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An Improved Clique-Based Method for Computing

Edit Distance between Rooted Unordered Trees

Tomoya Mori †1 , Takeyuki Tamura †1 ,
Daiji Fukagawa †2 , Atsuhiro Takasu †3 ,
Etsuji Tomita †4 and Tatsuya Akutsu†1

Tree structures are suitable for representing biological objects such as RNA
secondary structures so that it is important in computational biology to com-
pare tree structures. Though there are various metrics proposed for computing
similarity between tree structured data, tree edit distance is one of the most
widely used. However, it is known that the tree edit distance problem is NP-
hard for unordered trees. Fukagawa et al. have recently proposed a clique-based
method for computing the tree edit distance between unordered trees in which
each instance of the tree edit distance problem is transformed into an instance
of the maximum vertex weighted clique problem and then an existing clique al-
gorithm is applied. In this article, we propose an improved clique-based method
for computing the tree edit distance between rooted unordered trees. Differ-
ent from the previous method, we combine a dynamic programming approach
with clique-based approach. Furthermore, we introduce heuristic techniques,
which do not violate the optimality of the solution. Applied to comparison of
large glycan structures, our improved method is much faster than the previous
method in most cases of comparison of large glycan structures.

1. Introduction

There exist various kinds of tree structured biological data such as RNA sec-

ondary structures1), glycan structures2), and vascular trees3). Therefore, analysis

of tree structured data is important and various techniques have been applied to

analysis of these tree structured data.
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Though various metrics are proposed for computing similarity between trees,

tree edit distance is one of the most widely used4). In this measure, the similarity

between two trees is measured by the minimum cost sequence of edit operations

that transforms one tree into another tree where an edit operation is either a

deletion of a node, an insertion of a node, or a substitution of a label of a node.

For the tree edit distance problem for ordered trees, Tai developed an O(n6) time

algorithm5), where n is the number of nodes in a larger input tree. After several

improvements, Demaine et al. developed an O(n3) time algorithm and showed

that this bound is optimal under some computation strategy6).

Tree edit distance between ordered trees is useful if the ordering among children

has an important meanings. However, it is preferable to regard input trees as

unordered trees in some applications2),7). Unfortunately, Zhang et al. proved

that the tree edit distance problem for unordered trees is NP-hard8). In order

to cope with this hardness, Akutsu et al. developed a fixed parameter algorithm

which works in O(2.62k · poly(n)) time9), where k is the maximum allowed edit

distance. Their algorithm might be useful for comparison of very similar trees (i.e,

k is small). However, it is not useful for comparison of non-similar trees. Horesh

et al. developed an A* algorithm7). Though their algorithm works efficiently for

moderate size trees, it can only handle unit cost cases (i.e., the cost of each edit

operation is 1). Fukagawa et al. proposed a practical method for computing the

tree edit distance between unordered trees10) using algorithms for computing the

maximum clique11). In this method, the tree edit distance problem is transformed

into the maximum vertex weighted clique problem and an existing clique solver12)

is applied. The method was applied to comparison and search of similar glycan

structures and shown to be efficient for moderate size tree structures. However,

it was not fast if large glycan or tree structures are given.

In this paper, we present an improved clique-based method for computing

the tree edit distance between unordered trees. Different from the previous

method10), the improved method is basically a dynamic programming algorithm

that repeatedly solves instances of the maximum vertex weighted clique prob-

lem as sub-problems. Because of this improvement, sparser graphs are generated

and thus maximum clique instances can be solved more efficiently in many cases

though multiple instances must be solved in the improved method. Furthermore,
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Fig. 1 Example of tree edit operations and edit distance mapping for unordered trees. T2 is
obtained from T1 by deletion of node with label e, insertion of node with label k and
substitution of node with label f, where the same label can appear multiple times in
the same tree. The corresponding mapping M is shown by broken curves.

we introduce heuristic techniques which do not violate the optimality of the solu-

tion. We compare the improved method with our previous method using glycan

data obtained from the KEGG database13). The result shows that the improved

method is much faster than the previous method in most cases of comparison of

large glycan structures.

2. Tree Edit Distance

We briefly review tree edit distance and edit distance mapping for rooted, labeled

and unordered trees4),8). Let T be a rooted unordered tree, which is not given a

left-to-right order among siblings. We assume that each node v has a label l(v)

over an alphabet Σ. r(T ), V (T ) and E(T ) denote the root, the set of nodes, and

the set of edges of T , respectively. For a node v ∈ V (T ), des(v) and T (v) denote

the set of descendants of v (not including v) and the subtree induced by v and

its descendants, respectively. In the following, n denotes the number of nodes in

a larger tree (i.e. n = max{|V (T1)|, |V (T2)|}).
An edit operation on a tree T is either a deletion, an insertion, or a substitution,

each of which is defined by (see also Fig. 1 ):

Deletion: Delete a non-root node v in T with parent u, making the children of

v become children of u. The children are inserted in the place of v into the

set of the children of u.

Insertion: Inverse of delete. Insert a node v as a child of u in T , making v the

parent of some of the children of u.

Substitution: Change the label of a node v in T .

For each edit operation, the cost is defined as follows:

• γ(a, b) : cost of substituting a node with label a to label b,

• γ(a, ϵ) : cost of deleting a node labeled with a,

• γ(ϵ, a) : cost of inserting a node labeled with a.

The edit distance dist(T1, T2) between two unordered trees T1 and T2 is the

cost of the minimum cost sequence of edit operations that transforms T1 into T2,

where we adopt the following standard assumption so that dist(T1, T2) becomes

a distance metric4),8):

• γ(a, b) ≥ 0 for any (a, b) ∈ Σ′ × Σ′,

• γ(a, a) = 0 for any a ∈ Σ′,

• γ(a, b) = γ(b, a) for any (a, b) ∈ Σ′ × Σ′,

• γ(a, c) ≤ γ(a, b) + γ(b, c) for any a, b, c ∈ Σ′ × Σ′ × Σ′,

where Σ′ = Σ ∪ {ϵ}.
There exists a close relationship between the edit distance and the edit distance

mapping (or just mapping)4),8). M ⊆ V (T1) × V (T2) is called a mapping if the

following conditions are satisfied for any two pairs (u1, v1), (u2, v2) ∈ M :

(i) u1 = u2 iff v1 = v2,

(ii) u1 ∈ des(u2) iff v1 ∈ des(v2).

Let I1 and I2 be the sets of nodes in V (T1) and V (T2) not appearing in M ,

respectively. Then, the following equality holds4),8):

dist(T1, T2) = min
M

∑
u∈I1

γ(l(v), ϵ) +
∑
v∈I2

γ(ϵ, l(v)) +
∑

(u,v)∈M

γ(l(u), l(v))

 .(1)

Here we define a score function f(u, v) for (u, v) ∈ V (T1)× V (T2) defined by

f(u, v) = γ(l(u), ϵ) + γ(ϵ, l(v))− γ(l(u), l(v)). (2)

Then, we can see that f(u, v) = f(v, u) ≥ 0 holds. It should also be mentioned

that under the unit cost model (i.e., γ(a, b) = 1 for all a ̸= b), f(v, v) = 2 and

f(u, v) = 1 hold for l(u) ̸= l(v). Let score(M) be the score of a mapping M

defined by
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score(M) =
∑

(u,v)∈M

f(u, v). (3)

Let MOPT be the mapping with the maximum score. Then, it is known that the

following equality holds9):

dist(T1, T2) =
∑

u∈V (T1)

γ(l(u), ϵ) +
∑

v∈V (T2)

γ(ϵ, l(v))− score(MOPT ) (4)

assuming that the root of T1 corresponds to the root of T2 in MOPT . It is to be

noted that the first and second terms in the right hand side of the last equality

are invariant with a mapping. Therefore, this equality means that the tree edit

distance can be obtained by computing a mapping with the maximum score.

Though the edit distance problem for unordered trees is NP-hard, it can be

solved (in exponential time) using a dynamic programming algorithm4). For a

forest (i.e., a set of unordered trees) F , roots(F ) denotes a set of the roots of

trees in F . T−v, F−v, and F−T (v) denote the tree obtained by deleting v from

T , the forest obtained by deleting v, and the forest obtained by deleting T (v).

We define D(F1, F2) between two unordered forests F1 and F2 by the following

dynamic programming procedure9) ⋆1.

D(F1, ϵ) =
∑

u∈V (F1)

γ(l(u), ϵ), (5)

D(ϵ, F2) =
∑

v∈V (F2)

γ(ϵ, l(v)), (6)

D(F1, F2) = min



minu∈roots(F1) {D(F1 − u, F2) + γ(l(u), ϵ)},
minv∈roots(F2) {D(F1, F2 − v) + γ(ϵ, l(v))},
min(u,v)∈roots(F1)×roots(F2){

D(F1 − T1(u), F2 − T2(v))

+D(T1(u)− u, T2(v)− v)

+γ(l(u), l(v))}.

(7)

⋆1 The roots need not correspond to each other in this procedure. However, we can let roots
correspond to each other by setting deletion costs for the roots very large.
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Fig. 2 Example of the maximum clique and the maximum vertex weighted clique. The size of
the maximum clique of the left graph is four, while the weight of the maximum vertex
weighted clique of the right graph is three.

Then, it is seen that dist(T1, T2) = D(F1, F2) holds from Ref.4).

3. Method

3.1 Maximum Vertex Weighted Clique

Let G(V,E) be an undirected graph. A subgraph G′(V ′, E′) of G(V,E) is called

a clique if it is a complete subgraph (i.e., {{vi, vj}|vi, vj ∈ V ′, vi ̸= vj} = E′). The

maximum clique problem is to find a clique with the maximum number of vertices

in a given undirected graph G(V,E). Though the maximum clique problem is

NP-hard, several practical algorithms have been developed11). In this paper, we

use a variant of the maximum clique problem called the maximum vertex weighted

clique problem. In this variant, each vertex v has a weight w(v) and the problem

is to find a clique G′(V ′, E′) which maximizes
∑

v∈V ′ w(v) (see also Fig. 2).

Nakamura and Tomita developed an efficient algorithm called MWCQ for this

variant12). MWCQ is a depth-first search algorithm for finding the maximum

vertex weighted clique and it is based on the branch-and-bound method. We

employ MWCQ as a solver for the maximum vertex weighted clique problem.

3.2 Previous Method

Before presenting our improved clique-based method, we briefly review the

previous clique-based method10) (see also Fig. 3). In this paper, we call the

previous method CliqueEdit. CliqueEdit is based on a simple reduction from the

tree edit distance problem for unordered trees to the maximum clique problem.

Based on Eq.(4), for calculating the tree edit distance, it is enough to find a

mapping M maximizing
∑

(u,v)∈M f(u, v). In order to find such a mapping, an

undirected graph G(V,E) is constructed from two input trees T1 and T2 by
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Fig. 3 Example of reduction from the edit distance problem for unordered trees to the
maximum vertex weighted clique problem.

V = {(u, v)|u ∈ V (T1), u ̸= r(T1), v ∈ V (T2), v ̸= r(T2)}, (8)

E = {{(u1, v1), (u2, v2)}|u1 ̸= u2, v1 ̸= v2,

u1 ∈ des(u2) iff v1 ∈ des(v2),

u2 ∈ des(u1) iff v2 ∈ des(v1)}, (9)

where the first two conditions and the last two conditions in the definition of E

correspond to conditions (i) and (ii) for the edit distance mapping, respectively.

We can see that there is a one-to-one correspondence between the set of cliques

and the set of mappings (i.e., (u, v) in a clique corresponds to (u, v) in a mapping

M). By assigning a weight w(x) = f(u, v) to each vertex x = (u, v) ∈ V ,

an optimal mapping MOPT corresponds to a maximum vertex weighted clique.

Therefore, the tree edit distance problem can be solved by computing a maximum

vertex weighted clique.

3.3 Improved Method

In order to improve CliqueEdit, we combine a dynamic programming approach

employed in Ref.9) with the clique-based approach. We call the resulting method

DpCliqueEdit. Let (u, v) ∈ V (T1) × V (T2). We define W [u, v] be the score

of an optimal mapping between T1(u) and T2(v) where the root of T1(u) need

not correspond to the root of T2(v). We compute W [u, v] in a bottom up way

(i.e., from leaves to roots) using dynamic programming. Suppose that W [u′, v′]

u v

a b p q

(a,p)

(b,q)

Fig. 4 Difference between the reductions in CliqueEdit and DpCliqueEdit. In computation
of W [a, p] in DpCliqueEdit, edges corresponding to mappings among descendants of a
and q are not generated for G(a,p)(V(a,p), E(a,p)).

are already computed for all (u′, v′) ∈ des(u) × des(v). Then, we construct an

undirected vertex weighted graph G(u,v)(V(u,v), E(u,v)) by

V(u,v) = {(u1, v1)|u1 ∈ des(u), v1 ∈ des(v)}, (10)

E(u,v) = {{(u1, v1), (u2, v2)}|u1 ̸= u2, v1 ̸= v2,

u1 /∈ des(u2), u2 /∈ des(u1),

v1 /∈ des(v2), v2 /∈ des(v1)}, (11)

w((u1, v1)) = W [u1, v1]. (12)

Let Wmax be the weight of the maximum vertex weight clique for G(u, v). Then,

we calculate W [u, v] by ⋆1.

W [u, v] = max


maxv′∈des(v) W [u, v′]

maxu′∈des(u) W [u′, v]

Wmax + f(u, v)

(13)

Different from the reduction in CliqueEdit, edges are not created in DpCliqueEdit

if there is a descendant-ancestor relation between u1 and u2 (or between v1
and v2, see also Fig. 4 ). Therefore, it is expected that graphs constructed in

DpCliqueEdit are much sparser than those in CliqueEdit though DpCliqueEdit

must solve many clique instances.

3.4 Heuristics

In addition to the use of dynamic programming, we introduce some heuris-

⋆1 Slight modifications are required if u or v is a root.
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Fig. 5 (a) and (b) explain the heuristic technique (1) and (2), respectively.

tic techniques in order to reduce the computation time without violating the

optimality of the solution.

An important observation is that W [u1, v1] ≥ W [u2, v1] always holds if u2 is

a descendant of u1. Based on this observation, we introduce the following two

heuristic techniques (see also Fig. 5).

( 1 ) Each of u and v has only one child.

In this case, we need not construct G(u,v). Instead, we can compute W [u, v]

by W [u, v] = max{W [u, v1],W [u1, v],W [u1, v1]+f(u, v)}, where u1 and v1
are the children of u and v, respectively.

( 2 ) u2 ∈ des(u) (resp. v2 ∈ des(v)) does not have a sibling.

In case, we need not generate a vertex (u2, v
′) for any v′ (resp. (u′, v2) for

any u′) in the construction of G(u,v) because a mapping between T1(u2)

and T2(v) can be included in a mapping between T1(u1) and T2(v) where

u1 is the parent of u2.

4. Result

We implemented DpCliqueEdit using C language and compared DpCliqueEdit

with CliqueEdit. In both implementations, we employed MWCQ12) as a solver

for the maximum vertex weighted clique problem. We performed computational

experiments using a PC with Intel Core2 Quad 3.00GHz CPU and 7.7GB mem-

ory. As tree structures, we used glycan structures obtained from KEGG/Glycan

database13). For evaluation of the method, we used the standard weighting

scheme (i.e., f(v, v) = 2 and f(u, v) = 1 for l(u) ̸= l(v)) corresponding to the

unit cost edit distance. In the computational experiments, we randomly selected

45 pairs of glycan structures with a specified range of the total number of nodes

(i.e., the sum of the number of nodes in T1 and T2) and measured the average

CPU time per pair. Each glycan structures we used for this computational ex-

periment has from15 to 54 nodes. In this computational experiment, four pairs of

glycan were excluded because both programs could not output a solution within

two minutes. The result of this computational experiment is shown in Table 1.

From this table, it is seen that DpCliqueEdit is much faster than CliqueEdit

for non-small glycan structures. Though CliqueEdit is faster than DpCliquedit

for small glycan structures, comparison of large glycan structures is more crucial

because it takes a large amount of time.

In another computational experiment, we transformed the maximum ver-

tex weighted clique problem into the maximum clique problem, and employed

MCQ14) instead of MWCQ in order to find the maximum clique. This is be-

cause MCQ is faster than MWCQ10). When we transform the maximum vertex

weighted clique problem into the maximum clique problem, we construct an un-

weighted graph from a weighted graph. Let G(V,E) be a weighted graph such

that V = v1, ..., vn and w(vi) = wi(i = 1, 2, ..., n). From G(V,E), we construct

an unweighted graph Ĝ(V̂ , Ê) by (see also Fig. 6)

Table 1 Comparison of CliqueEdit and DpCliqueEdit. Average CPU time (sec.) per glycan
pair is shown for each case.

total number of nodes CliqueEdit DpCliqueEdit
30 ∼ 34 0.0050 0.0100
35 ∼ 39 0.0525 0.0450
40 ∼ 44 0.0280 0.0240
45 ∼ 49 0.1900 0.0643
50 ∼ 54 12.4000 1.8700
55 ∼ 59 1.6900 0.1340
60 ∼ 64 0.7300 0.2150
65 ∼ 69 28.6000 0.2580
70 ∼ 74 5.5200 0.5900
75 ∼ 79 4.2600 0.8200
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Fig. 6 Example of transformation of a vertex weighted graph into an unweighted graph.

V̂ =

n∪
i=1

V̂i (where V̂i = {uj
i |j = 1, 2, ..., wi})

Ê = {{uj
i , u

l
k} | {vi, vk} ∈ E ∨ i = k}.

Then, the weight of maximum vertex weighted clique of G(V,E) correspond to

the size of the maximum clique of Ĝ(V̂ , Ê).

However, DpCliqueEdit using MCQ was not so fast as that using MWCQ

because larger and denser graphs are constructed in reduction from the maximum

vertex weighted clique problem into the maximum clique problem.

5. Concluding Remarks

In this paper, we have presented an improved clique-based method for comput-

ing the tree edit distance between rooted unordered trees. The improved method

is much faster than the previous method in most cases of comparison of large

glycan structures. Though improved method is not faster for comparison of small

glycan structures, it is not crucial because comparison of large glycan structures

takes much longer CPU time than that of small glycan structures, and we can

run both methods in parallel (using multi-core CPUs that are very common in

recent PCs) and stop the other process if one process finishes.

Though the improved method is much faster than the previous method, there

still exist cases for which it takes long CPU time. In particular, it takes very

long CPU time if there exist many leaves. In such a case, constructed graphs

would contain many vertices and edges and thus a clique algorithm does not work

efficiently. How to cope with such difficult cases is left as future work.
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