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Preventing Denial-of-request Inference Attacks

in Location-sharing Services

Kazuhiro Minami†1

Location-sharing services, such as Google Latitute, have been popular re-
cently. However, location information is sensitive and access to it must be
controlled carefully. Although we can protect private location information with
access-control policies, a denial of request itself implies a target user’s visiting
a private place. In this paper, we formally define this new inference problem
and discuss possible solutions.

1. Introduction

Soon the vast majority of mobile devices will be equipped with some form of

localization capability; already, most smart phones include a GPS receiver. This

has led to the rise of location-based services on a number of mobile platforms,

including Symbian, iPhone, and Android. Novel applications, such as Google

Latitude4), have opened up the possibili- ties of sharing location information

with other users3),8),10). This theme has been picked up in social networks as

well; e.g., Twitter recently announced support for embedding a location in each

post14).

Location sharing raises significant privacy concerns1), since a location, such as

a bar or a hospital, can be used to infer a users personal activities. Therefore,

location- sharing services (LSSs) have introduced an access control mechanism

that allows the user to specify what location data may be shared with whom.

For example, Google Latitude allows a user to authorize others access to his or

her location; it also allows a user to enter a decoy location manually. Glympse3)

specifies a time duration during which location information is shared. These

interfaces provide coarse-grained controls. Researchers in pervasive computing
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have proposed more fine-grained access control schemes6),7),9),12),13) that make

use of context information such as loca- tion, time of day, and so on. These

rules both better represent the users actual sharing desires and at least partially

automate the decisions to provide seamless integration of location sharing into

peoples daily lives.

One additional danger of sharing location information, however, is that it can

lead to inference of previous or past locations. For example, a person traveling

along a trajectory is likely to remain along that path. Things get significantly

more complex as more background data is introduced. For example, walking

and driving paths follow a predictable pattern, following streets and sidewalks;

furthermore, each person exhibits more specific patterns in their activities. For

example, Figure 3 shows two potential walking paths leading to a hospital and a

library. Given background knowledge, it is possible to infer that a user traveling

towards the intersection (black circles) is likely to visit one of these two places.

A user who turns left at the intersection (white circles) may then be assumed

to be going to the hospital. Therefore, if the user wishes to hide visits to the

hospital, it is important to stop revealing his or her location earlier as well.

We previously propose to develop a new access-control scheme that prevents

such inference attacks11). Our basic approach is to model an adversary as a loca-

tion predictor that predicts future movements of a target user from his previous

movements with certain probabilities. Intuitively, our access control scheme dis-

closes a user’s location information only if an unauthorized user cannot predict

that the user moves to some private location with a sufficiently high probabil-

ity. Our approach is the most conservative in the sense that we assume that an

adversary knows all the previous movements of the target user.

However, our previous scheme does not consider indirect information disclosure

through the denial of a service request. That is, if a request for a target user’s

location is denied, it is possible for the requester to infer that the target user is

visiting the private location with a high probability. For example, suppose that

Alice is leaving her office and is visiting a bookstore on the Main street next and

that once Alice arrives at the bookstore, she will be very likely to next visit the

hospital, which is her private location. Since disclosing the fact that Alice is at the

bookstore allows Bob, the tracking user, to infer that Alice will visit the hospital
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Fig. 1 Example safe disclosure of location information. The solid line represents an actual

path of a user visiting a hospital. We assume that the hospital is a private place and
the library is a public place. A safe LSS would disclose location points denoted by
black nodes. We assume that the user has 50% chance of visiting of the library when
he is at the intersection in the middle.

next, our access-control scheme does not disclose Alice’s current location (i.e.,

the bookstore) to Bob. However, if Bob does not receive Alice’s current location,

he infers that Alice is getting close to her private location. If the bookstore is the

only location near Alice’s office, from where Alice visits her private location with

a high probability, Bob can conclude that Alice is indeed visiting the hospital

from the fact that he does not receive Alice’s current location.

In this paper, we, therefore, consider such denial-of-request inference attacks

on LSSs and propose a new access-control algorithm for preventing this new

class of attacks. Our algorithm ensures that whenever a LSS does not disclose

the location of a target user, there are sufficient uncertainty about the private

location the user is visiting; that is, there are always multiple candidates of the

private location the user will visit. Since the proposed algorithm possibly decides

many of the location movements not to be disclosed and thus the utility of the

system is significantly degraded, we discuss possible solutions that remedy such

undesirable situations.

The rest of the paper is organized as follows. Section 2 introduces the system

model and the location privacy metrics of LSSs in our previous research. Sec-

tion 3 describes an inference on a denial of a request quantitatively and presents

an algorithm for preventing such inferences. Section 4 possible solutions to max-

imize the amount of location information to be disclosed while preserving our

location privacy metrics. We cover related work in Section 5 and finally states

our concluding remarks and future plans in Section 6.

2. Background

In this section, we summarize our system model for LSSs and the metrics for

location privacy in our previous research11).

2.1 System model

Figure 2 shows our system model for LSSs. We assume that user pj is interested

in receiving a target user pi’s location movements. User pi carrying a GPS-

enabled mobile device periodically sends LSS a series of location-timestamp pairs

(lock, tk) for k ∈ N ; LSS receives a set of all pairs

L = {(lock, tk) | k ∈ N}.
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User pi also defines its access-control policies in LSS so that LSS can protect pi’s

location movements properly. We represent pi’s access-control policies with the

function

acl : P ×W → 2P

where P is a set of all users and W is a finite set of all locations. The function

acl takes a user identity pi and a location name lk as inputs and outputs a set

of users who are authorized to learn that “pi is at location lk.” In other words,

LSS releases pi’s location movement (lk, tk) to principal pj only if pj belongs to

set acl(pi, lk), and thus user pj receives a subset of events L′ ⊆ L

L′ = {(lock, tk) | pj ∈ acl(pi, lk)}.
Notice that we only consider the case that pi’s access-control policies depend on

pi’s location lk to simplify our discussion in this paper, but we can easily support

the general case where access-control policies also considers a timestamp tk.

We next define which locations are private to user pi formally.

Definition 1 (Private location.) We consider that a user pi’s location l is

private with respect to another user pj if:

l ∈ {l′ | pj /∈ acl(pi, l
′)}.

We consider that a LSS preserves a user pi’s privacy if pj cannot infer that pi
was at some private location l from the information pj receives from LSS. We

formalize this concept below.

Definition 2 (Preservation of location privacy.) We say that a LSS pre-

serves a user pi’s location privacy against another user pj if pj cannot infer pi’s

movement (l, t) where l is pi’s private location from a set of location-timestamp

pairs L′.

In next section, we describe how an unauthorized user pj performs inference

with a location predictor based on the Markov model.

2.2 Metrics of location privacy

We consider a Markov chain with a sequence of random variables

X1, X2, X3, . . .

where each Xi has a value drawn from the finite set of locations W. We here
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L = {(lock, tk) | k = 1, 2, . . .}

L′ = {(lock, tk) | pj ∈ acl(pi, lk)}

Ask if pj ∈ acl(pi, lk)

pi

pj

Fig. 2 System model.

assume that location lk is published periodically, and we thus omit timestamp

tk in tuple (lk, tk). We also assume that the Markov chain is time-homogeneous.

So, if we consider a Markov chain of order 1,

Pr(Xn+1 = li|Xn = lj) = Pr(Xn = li|Xn−1 = lj).

We maintain the probability of moving from location li to lj in (i, j)th element

of a state transition matrix Mi,j as follows:

Pr(Xn+1 = li|Xn = lj) = Mi,j .

for every pair of li and lj in set W. The probability of moving from location li
to lj in n time steps can be computable by multiplying the transition matrix M

n times as follows:

Pr(Xn = li|X0 = lj) = M
(n)
i,j .

Since it is likely that we can improve the accuracy of location predictions by
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considering multiple previous movements, we also consider a location predictor

based on a Markov model of a higher order. If we use a Markov model of 2 order,

a state transition matrix M must maintain the probability Pr(Xn+1 = li|Xn =

lj , Xn−1 = lk) in ((j, k), i)th element of M ; that is,

Pr(Xn+1 = li|Xn = lj , Xn−1 = lk) = M(j,k),i.

We make the most conservative assumption that an adversary can observe all

the previous movements of a target user and compute a state transition matrix

M of an arbitrary order n before predicting the target user’s next movement. We

now define the preservation of location privacy against an adversary with a state

transition matrix M of the 1-order Markov model as follows:

Definition 3 (Preservation of (M, t)-location privacy.) Suppose that a

user pi’ current location is li and that t is a probability threshold where 0 ≤ t ≤ 1.

We say that a LSS preserves a user pi’s (M,p)-location privacy against another

user pj if, for every private location lk ∈ W with respect to pj , the following

condition holds

M
(n)
i,k ≤ t for n = 1, 2, . . . .

Intuitively speaking, the above definition requires that an unauthorized user pj
cannot predict that the target user pi is at some private location lk in some future

time with probability p, which is greater than the threshold value t. Although

the above definition only covers the case with the 1-order Markov model, we can

easily generalize the definition to consider a Markov model of order n.

3. Prevention of denial-of-request inference attacks

In this section, we introduce denial-of-request inference attacks and present a

new access-control scheme for preventing this class of attacks.

3.1 Denial-of-request inference attacks

We first informally describe a denial-of-request attack. Suppose that a target

user who is currently located at li moves to location lj next, the probability of

moving from location lj to lk, Mj,k = 1.0, and that lk is a private location of the

target user. Then, our access-control scheme that preserves (M, t)-privacy where

a threshold probability t < 1.0 in Section 3 does not disclose the user’s location

at lj . However, it is possible to infer that the probability of the user’s visiting

Fig. 3 Example of a denial of request. When a user moves from location li to lj , it is certain
that the user is moving to location lk next. Therefore, the system does not desclose
the fact that the user is at location lj .

location lk is equal to the probability of moving from li to lj , Mi,j , from the fact

that the location after li is not disclosed.

We next quantify this information leakage through a denial of request. We first

introduce a few notations below.

Definition 4 (M∗
i,j) We denote by M∗ the maximum among the probability

of moving location li to lj at steps k = 1, . . . ,∞; that is,

M∗
i,j =

∞
max
k=1

(M
(k)
i,j ).

Definition 5 (Function neighbor) Given a state transition matrix M and a

location li, we denote by neighbor(li) a set of locations the user possibly moves

at a single step; that is,

neighbor(li) = {lj | Mi,j > 0}.
We define the boolean function releasable that determines whether a system

preserving (M, t)-location privacy grants a request for a given location lj .

Definition 6 (Function releasable) The function releasable that takes a lo-

cation lj as an input returns true if the following statement holds.

∀lk ∈ (L \ L′) : M∗
j,k < t.

If a system preserving (M, t)-location privacy releases the information that a

target user is location li and then does not release her next movement, the infor-

mation inferred from that denial of request is formulated as follows:
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∃lj ∈ neighbor(li), ∃lk : ¬releasable(lk).
That is, an adversary can learn the above information through a denial-of-request

inference.

3.2 Access-control condition for denial-of-request inferences

The conditional probability of moving to a private location lk given a denial of

request for location lj after receiving the fact that the target user at location li
is calculated as follows:

Pr[lk | RELEASE (li),DENY ] = (Mi,j ×M∗
j,k)/

∑
¬releasable(lm)

Mi,m.

We denote by RELEASE (li) and DENY events of the system’s releasing lo-

cation li and denying the request respectively. Therefore, a system preserving

(M, t)-location privacy must consider the following additional condition to pre-

vent denial-of-request inferences if the system release the current location li of

the target user.

∀lk ∈ L \ L′ : Pr[lk | RELEASE (li),DENY ] < t.

4. Discussion

The access-control condition in Section 3.2 implies that if a system denies a

request for a user’s current location, there must exist multiple candidate loca-

tions that are not releasable in order to have sufficient uncertainty about the

user’s visiting a private location. Therefore, if a target user only defines a small

number of private locations, there is a danger that the system ends up hiding

most of the user’s movements. To avoid such significant loss on the utility of the

service, it is necessary to add some artificial private locations in some way. We

plan to investigate such methods without distracting the utility of the service

significantly.

5. Related work

Several researchers6),7),9),12),13) propose rule-based access-control schemes for

protecting user location in pervasive environments. Hengartner6) supports access-

control policies considering the granularity of location information and time in-

tervals. Myles12) provides a XML-based authorization language for defining pri-

vacy policies that protect users location information. Users must trust a set

of validators that collect context information and make authorization decisions.

Those schemes allows a user to define fine-grained access-control policies. Apu9)

provides users with an intuitive way of defining access control policies, which rep-

resent physical boundaries surrounding the users. However, no previous scheme

considers the issue of inference based on the mobility patterns of users.

Location privacy has been studied heavily in the context of location data

anonymization2),5). The focus of research in this sequence is to ensure that no

anonymized data is associated with an individual. For example, Gruteser5) pro-

poses a scheme that changes the granularity of location information to ensure that

each location contains at least k users (i.e., k-anonymity). However, the problem

addressed in this paper is different since we consider inference on location data

associated with a known individual.

6. Summary

In this paper, we address a new inference problem concerning a denial of service

request in location-sharing services (LSSs). We precisely quantify information

leakage through a denial of request and establish an access-control condition to

prevent such inference attacks. We plan to conduct experiments involving actual

mobile users and evaluate a trade-off between the utility and security of the

system and to develop mechanisms for balancing the trade-off adequately.
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