
情報処理学会研究報告 

IPSJ SIG Technical Report 

 1 ⓒ2011 Information Processing Society of Japan 

 

要件－設計－実装間に潜在する  

要件トレーサビリティ管理方式  
 

宇田川 佳久†
 

 

情報システムは社会活動の安心と効率を実現するための基盤を成しており，情報シス
テムの信頼性への要求が高まっている．情報システムの信頼性を向上するための一手法
として，統一した開発プロセスによる開発プロセス全体に渡る成果物の管理がある． 
本文では，要件トレーサビリティの観点からウォーターフォールモデルを詳細化した

モデルを提案する．次に，要求，設計，実装工程にまたがるトレーサビリティについて，
Web アプリケーションを例にして論じる．モデリング言語としては，国際的に普及して
いる SysMLを採用する．SysML で記述された要件項目と設計項目間のトレーサビリティ
を検索するためにベクトル空間検索モデルの改良について論じる．続いて，設計とソー
スプログラム間のトレーサビリティギャップを軽減するため，SysML の記述要素をソー
スプログラムに変換するルールについて述べる．本実験結果は，これらの技法の組合せ
が，要件，設計，実装間に潜在するトレーサビリティを管理する上で有効であることを
例証している． 

 

Managing latent requirements traceability among 

requirements, design documents and source codes 

 

Yoshihisa Udagawa
†
 

 

Demands of high quality software system increase as the software system plays an important 
role in realizing safety and efficiency of various social activities. An integrated framework to 
manage artifacts thorough a software system life cycle is recognized as an effective method to 
keep the quality. 

This paper proposes a refinement of the waterfall model in terms of requirements traceability.  
Next we discuss an approach to manage traceability in requirement, design and implementation 
phases using a Web application development as an example. SysML (Systems Modeling 
Language) is used as a modeling language since it provides many useful constructs for describing 
requirements and design artifacts.  We discuss an augmented vector space model featuring a set 
of closely related terms called "family terms" to improve accuracy of information retrieval. We 
devise translation rules to reduce gaps between SysML diagrams and source code segments. The 
initial results indicate that the combination of SysML, the information retrieval and the 
translation rules leads to a promising solution. 

 

1. Introduction  

Software system development consists of different phases such as requirement definition, 

high-level design, detailed design, implementation and testing etc.[1][8], which result in 

producing several artifacts including requirements in natural languages, design model 

elements in a semi-formal/formal models and source codes in programming languages. These 

artifacts are typically described in different languages at different levels of abstractions, but 

still they are certainly related each other. 

Requirements traceability enables participants in a project to better understand the 

relationships among various artifacts and contributes to clear and consistent documentation.  

There has been a growing interest in requirements traceability in the software engineering 

research community [2][8], industry[1] and academia[17].  

In spite of many advances, requirements traceability has many research issues before apply 

it to industry fields. Main adverse factors for managing requirements traceability can be 

summarized as follows [14]: 

(1) Artifacts in system development are written in different languages (natural languages, 

graphical modeling languages, programming languages etc.);  

(2) They are described at various abstraction levels (requirements, designs, implementations 

etc.);  

(3) Large amount of traceability information and lack of adequate tool support to create, 

retrieve and maintain the traceability information. 

The aim of this paper is to discuss a model framework concerning artifacts in the 

requirement, design and implementation phases, and traceability among them. There are many 

ways to document requirements and software designs. In considering globalization of 

software industries, use of international standards is necessary to promote communication 

among several companies and even different sites across the globe. Among several global 

standards for system modeling, we have employed SysML (the System Modeling Language) 

[11] , a standard of the Object Management Group, since it is designed to provide simple but 

semi-formal graphical constructs for modeling elements in a wide range of engineering fields. 

With adequate tool support, this means that SysML has a potential for coping with (1) ~ (3) 

above. It should be noticed that SysML provides several relationships concerning 

requirements traceability, i.e. the refine relationship, the verify relationship, the generic trace 

relationship etc.[13] 

Several researchers are working on the traceability model based using SysML.  Maeder et 

                                                                 
 † 東京工芸大学工学部コンピュータ応用学科 

  Tokyo Polytechnic University, Faculty of Engineering, Department of Applied Computer Science  

Vol.2011-IS-117 No.9
2011/9/6



情報処理学会研究報告 

IPSJ SIG Technical Report 

 2 ⓒ2011 Information Processing Society of Japan 

 

al. [10] proposes traceability link model for the development processes through requirements 

and implementation, especially for the case of changing requirements.  A set of rules for the 

verification of the traceability links are developed. But the set of rules is limited to checking 

the pure existence of traceability links.  Soares and Vrancken [16] propose a model-driven 

approach to requirements engineering based on SysML. Their research covers requirements 

and use case diagrams of SysML. 

A number of research efforts have been carried out to automatically recover traceability 

among software artifacts. Huffman Hayes et al. [7] use a vector space model augmented by a 

thesaurus. They develop a prototype tool, called RETRO. The results show that the augmented 

vector space model outperforms the classical vector space model in recall while keeping 

precision at the same level. Kagdi et al. [9] propose an approach that combines information 

retrieval technique based on a vector space model for coupling programming entities such as 

comments and mining software repositories for capturing patterns of change history of the 

entities. There are many other excellent researches, however, we do not mention about them 

due to space limitations. 

Though SysML provides sufficient modeling facilities covering requirements and design 

phases in terms of the waterfall development methodology, it  fails to support facilities for 

relating design models to program codes, which is out of the scope of the SysML standard. We 

devise translation rules to map the SysML activity diagrams to comments in source programs, 

which contribute for reducing gaps between design models and implementation of the models 

[6].  

The rest of this paper is organized as follows. In Section 2, we discuss a framework for 

software engineering, which can be seen as a refined waterfall model in the "V" shape in 

terms of traceability. In Section 3, we present SysML models for a Web application to 

examine how SysML diagrams are related thorough the <<refine>> traceability relationship. 

In Section 4, we discuss an augmented vector space model to automatically recover 

traceability and some results obtained from our case study. In Section 5, we discuss the rules 

to translate a SysML activity diagram to internal source code documentations. We summarize 

our approach and future work in Section 6. 

2. A Framework for System Engineering 

Pohl [12] has defined the process of developing a requirements specification as a movement 

in the three almost orthogonal dimensional spaces, i.e. representation dimension, specification 

dimension and agreement dimension.  The process begins with different personal views, 

little system understanding and informal representations, ending up a complete and formally 

defined specification with sufficient agreements. He discusses the requirements 

pre-traceability [4] in the three-dimensional space. 

The same idea can be applied to the requirements post-traceability of software development 

processes beginning from the requirements definition down to design, implementation, testing, 

operation and maintenance [1][8]. The proposed framework is shown in Figure 1 by means of 

the classic "V" model. It is based on the waterfall development model since it is widely used 

in industry fields and it provides foundation for other development models such as the spiral 

model, incremental model etc. Our refined V model includes three kinds of traceability 

relationships, i.e. decomposition, version and composition relationships.  

The decomposition relationships associate artifacts in the left wing of the V model. Needs 

and benefits are decomposed into the requirements. The requirements are further decomposed 

into high-level design, and then detailed design. The decomposition continues until all the 

design entities are implemented into source code statements.  

 

 

 

Conceptually, the decomposition relationships, i.e. traceability between higher and lower 

abstraction levels, forms 1:N relationship, because a component in a higher abstraction level 

is decomposed into a set of components. However, things are much more complicated. 

Several requirements are usually implemented in some software modules or functions, 

yielding N:M relationships. The trick is "granularity" of related entities. There are 

controversial issues in view of data modeling [3]. However, we stop the further discussion 

Figure 1. A refined “V” model 

Vol.2011-IS-117 No.9
2011/9/6



情報処理学会研究報告 

IPSJ SIG Technical Report 

 3 ⓒ2011 Information Processing Society of Japan 

 

mainly because we need enough evidences for it. 

The version relationships deal with traceability over time.  They are defined on the same 

sorts of artifacts enabling us to trace between the different versions of the artifacts. 

Conceptually, the version relationships form 1:1 relationships. However, we find lots of N:M 

relationships in documents in industry fields. 

The composition relationships in the left wing of the V model are rater complex. One test 

case covers many design components, thus there is a 1:N relationship between a test case and 

a set of design components. In addition, one test case is related to a set of source code 

statements not only source codes before test but also corrected source codes reflecting the 

result of the test case, i.e. after bug fix. 

3. Modeling Login Function in SysML 

3.1 Traceability Relationships in SysML 

SysML (Systems Modeling Language) is a general-purpose modeling language for systems 

engineering applications developed within the Object Management Group (OMG) consortium 

[11]. It is particularly effective in specifying requirements, product architectures as well as 

their behavior and functionalities. SysML provides modeling constructs to represent 

text-based requirements and relate them to elements in other SysML diagrams. Several 

requirements relationships are available. These include relationships for defining a 

requirements hierarchy, refining requirements, satisfying requirements, verifying 

requirements, etc. Due to space limitations, we only focus on the requirement containment 

relationship and the refine relationship in the rest of this paper.  Since samples in this paper 

are general ones, the usage of the two relationships is easily applied to other several 

relationships specified in the SysML. 

In designing complex software systems, it is common to have a hierarchy of requirements. 

For instance, high-level requirements may be decomposed into more detailed requirements, 

thus requirements are generally formed in a hierarchy. The SysML requirement containment 

relationship facilitates to model high-level requirements into more simple ones as a hierarchy. 

The refine relationship describes how a model element (or a set of model elements) can be 

used to further refine a given requirement. This relationship is represented by the stereotype 

<<refine>>. 

3.2 Login Function for a Web System 

A login function to a business application is inevitable not only to identify a user of the 

application but also to protect the application from unauthorized access.  Concept of the 

login function is fairly simple, i.e. determining a valid user id and password by looking up a 

table in a database that contains valid pairs of user ids and passwords.  But in practice, a 

designer have to consider support functions such as password change, password expiration 

management and password setting rules. 

We now develop a Web application that manages project artifacts with focus on 

requirements traceability (the theme of this paper). Users of the Web application consists of 

two classes: managers and designers for a project.  A user can participate in one or more 

projects. The user may be a manager in some projects and a designer in other projects.  The 

role of the user in a project is supposed to be stored in a database. Details of database are 

described in Subsection 3.4 of this paper. 

A layout of the login screen is shown in Figure 2. The user who wants to login enters a user 

id and a password in the corresponding fields, in addition, choices a project name in a list by 

clicking the arrow icon. 

 

 

 

3.3 Requirements on Login Function 

As mentioned in the previous subsection, requirements on the login function should be 

specified in the context of operation and maintenance of user ids and passwords. The essential 

requirements are summarized in the following. 

(1) Data items requirement:  User id, password and project id should be entered.  

(2) Password management requirement:  In the security point of view, a password should be 

robust in the combination of characters and the period of password changes as well. This 

requirement is further decomposed into a password setting policy, a password expiration 

policy and a password change policy, respectively. 

(3) Login failure requirement:  In case of login failure, a notification must be displayed.  

A SysML requirement diagram for the requirements above is shown in Figure 3. Note that 

each of requirements is tagged by the <<refine>> relationship relating to other SysML design 

models, which are described in the following subsections. Note that the <<refine>> is defined 

manually by experts designing the login function as true-links [7]. All of the <<refine>> 

relationships are retrieved automatically by the proposed retrieval methods. The details are 

discussed in Section 4 of this paper.  A string proceeded by the # character, e.g. #UserID, 

Figure 2. A layout of the login screen 

Vol.2011-IS-117 No.9
2011/9/6



情報処理学会研究報告 

IPSJ SIG Technical Report 

 4 ⓒ2011 Information Processing Society of Japan 

 

means a key term, which play an important role to define a traceability since in most of 

projects in industry the key terms are used in a consistent manner.  

 

 

 

 

3.4 Database Design Model 

The aims of database design are to describe the data items, relationships and constraints on 

the data items for the application, e.g. user id should be 8-12 characters in length.  Since 

there are established data modeling techniques and excellent articles lecturing on them [3], 

omitting the details of data modeling, we only present the result of the database design.  

The entity "user" and "project" are identified. The entity "user" has attributes on user id, 

password, user name, and a date last updated, etc. The entity "project" has attributes on 

project id, a name of the project, members of the project and his/her role. The entity "user" 

and "project" are translated into the relation R_user and R_project, respectively.  Since a 

user can participate in one or more projects, there are one-to-may relationship between the 

entity "user" and "project". The one-to-may relationship between the entity "user" and 

"project" is realized by the UID (user id) as a foreign key in the table R_project as shown in 

Figure 4 which is depicted by the UML class profile for data modeling [15]. 

Note that the identifiers or names of the data items defined this design phase should be 

referenced consistently by the subsequent phases as key terms, which makes us possible to 

define traceability implicitly or automatically among different design models.  

 

 

Figure 4. A table structure 

 

 

3.5 Screen Transition Model 

  The state machine diagram represents behavior as the state history of an object in terms of 

its states and transitions. The activities that are invoked during the state transition are 

specified by an associated event. Since a screen in the Web application transits by an 

associated event, e.g., clicking button and the result of a process, screen transitions can be 

represented by a SysML state machine diagram where screens corresponds to states.  

  Figure 5 shows the overall screen transitions depicting screens, events and rel ationships 

with the stereotype <<refine>> that are defined by experts as true-links which are retrieved 

automatically by the proposed retrieval methods. Again a string proceeded by the # character, 

e.g. #Login_screen, means a key term. 

3.6 Process Model 

  The SysML activity diagram is a graph-based diagram showing flow of control, thus we use 

it to define processes that are associated with the screen transitions. Figure 6 shows the login 

process that is fired when the login button on the login screen is clicked. This fact is traceable 

automatically by the identifier "#Login_process" premising that the consistent technical 

names shall be defined and used. 

  The body of the process is described in the central lane, while the login screen is described 

in the left lane and the next screens in the right lane. Again the <<refine>> relationships 

between the requirements and the login process are defined manually by the experts as 

true-links. 

Figure 3. A SysML requirement diagram 

Vol.2011-IS-117 No.9
2011/9/6



情報処理学会研究報告 

IPSJ SIG Technical Report 

 5 ⓒ2011 Information Processing Society of Japan 

 

 

 

4. Recovering Requirement Traceability 

4.1 The Vector Space Model 

Our approach to recover requirements traceability is to augment the vector space model for 

improving the results of information retrieval. Briefly, the process consists of two steps, i.e. 

translating a SysML diagram into vector representations and computing similarities.  

4.2 Analyzing SysML Diagrams 

At first, a document analyzer prepares the document for retrieval. Documents are indexed 

based on a term that is extracted from the documents themselves. Note that each term has 

"document identifiers" indicating the document in which the term has been extracted. 

Extracting terms and indexing documents are done in the following steps:  

 

 
 

 

 

 (1) SysML diagrams are divided into documents for the information retrieval. The process 

works in accordance with the given mapping rules between SysML diagrams and 

documents for retrieval. 

(2) Each document is tokenized. All capital letters are transformed into lower case letters.  

(3) Terms preceded by the # character are processed as key terms. In addition, terms 

connected by the character "_" consisting a key term are divided into each of the main 

terms. 

(4) Stop-words (i.e., words that are not useful for the purposes of retrieval such as articles, 

preposition, numbers, etc.) are removed. Note that our document analyzer is sensitive to 

a SQL statement. For example, the preposition "from" in a SQL statement is extracted as 

a main term in this study. 

(5) The remaining words are stemmed to ensure that different forms of the same term are 

treated as the same one, i.e. converting plurals into singulars, transforming conjugated 

forms of verbs into infinitives. 

Figure 5. A screen transitions diagram 

Figure 6. A process diagram 

Vol.2011-IS-117 No.9
2011/9/6



情報処理学会研究報告 

IPSJ SIG Technical Report 

 6 ⓒ2011 Information Processing Society of Japan 

 

(6) The key terms and the main terms are stored in the repository.  

(7) A vector representation of the document is created and stored in the repository.  

4.3 Vector Space Model and its Augmentation 

Given a set of documents D, a document d j in D is represented as vectors of term weights, 

   
where N is the total number of terms in the document and wi, j is the weight of the i-th term. 

We use a well-known metric called tf-idf to compute wi, j [7]. 

A user query is also converted into a vector. 

  

The similarity between document d j and query q can be computed as the cosine of the angle 

between vectors d j and q in the N-dimensional space: 

 

We have augmented the vector space model by using the document identifiers and a set of 

closely related terms for a similarity computation as follows.  

(1) Drop terms in accordance with the context of traceability recovery based on the 

document identifiers. For example, when a user intended to recover traceability between 

the requirements and the designs, we can drop terms as follows: 

- terms having only the document identifier "requirement" should be dropped from 

vectors concerning the requirement diagrams, 

- terms having only the document identifier "design" should be dropped from vectors 

concerning the design diagrams. 

   Theoretically, terms only found in the requirements doesn't match those terms only 

used in designs and vice versa. 

(2) Closely related terms, called family terms, are treated as a set. For example, if main 

terms {A, B, C, D} are found in a query then they are treated as family terms. The 

family terms are applied to documents in turn. That is if a document contains {A, B, C} 

then the term D is inferred to be contained in the document with some possibility. As the 

initial study, the possibility of an inferred term is set to 1, meaning the inferred them is 

included definitely. We also assume that a set of family terms is triggered when more 

than half of the terms are included in a document vector.  

 

 

Figure 7. Similarities of the 1st, 2nd and 3rd candidates 

 

4.4 Tracing Requirements to Designs 

We have applied the augmented vector space model to recover traceability relationship in 

the three diagrams shown in Section 3.  82 main terms including 16 key terms attributed by 

the document identifiers have been extracted from the SysML diagrams. The three diagrams 

are divided into 13 documents for the vector-space-based information retrievals. Our tools 

generated 82 x 13 term-by-document matrix. 

Each of five documents translated from the requirement diagram in Figure 3 is used as 

query vectors. Other eight documents are translated from Figure 5 and 6.  We have carried 

out five kinds of retrievals from "requirements to designs" in the three modes, i.e. the simple 

vector space mode, the mode using the document identifiers, the mode using the family terms.  

Similarities of the 1st, 2nd and 3rd candidates are depicted in Figure 7. There are several 

strategies for selecting true-links. The constant threshold is the straightforward one. Our 

vector model shows the most preferable result when the threshold is around 0.23. 

Traditionally the accuracy of results by information retrieval is assessed in recall and 

precision [7]. Roughly, the result of our information retrieval achieves recall of 100% with 

87.5% (=7/8) precision. Figure 8 summarizes the results of the information retrieval from 

requirements to design diagrams with the similarity values computed in our augmented vector 

space model. 

Vol.2011-IS-117 No.9
2011/9/6



情報処理学会研究報告 

IPSJ SIG Technical Report 

 7 ⓒ2011 Information Processing Society of Japan 

 

 

5. Bridging Design and Implementation 

In the MDE (Model-Driven Engineering), requirements are created, refined into design 

models and eventually translated into executable programming languages [5]. However, the 

last transformation, i.e. from design models to programming languages, is often done in a 

weak systematic manner [6].   

We now describe shortly the rules to translate a SysML activity diagram to internal source 

code documentation where to begin implementing source programs. 

Rule 1: Translation proceeds from upper left to lower right.  

Rule 2: Translation ends if all the model elements processed at least once.  

Rule 3: A sequence of actions, each of which is connected only one flow of control, is 

translated into a sequence of statements.  

Rule 4: An action followed by more than one control flow is translated into an If-statement 

with branches for each flow of control. A statement described in the action 

corresponds to comparison expression in the If-statement. The guard of a flow of 

control is translated into //+ GuardName +//, which corresponds to the result of the 

comparison expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The //+ GuardName +// links a SysML model and a target program, so it should be 

managed by a syntax check tool to make sure the //+ GuardName +// is kept unchanged during 

the programming stage. A SysML activity diagram in accordance with the above rules can be 

successfully translated into an internal source code documents to bridge the SysML diagram 

with the corresponding target program. Figure 9 shows the result of the translation of the 

SysML diagram in Figure 6. 

Figure 8. A graph summarizing the results 

 

Figure 9. A document translated from Figure 6 

Vol.2011-IS-117 No.9
2011/9/6



情報処理学会研究報告 

IPSJ SIG Technical Report 

 8 ⓒ2011 Information Processing Society of Japan 

 

Once traceability between design diagrams and the source code statements is established, 

developers can take advantage of IDEs (Integrated Development Environment) for consistent 

management of artifacts leading to a high quality software development. 

 

6. Conclusion and Future Work 

An integrated framework to manage artifacts thorough a software system life cycle is even 

more required as demands of high quality software system increase. There are on the order of 

thousands pages of documents and hundred thousand lines of source codes in a large-scale 

software development project. Not to mention, we need a computer support to deal with this 

size of artifacts. 

At first we propose a refined V model in view of the requirements traceability as a 

"straw-man proposal" with some points of issues. SysML, a standard of OMG, is used as a 

modeling language. Several experiments are carried out to examine the requirements 

traceability among requirements, designs and implementations using the login function for a 

Web application as an example. Our augmented information retrieval techniques yield 

promising results for recovering traceability among SysML diagrams. We also discuss a set of 

rules for translating a SysML activity diagram into internal source code documentations 

which provides a base of implementing source codes in a target programming language while 

keeping links to SysML diagrams. 

Our research issues in the near future include, (1) improving and examining the accuracy of 

the augmented information retrieval model, (2) refining translation rules between SysML 

diagrams and internal documentations, (3) developing tools to support traceability and to 

maintain consistency among artifacts throughout a software development life cycle.  

 

References 
[1] California Department of Transportation, "Systems Engineering Guidebook for ITS, Ver. 

3.0", 2009. http://www.fhwa.dot.gov/cadiv/segb/ 

[2] CMMI Product Team, "CMMI for Development, Ver. 1.2 --- Improving processes for 

better products," CMU/SEI -2006-TR-008, Software Engineering Institute, Carnegie 

Mellon University, http://www.sei.cmu.edu/, 2006. 

[3] Connolly T. M. and Begg C.E., "Database Systems: A Practical Approach to Design, 

Implementation and Management", Addison-Wesley, 5rd Edition, 2010. 

[4] Gotel O. and Finkelstein A., "An Analysis of the Requirements Traceability Problem", 

Proc. of the 1st Inter. Conference on Requirements Engineering, 1994, pp. 94-101. 

[5] Hailpern B., Tarr P., "Model-driven development: the good, the bad, and the ugly", IBM 

Systems Journal, Vol.45, No.3 2006, pp.451-461.  

[6] Heidenreich F., Johannes J., Seifert M. and Wende C., "Closing the Gap between 

Modelling and Java", Software Language Engineering, Lecture Notes in Computer 

Science, Vol.5969, 2010, pp.374-383. 

[7] Huffman H. J., Dekhtyar A., Sundaram S.K., and Howard S., "Helping Analysts Trace 

Requirements: An Objective Look," Proc. of the 12th IEEE International Requirements 

Engineering Conference, Kyoto, Japan, 2004, pp.249-261. 

[8] INCOSE, "Systems Engineering Handbook Ver. 3 - A guide for system life cycle 

processes and activities", June 2006, pp.1-185. 

[9] Kagdi H., Gethers M., Poshyvanyk D, and Collard M. L., "Blending conceptual and 

evolutionary couplings to support change impact analysis in source code," Proc. 17th 

IEEE Working Conference on Reverse Engineering, October 2010, Boston, MA, USA, 

pp.119-128. 

[10] Maeder P., Philippow I., Riebisch M., "A Traceability Link Model for the Unified 

Process", Proc. of the 8th ACIS Inter. Conference on Software Engineering, Artificial 

Intelligence, Networking, and Parallel/Distributed Computing, 2007, pp.700 - 705.  

[11] Object Management Group, "OMG Systems Modeling Language Version 1.2", June 

2010, http://www.omgsysml.org/. 

[12] Pohl K., "PRO-ART: Enabling Requirements Pre-Traceability", Proc. of the IEEE Intl.  

Conference on Requirements Engineering (ICRE), 1996, pp.76-84. 

[13] Ramesh B. and Jarke M., "Toward reference models for requirements traceability," IEEE 

Transactions on Software Engineering, 2001, Vol.27, No1, pp58-93. 

[14] Rilling J., Charland P. and Witte R., "Traceability in Software Engineering - Past, 

Present and Future", CASCON 2007 Workshop Report, IBM Technical Report, Oct. 

2007. 

[15] Scott W.A., "A UML Profile for Data Modeling", 2009, http://www.agiledata.org/ 

essays/umlData ModelingProfile.html 

[16] Soares M., Vrancken J., "Model-Driven User Requirements Specification using SysML", 

Journal of Software, Vol 3, No 6 2008, pp.57-68. 

[17] Spanoudakis, G. and Zisman A., "Software Traceability: A Roadmap", Handbook of 

Software Engineering and Knowledge Engineering. World Scientific Publishing, 2005, 

pp.395-428. 

 

Vol.2011-IS-117 No.9
2011/9/6


