short time-
steps, usually in the order of femtoseconds (1 fs = 10−15 s). A disadvantage of MD
is that the amount of calculation is too large for macromolecules that take more than
milliseconds to reach its thermodynamic equilibrium.

On the other hand, the Monte Carlo-based methods are based on statistical and thermal
physics. In the canonical ensemble condition3), where the number of atoms in a system,
N, the volume, and the temperature, T , are constant, the probability distribution of the
system state given by 3N-dimensional momenta vector p and 3N-dimensional position
vector r can be written as:

P(p, r) =
1
Z

exp
(
−H (p, r)

kBT

)
, (1)

H (p, r) =
M∑

i=1

∣∣∣ p2
i

∣∣∣
2m
+ V(r), (2)

where kB is the Boltzmann constant, m is the mass of an atom, V(r) is the potential
function, H (p, r) is the Hamiltonian that corresponds to the total energy of the system,
and Z is a normalization constant. By substituting Equation (2) into Equation (1), we
achieve:

P(p, r) =
1
Z

exp
⎡⎢⎢⎢⎢⎢⎣−

∣∣∣ p2
∣∣∣

2mkBT

⎤⎥⎥⎥⎥⎥⎦ exp
[
−V(r)

kBT

]
. (3)

In Equation (3), the exponential term is separated into a product of two exponential terms
of momenta and positions. Thus, the probability P (r) that a molecule takes a structure
r is expressed as shown in Equation 4.

P (r) =
1
Zr

exp
[
−V(r)

kBT

]
, (4)

where Zr is a normalization constant. That is, the probability that a molecule takes
a particular structure is expressed by its potential energy. The structure that has the
highest probability is the one with the lowest potential energy. Therefore, the structure
prediction problem is reduced to a search problem of minimum potential energy.

Given the information about bonds and necessary coefficients, as well as coordinates
of each atom, potential energy V(r) of a molecule can be calculated using the following
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where B,A,D, and F are sets of bonds, bond angles, dihedral angles, and non-bonded
atom pairs. The terms regarding B, A, and D are functions of bond length d b, bound
angle θa, and dihedral angle φd, respectively. The constants kb, deq

b , ka, θeq
a , kd, δd are

their parameters. For the non-bonded terms, r i, j is a distance between an atom pair, qi

is a constant that depends on an atom, and Ai, j and Bi, j are constants that depend on an
atom pair, and ε is a dielectric constant.

The challenge of the search is to find a global minimum in the potential landscape that
has many local optima. The Monte Carlo approach searches the minimum by randomly
generating candidate structures or samples rt and evaluating their energy V(rt). If a uni-
form distribution is used to generate the samples, then the number of samples required
to find a good solution increases quickly for the molecular sizes since the search space
is exponential to the number of atoms, and the search will fail even for a moderate-size
molecule.

The Metropolis method5) generates a sequence of samples according to the probability
distribution that is tied to the potential energy by Equation (4). In the method, a candi-
date sample is generated based on a current state. The candidate is always accepted as
the next state if it decreases the energy. In addition, it is accepted with a certain chance
even if it increases the energy. With this procedure, the search is efficient since it puts
priority on low energy regions while maintaining the ability to escape from local min-
ima. However, it still suffers from the exponential increase of the search space and does
not work well for macromolecules consisting of thousands of atoms 6).

In this paper, we propose a new method named Slice Chain Max-Sum (SCMS) that
is based on modeling the potential landscape by a factor graph. A factor graph that
represents a potential of a molecule has many cycles. With the cycles, there is no ef-
ficient search algorithm that is guaranteed to converge. Therefore, we convert it to a
linear structured graph by aggregating the factors. In general, such conversion is com-
putationally not tractable for a large graph7). For this problem, we propose an efficient
conversion algorithm that is based on the maximum distance between bonded atoms of

the underlying molecule. Given the linear structured graph, a dynamic programming
based efficient max-sum search algorithm8) is applied in combination with samplings of
candidate atom positions at each node.

The organization of this paper is as follows. In Section 2, some basics of factor graphs
are reviewed. In Section 3, the proposed method is described. Experimental conditions
are described in Section 4 and the results are shown in Section 5. Finally, conclusions
and future works are given in Section 6.

2. Factor Graph and Related Algorithms

2.1 Factor Graph
A factor graph9) G is a bipartite graph to represent a decomposed structure of a func-

tion that can be expressed by a product of component functions or factors as shown in
Equation 6.

g (X1, X2, · · · , XN) =
M∏

i=1
fi (Ci) , (6)

where Xn is a variable and Ci ∈ {X1, X2, · · · , XN} is a set of the variables. The factor
graph corresponding to Equation 6 consists of variable nodes X = {X 1, X2, · · · , XN },
factor nodes F = { f1, f2, · · · , fM}, and arcs E. A value of a factor node f i is determined
by the nodes that correspond to the elements of C i. To represent this relationship, a
factor node fi and a variable node Xn are connected by an undirected arc if Xn ∈ Ci. The
value of a factor graph is the product of the values of all factors. For example, a function
shown in Equation (7) can be represented by a factor graph shown in Figure 1.

g (X1, X2, X3, X4, X5) = f1 (X1, X2) + f2 (X2, X3, X5) + f3 (X2, X3) + f4 (X3, X4) (7)
By taking a logarithm, Equation (6) has a form shown in Equation (8).

g′ (X1, X2, · · · , XN) =
M∑

i=1
f ′i (Ci) . (8)

A factor graph can also be used to represent this summation based decomposed structure.
The logarithmic operation does not affect the structure of the factor graph.

2.2 Factor Graph Representation of a Molecular Structure
The potential V(r) of a molecule expressed by Equation (5) can be represented by

a factor graph since it has the decomposed form. The factor graph abstracts the de-
pendency structure between the atom positions and the potentials omitting the detailed
functional forms.
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Fig. 1 An example of a factor graph.
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Fig. 2 A molecule consisting of five atoms.
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Fig. 3 A factor graph that represent the potential energy of the molecule in Figure 2. The variable ai
denotes 3-dimensional Cartesian coordinate of an atom.

For example, if a potential of a molecule shown in Figure 2 consisting of five atoms
a1 to a5 is modeled by a set of bond length potentials d1 (a1, a2), d2 (a2, a3), d3 (a2, a3),
d4 (a2, a3), bond angle potentials c1 (a1, a2, a3), c2 (a2, a3, a4), c3 (a4, a4, a5), and dihe-
dral potentials d1 (a1, a2, a3, a4), d2 (a2, a3, a4, a5), then its factor graph is represented as
shown in Figure 3.

2.3 Max-sum algorithm
When the variables X j of a factor graph G are all discrete, a configuration of the

variables that gives the global maximum (or minimum) of the factor graph is found by

f1

X2

fN-1f2

XNX3X1

Fig. 4 A factor graph that has a linear structure.

enumerating and evaluating all the combinations of their values. However, the num-
ber of combinations of the values are exponential to the number of variables, and this
straightforward approach does not work for a large graph.

Fortunately, there exist efficient algorithms to find the global maximum when the fac-
tor graph does not have cycles. Max-product and max-sum are such algorithms. The
max-product is used for the product decomposition as in Equation 6, and the max-sum
is used for the summation decomposition as in Equation 8. Their procedures are ba-
sically the same and only the difference is that product operations in max-product are
replaced with summations in max-sum. A special case of a factor graph that does not
have cycles is a linear structured graph as shown in Figure 4. Here, as the simplest case,
the max-sum algorithm is explained when the graph is linear.

The principle of the max-sum algorithm is to utilize the independence structure of a
graph. When the graph is linear, this is simply done by pushing the max operation to the
right in the corresponding equation as shown in Equation (9).

max
XN ,XN−1 ··· ,X2,X1

g (X1, X2, · · · , XN−1, XN)

= max
XN ,XN−1 ··· ,X2,X1

{ fN−1 (XN , XN−1) + · · · + f2 (X3, X2) + f1 (X2, X1)}

= max
XN ,XN−1

{
fN−1 (XN , XN−1) + · · · +max

X2

{
f2 (X2, X3) +max

X1
{ f1 (X1, X2)}

}}
. (9)

To visualize the search process, a graph called lattice shown in Figure 5 is used. The
horizontal axis of the graph is the variables and the vertical axis is their values. In
the figure, all the variables are assumed to have K values for simplicity. Let L n,k be a
lattice node corresponding to k-th value of Xn, and let xn,k be its value. First, for each
lattice node L2,k corresponding to X2, max j

{
f1

(
x1, j, x2,k

)}
is calculated. Let acc2,k be the

maximum score and let marc2,k be the arc that corresponds to it. They are recorded at
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Fig. 5 Lattice is used to find the maximum path in a linear structured graph.

the lattice node L2,k. Next, after accn,k and marcn,k are calculated for all k ∈ {1, 2, · · · ,K}
at (n − 1)-th step where n = 2, 3, · · · ,N − 1, max j

{
accn, j + fn

(
xn, j, xn+1,k

)}
is calculated

for each k, and the maximum score and the corresponding arc are recorded at L n+1,k. The
search proceeds from the left hand side to the right of the lattice.

After all the lattice nodes Ln,k are evaluated, the maximum score of the factor graph
is obtained by maxk

(
accN,k

)
. The variable configuration that gives the maximum is

obtained by backtracking the lattice nodes from the maximum node at the right hand
side to the left following the arcs stored at each lattice node. The computational cost of
the former left-to-right procedure is O

(
K2N

)
and the cost for the backtracking is O (N).

Therefore, the cost of max-sum is linear to N, which is much lower than the exponential
cost O

(
KN

)
when all the combinations of the values are enumerated without using the

graph structure. The minimum of the graph can be obtained by simply negating all the
factors and applying the max-sum algorithm.

2.4 Metropolis sampling
The Metropolis sampling is one of the representatives of the Markov Chain Monte

Carlo (MCMC) method that can generate samples following an arbitrary probabil-
ity distribution G (X)5). In the algorithm, first a candidate of a sample X ∗ is gen-
erated from a proposal distribution q (X|X 〈t − 1〉) given an initial state X 〈t − 1〉 =
{X1 〈t − 1〉 , X2 〈t − 1〉 , · · · , XN 〈t − 1〉}. At the very beginning, arbitrary chosen seed

value X 〈0〉 is used as the initial state. Any distribution that satisfies the symmetric
constraint q (Y |X) = q (X|Y) can be used as the proposal distribution, as far as deriving
samples from the distribution is easy. Then an acceptance ratio shown in Equation (10)
is calculated at each step t ∈ {1, 2, · · · }, and the candidate is accepted with that ratio.

Arate = min
{
1,

G (X∗)
G (X 〈t〉)

}
. (10)

This is done by getting a value rnd from a uniform distribution ranging from 0.0 to
1.0, and accepting the candidate if rnd ≤ Arate. When the candidate is accepted as
the t-th sample X 〈t〉 = X∗, it is used as an initial state of the next step. When it is
rejected, the value of the previous sample is copied X 〈t〉 = X 〈t − 1〉. When the sequence
X 〈0〉 , X 〈1〉 , · · ·X 〈T 〉 is long enough, the distribution of X 〈t〉 approaches G (X). Since
the correlations between adjacent samples are high, only every I-th sample is retained
when independent samples are required, where I is a sufficiently large number.

By introducing a normalization term, the function g shown in Equation (6) can be
regarded as a joint probability distribution G (X1, X2, · · · , XN−1, XN) as shown in Equa-
tion 11. Therefore, the Metropolis sampling can be applied to derive samples from the
factor graph. Although, the Metropolis sampling does not utilize the decomposed struc-
ture of the factor graph.

G (X1, X2, · · · , Xn) =
1
Z

m∏
i=1

fi
(
C j

)
. (11)

In the sampling process, the normalization term does not affect the result and can be
omitted since it is a constant. In the following of this paper, the Metropolis method is
simply referred to as MCMC.

3. Proposed Method

3.1 Basic ideas and assumptions
The basic idea of the proposed slice chain max-sum (SCMS) method is to apply the

max-sum algorithm to find the minimum potential energy structure of a molecule mod-
eled as a factor graph. However, the inconvenient characteristics about molecular struc-
ture prediction are that the factor graph contains cycles and the positions of atoms are
continuous values. In order to deal with these problems, SCMS first convert the factor
graph to a linear graph and utilize sampling to discretize the positions. For the simplic-
ity of our experiments, it is assumed that the potential energy V of a molecule is based
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Step 1: Represent potential of a molecule as a factor graph having cycles. Initialize
atom coordinates.
Step 2: Slice the molecule in 3D space by parallel planes with an interval equal to three

times of maximum bond length.
Step 3: For each slice, aggregate variable nodes of the factor graph that correspond to

the atoms in the slice into a single composite node Sm.
Step 4: Aggregate factor nodes that only depend on Sm and S m+1 into a single composite

factor node Fm . If an original factor only depends on Sm, it is merged to either Fm−1 or
Fm. This makes a linear structured factor graph.
Step 5: In each composite node S m, sample candidate positions of atoms according to

the potential fixing positions of atoms in other slices. The samples are regarded as possible
values of the composite node.
Step 6: Apply max-sum on the linear factor graph to find a minimum energy atom con-

figuration.
Step 7: Output the configuration after enough iterations or go to step 2.

Fig. 6 Procedure of proposed SCMS.

solely on factors representing bond length, bond angle, and dihedral angle potentials as
follows.

V(r) =
∑
b∈B

kb
(
deq

b − db
)2
+

∑
a∈A

ka
(
θ

eq
a − θa

)2
+

∑
d∈D

kd (1 + cos[nφd − δd]). (12)

3.2 Procedure of SCMS
Figure 6 describes the procedure of the proposed SCMS. First, a factor graph that

represent a molecule is constructed based on a topology of the molecule, and a config-
uration of all atom’s coordinates are initialized. The factor graph consists of variable
nodes that represent atom positions and factor nodes regarding bond lengths, bond an-
gles, and dihedrals, and it contains many cycles. In the factor graph, factors regarding a
bond length span two atoms. Similarly, factors regarding a bond angle span three atoms,
and factors regarding dihedral span four atoms. Therefor, factors of the graph span at
most four atoms.

Then, in step 2, the molecule in 3D Cartesian space is sliced by parallel planes with an
interval w as shown in Figure 7. The interval is chosen to three times of the maximum
bond length dmax of the molecule as shown in Equation 13.

w = 3dmax + ε, (13)
where ε is a small positive value. Ideally, the direction of the slicing is chosen so as

S1 S2 S3

w w w

Fig. 7 Slicing a molecule by parallel planes with an interval w.

to maximizes the number of sliced segments. This is done by finding the longest axis
of the molecule and arranging the planes to form a right angle to it. In our experiment,
however, we simply slice the molecule with respect to the x, y, or z-axis, depending on
which direction the molecule is the longest.

The slicing divides the molecule into multiple segments and the variable nodes of the
factor graph are grouped according to the segments. In step 3, the nodes in the same
group are aggregated to form a single composite variable node S m for m = 1, 2, · · · ,M,
where M is the number of the sliced segments.

In step 4, the factor nodes that only depend on S m and S m+1 are aggregated into a
single composite factor node Fm. If a factor only depends on S m, it is merged to either
Fm−1 or Fm. The choice between Fm−1 and Fm is arbitrary. With the slicing, it is guar-
anteed that all the original factors span at most two adjacent slices. This is because the
original factors span at most 3dmax length in the Cartesian space since they span at most
four atoms. Therefore, this process makes a linear structured factor graph as shown in
Figure 8. In other words, the factor graph having cycles is efficiently converted to a
linear graph using the information of atom distances of the underlining molecule in 3D
space.

In step 5, sampling is applied at each composite variable node S m according to po-
tentials represented by the composite factors Fm−1 and Fm fixing positions of atoms in
other slices. With the sampling, a finite set of positions of atoms are generated and they
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S1 S2 S3 SM

fM-1f3f2f1

Fig. 8 A linear structured factor graph having composite variable and factor nodes representing a potential
of a molecule.

are regarded as possible values of the composite node. Therefore, the factor graph with
continuous variables is approximated by the one with discrete variables. In this study,
MCMC is used for the sampling. Given the discrete factor graph, max-sum is applied
in step 6 to find a global minimum among all the combinations of the samples over the
slices, where the number of combinations is exponential to M. During the max-sum pro-
cess, potential energies are re-calculated and the energies estimated during the MCMC
sampling are not used.

After the max-sum procedure, a new atom position configuration is obtained. In step 7,
if the drop of the energy from the previous configuration is small and the process is
converged, the configuration is output and the process is terminated. Otherwise, the
process is repeated from step 2 using the new configuration as an initial value. The steps
from 2 to 7 is referred to as an epoch.

3.3 Properties of SCMS
In the max-sum step of SCMS, it finds the global minimum among K M combinations

of candidate positions of the atoms when K samples are used at each composite node.
The computational cost to explore the exponential space is only O

(
K2M

)
. Therefore, it

is desirable to choose M as large as possible so that larger possibilities are investigated.
This is why the slicing is performed along the longest axis in SCMS. As a special case,
if there is only a single slice and only a single epoch is applied, SCMS reduces to the
MCMC method. Since larger molecules have larger M for a given slice interval, it is
expected that SCMS is more advantageous than MCMC when it is applied to larger
molecules.

When MCMC is used for the sampling at each composite node, adjacent samples in

the generated sequence have strong correlation as it has been explained in Section 2.4.
Therefore, K consecutive samples will cover only a small region unless K is large
enough. On the other hand, K affects the computational cost with the squared order
K2. In this study, to cover wider region while limiting the number of samples used at
each composite node, every I-th sample in a KI-length sequence is used.

4. Experimental Conditions

4.1 Data Preparation
We prepared four different length poly-peptides for testing the proposed method. They

are 50-mer, 100-mer, 200-mer and 300-mer poly-alanaines. The structures of them were
built with LEap program included in the AMBER 11 package 10). The parameters re-
quired for calculating potential energies such as bond stretching constants and equilib-
rium bond lengths, were taken from the amber99 force field.

4.2 Comparison Method
Our primal aim is to compare conventional MCMC and the proposed SCMS in terms

of computational cost required to find a lower energy structure. We measured their per-
formance by looking at how potential energy decreases as the increase of the number of
calls of a potential energy function. For the MCMC method, a call of an energy func-
tion corresponds to an evaluation of potential energy of a candidate molecular structure.
However, a molecule is sliced in SCMS and potential energies are evaluated for the
slices both for the sampling and for the max-sum processes. In order to make a direct
comparison possible between SCMS and MCMC results, a normalized number of en-
ergy function call is defined as a total number of evaluations of bond, angle, and dihedral
energies divided by the total number of bonds, angles, and dihedrals in a molecule. For
the MCMC method, the normalized number of the energy function calls is equivalent to
the number of the evaluation of a candidate molecular structure.

As for the proposal distribution for the MCMC sampling used in the MCMC and
SCMS-based methods, a Gaussian distribution was used. The standard deviation of the
Gaussian distribution was set to 0.0001Å based on a preliminary experiment so that the
performance of the baseline MCMC method is maximized. For the SCMS method, the
number of samples K and the interval I were set to 50 and 400, respectively. The same
random seed was used for both MCMC and SCMS.
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(a) 50-mer poly-alanine. Actual CPU time at 2 million calls
was 56 minutes for MCMC and 57 minutes for SCMS.

0 0.5 1 1.5 2
x 106

600

650

700

750

800

Number of energy function calls

P
ot

en
tia

l E
ne

rg
y 

[k
ca

l/m
ol

] MCMC
SCMS

(b) 100-mer poly-alanine. Actual CPU time at 2 million calls
was 113 minutes for MCMC and 115 minutes for SCMS.
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(c) 200-mer poly-alanine. Actual CPU time at 2 million calls
was 233 minutes for MCMC and 239 minutes for SCMS.
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(d) 300-mer poly-alanine. Actual CPU time at 2 million calls
was 345 minutes for MCMC and 364 minutes for SCMS.

Fig. 9 Normalized number of energy function calls and potential energy for poly-alanines with varied lengths. The proposed SCMS method finds the
lower energy structure faster than MCMC for larger molecules.

5. Experimental Results

We performed our experiments as described above on TSUBAME 2.0 11). Figure 9
shows the result for every four poly-alanine, (a) 50-mer, (b) 100-mer, (c) 200-mer and
(d) 300-mer, respectively. In the case of (a) 50-mer, the performance of conventional

MCMC and the proposed SCMS are almost the same. However as the poly-peptides
grow longer, SCMS becomes much more efficient than MCMC. This is because SCMS is
more advantageous than MCMC for larger molecules as explained in Section 3.3. Since
the computational cost of the MCMC and SCMS methods are dominated by the evalua-
tion of the energy functions, their CPU time is mostly linear to the number of the normal-
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ized energy function calls. For (d) 300-mer, the actual CPU time required for MCMC
and SCMS were respectively 346 and 364 minutes for 2 millions of the normalized num-
ber of energy function calls. The minimum energy found by MCMC after 2 millions of
the energy function calls was 1938.8 (kcal/mol). By using SCMS, lower value than that
was achieved with only 0.10 million calls or 19 minutes, which was 1930.8 (kcal/mol).
The minimum energy found by SCMS after 2 million calls was 1900.4 (kcal/mol), which
was significantly lower than the energy value 1938.8 (kcal/mol) obtained by the MCMC
method.

6. Conclusion

In this paper we proposed SCMS method for predicting the structure of macro-
molecules based on modeling the potential landscape by a factor graph. The factor
graph is converted to a linear structured graph by aggregating the factors based on a
maximum distance between bonded atoms. Then, the continuous variables of the factor
graph are approximated by a finite set of samples and the efficient max-sum search al-
gorithm is applied. This process is iterated until it converges. The experimental results
show that while SCMS gives similar performance as MCMC when it is applied to a rel-
atively small polypeptide consisting of 50 alanines, it significantly outperforms MCMC
for larger polypeptides.

There are several important improvements that need to be made in the future. Firstly,
the search cost by SCMS could be further reduced by, for example, introducing the
beam pruning in the max-sum process. Secondly, the potential function used in the
experiments is simple, and it does not take intermolecular forces into account. The in-
termolecular forces are important to predict tertiary structure and they must be incorpo-
rated. Thirdly, As we only compared SCMS with MCMC, it must be compared to other
prediction methods to further analyze the performance. While the experiments were per-
formed using a single macromolecule as an input, it is not a requirement of SCMS. As
far as a linear structured factor graph is constructed, multiple or many molecules can be
treated. Therefore, it would be also interesting to apply SCMS to quaternary structure
prediction to analyze assembly of several proteins.
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