
IPSJ SIG Technical Report

Hardness Results and an Exact Exponential Algorithm
for the Spanning Tree Congestion Problem

Yoshio Okamoto∗1 , Yota Otachi∗2 , Ryuhei Uehara∗3

and Takeaki Uno∗4

1. Introduction

Spanning tree congestion is a graph parameter defined by Ostrovskii19) in 2004.
Simonson22) also studied the same parameter under a different name as a vari-
ant of cutwidth. After Ostrovskii19), several graph-theoretic results have been pre-
sented3),6),12)–18),20), and very recently the complexity of the problem for determining the
parameter has been studied2),21). The parameter is defined as follows. Let G be a con-
nected graph and T be a spanning tree of G. The detour for an edge {u, v} ∈ E(G) is a
unique u–v path in T . We define the congestion of e ∈ E(T), denoted by cngG,T (e), as
the number of edges in G whose detours contain e. The congestion of G in T , denoted
by cngG(T), is the maximum congestion over all edges in T . The spanning tree conges-
tion of G, denoted by stc(G), is the minimum congestion over all spanning trees of G.
We denote by STC the problem of determining whether a given graph has spanning tree
congestion at most given k. If k is fixed, then we denote the problem by k-STC.

Bodlaender, Fomin, Golovach, Otachi, and van Leeuwen2),21) studied the complexity
of STC and k-STC. They showed that k-STC is linear-time solvable for apex-minor-free

∗1 Center for Graduate Education Initiative, JAIST, Asahidai 1–1, Nomi, Ishikawa 923–1292, Japan.
okamotoy@jaist.ac.jp

∗2 Graduate School of Information Sciences, Tohoku University. Sendai 980–8579, Japan. JSPS Research
Fellow. otachi@dais.is.tohoku.ac.jp

∗3 School of Information Science, JAIST, Asahidai 1–1, Nomi, Ishikawa 923–1292, Japan.
uehara@jaist.ac.jp

∗4 National Institute of Informatics, 2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430, Japan.
uno@nii.ac.jp

graphs and bounded-degree graphs, while k-STC is NP-complete even for K6-minor-free
graphs with only one vertex of unbounded degree if k ≥ 8. They also showed that STC is
NP-complete for planar graphs. Bodlaender, Kozawa, Matsushima, and Otachi3) showed
that the spanning tree congestion can be determined in linear time for outerplanar graphs.
Although several complexity results are known as mentioned above, they are restricted
to sparse graphs. The complexity for non-sparse graphs such as chordal graphs and
chordal bipartite graphs were unknown.

In this paper, we show that STC is NP-complete for these important non-sparse graph
classes. More precisely, we show that STC is NP-complete even for chain graphs and
split graphs. It is known that every chain graph is chordal bipartite, and every split
graph is chordal. The hardness for chain graphs is quite unexpected, since there is
no other natural graph parameter that is known to be NP-hard for chain graphs, to the
best of our knowledge. The hardness for chain graphs also implies the hardness for
graphs of clique-width at most three. To cope with the hardness of the problem, we
present a fast exponential-time exact algorithm. Our algorithm runs in O∗(2n) time,
while a naive algorithm that examines all spanning trees runs in O∗(2m) or O∗(nn) time,
where n and m denote the number of vertices and the number of edges. Note that
O∗(f (n)) = O(f (n) · poly(n)). The idea, which allows us to achieve this running time, is
to enumerate all possible combinations of cuts instead of all spanning trees. Using this
idea, we can design a dynamic-programming-based algorithm that runs in O∗(3n) time.
Then, by carefully applying the fast subset convolution method developed by Björklund,
Husfeldt, Kaski, and Koivisto1), we finally get the running time O∗(2n). We also study the
problem on cographs. It is known that cographs are precisely the graphs of clique-width
at most two. For some cographs such as complete graphs and complete p-partite graphs,
the closed formulas for the spanning tree congestion are known12),14),16),19). Although the
complexity of STC for cographs remains unsettled, we provide a constant-factor approx-
imation algorithm for them. Furthermore, we present a linear-time algorithm for chordal
cographs.

Graphs in this paper are finite, simple, and connected, if not explicitly stated other-
wise. We deal with edge-weighted graphs in Subsections 1.2 and 2.1. Our exponential-
time exact algorithm runs in O∗(2n) time for edge-weighted graphs, too.

1.1 Graphs
Let G be a connected graph. For S ⊆ V(G), we denote by G[S] the subgraph induced

1 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

IPSJ SIG Technical Report

by S . For an edge e ∈ E(G), we denote by G − e the graph obtained from G by the
deletion of e. Similarly, for a vertex v ∈ V(G), we denote by G − v the graph obtained
from G by the deletion of v and its incident edges. By NG(v), we denote the (open)
neighborhood of v in G; that is, NG(v) is the set of vertices adjacent to v in G. For
S ⊆ V(G), we denote

∪
v∈S NG(v) by NG(S). We define the degree of v in G as degG(v) =

|NG(v)|. If degG(v) = |V(G)| − 1, then v is a universal vertex of G.
Let G and H be graphs. We say that G and H are isomorphic, and denote it by G ' H,

if there is a bijection f : V(G)→ V(H) such that {u, v} ∈ E(G) if and only if { f (u), f (v)} ∈
E(H). Now assume V(G) ∩ V(H) = ∅. Then the disjoint union of G and H, denoted by
G ∪ H, is the graph with the vertex set V(G)∪ V(H) and the edge set E(G)∪ E(H). The
join of G and H, denoted by G⊕H, is the graph with the vertex set V(G)∪V(H) and the
edge set E(G) ∪ E(H) ∪ {{u, v} | u ∈ V(G), v ∈ V(H)}.

For A, B ⊆ V(G), we define EG(A, B) = {{u, v} ∈ E(G) | u ∈ A, v ∈ B}. For S ⊆ V(G),
we define the boundary edges of S , denoted by θG(S), as θG(S) = EG(S ,V(G)\S). Note
that θG(∅) = θG(V(G)) = ∅. The congestion cngG,T (e) of an edge e ∈ E(T) satisfies
cngG,T (e) = |θG(Ae)|, where Ae is the vertex set of one of the two components of T − e.
For an edge e in a tree T , we say that e separates A and B if A ⊆ Ae and B ⊆ Be, where
Ae and Be are the vertex sets of the two components of T − e. Clearly, if T is a spanning
tree of G and e ∈ E(T) separates A and B, then cngG,T (e) ≥ |E(A, B)|. If e separates A
and B, we also say that e divides A ∪ B into A and B.

Let T be a tree rooted at r ∈ V(T). Then we denote by prtT (v) the parent of v ∈ V(T) in
T . The parent of the root r is not defined. We denote by ChT (v) the children of v ∈ V(T)
in T . Clearly, NT (v) = {prtT (v)} ∪ ChT (v) for every non-root vertex v.

1.2 Spanning tree congestion of weighted graphs
A graph G may be associated with an edge-weight function wei : E(G) → Z+. If a

graph has such a function, then we call it an edge-weighted graph or just a weighted
graph. Note that unweighted graphs can be considered as weighted graphs by setting
wei(e) = 1 for each edge e. For an edge-weighted graph G and F ⊆ E(G), we define
wei(F) =

∑
f∈F wei(f) for F ⊆ E(G). We extend the notion of spanning tree congestion

to edge-weighted graphs by defining the congestion of an edge e as the sum of the
weights of edges whose detours pass through the edge e. If e ∈ E(T) separates vertex
sets A and B, then cngG,T (e) ≥ wei(E(A, B)).

For a weighted graph G, we define the weighted degree of v in G as wdegG(v) =

Cograph ∩ Split = Threshold

Chordal Cograph

Perfect

Split

Open

NP-hard

P

Chain

Bipartite permutation

Interval bigraph

Chordal bipartite

Cograph ∩ Chordal
= Trivially perfect

Bipartite

Fig. 1 Relations among graph classes.

wei(θG({v})). It is not difficult to see that the following fact holds.
Proposition 1.1. Let G be a weighted graph, and let S ⊆ V(G). Then

wei(θG(S)) =
∑
v∈S

wdegG(v) − 2wei(E(G[S])).

It is known that STC for weighted graphs is equivalent to STC for unweighted graphs
in the following sense.
Lemma 1.2 (2),21)). Let G be a weighted graph and let e ∈ E(G). Let G′ be the graph
obtained from G by removing the edge e and adding wei(e) internally disjoint paths of
arbitrary lengths between the ends of e, where each edge in the added paths is of unit
weight. Then, stc(G) = stc(G′).

1.3 Graph classes
Here we introduce some graph classes. Fig. 1 depicts relations among graph classes.

For graph classes not defined in this subsection see textbooks on graph classes4),10).
A graph is chordal if it has no induced cycle of length greater than three. A graph G is

a split graph if its vertex set V(G) can be partitioned into two sets C and I so that C is a
clique of G and I is an independent set of G. Clearly, every split graph is a chordal graph
(see10)). A cograph (or complement-reducible graph) is a graph that can be constructed
recursively by the following rules:
(1) K1 is a cograph;
(2) if G and H are cographs, then so is G ∪ H;
(3) if G and H are cographs, then so is G ⊕ H.

2 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

IPSJ SIG Technical Report

Note that if G is a connected cograph with at least two vertices, then G can be expressed
as G1⊕G2 for some nonempty cographs G1 and G2. A cograph is a chordal cograph if it
is also a chordal graph. Chordal cographs are also known as trivially perfect graphs4),10)

and quasi-threshold graphs23). It is known that in the construction of a chordal cograph
by the above rules, we can assume one of two operands of ⊕ is K1

23).
Analogous to chordal graphs, chordal bipartite graphs are defined as the bipartite

graphs without induced cycle of length greater than four. A bipartite graph G = (X,Y; E)
is a chain graph if there is an ordering < on X such that u < v implies NG(u) ⊆ NG(v). It
is known that every chain graph is 2K2-free24), and thus chordal bipartite.

Clique-width is a graph parameter which generalizes treewidth in some sense. Many
hard problems can be solved efficiently for graphs of bounded clique-width. It is known
that every chain graph has clique-width at most three5), and that a graph has clique-width
at most two if and only if it is a cograph7). For the definition and further information of
clique-width, see a recent survey by Hliněný, Oum, Seese, and Gottlob11).

2. Hardness for split graphs and chain graphs

This section presents our hardness results for split graphs and chain graphs. Namely,
we prove the following theorems.
Theorem 2.1. STC is NP-complete for split graphs.
Theorem 2.2. STC is NP-complete for chain graphs.

Since every chain graph has clique-width at most three, we have the following corol-
lary.
Corollary 2.3. STC is NP-complete for graphs of clique-width at most three.

The weighted edge argument2),21) allows us to present a simple proof for split graphs.
However, we are unable to present a simple proof based on the weighted edge argument
for chain graphs. This is because, in the process of modifying a weighted graph to
an unweighted graph, we may introduce many independent edges (see Lemma 1.2).
Although we need somewhat involved arguments for chain graphs, the proofs are based
on essentially the same idea.

Clearly, STC is in NP. The proofs of NP-hardness are done by reducing the following
well-known NP-complete problem to STC for both graph classes.
Problem: 3-Partition9) [SP15]
Instance: A multi-set A = {a1, a2, . . . , a3m} of 3m positive integers and a bound B ∈ Z+

such that
∑

ai∈A ai = mB, a1 ≤ a2 ≤ · · · ≤ a3m, and B/4 < ai < B/2 for each ai ∈ A.
Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that, for 1 ≤

i ≤ m,
∑

a∈Ai
a = B? (Thus each Ai must contain exactly three elements from A.)

It is known that 3-Partition is NP-complete in the strong sense9). Thus we assume
a3m ≤ poly(m), where poly(m) is some polynomial on m. By scaling each a ∈ A, we can
also assume that a1 ≥ 3m + 2, m ≥ 3, B ≥ 8, and B/4 + 1 ≤ ai ≤ B/2 − 1.

2.1 Hardness for split graphs
In this subsection, we prove that STC is NP-hard for split graphs. We first show

that STC is NP-hard for edge-weighted split graphs with weighted edges only in the
maximum clique, by reducing an instance A of 3-Partition to an edge-weighted split
graph GA such that A is a yes instance if and only if stc(GA) ≤ k for some k. We then
show that GA can be modified to an unweighted split graph G′A in polynomial time so
that stc(GA) = stc(G′A). This proves Theorem 2.1.

Let A be an instance of 3-Partition. We now construct GA from A in polynomial time
(see Fig. 2). Let I = {ui | 1 ≤ i ≤ 3m} and C = {x} ∪ V ∪W, where V = {vi | 1 ≤ i ≤ m}
and W = {wi | m+ 1 ≤ i ≤ a3m}. The graph GA has vertex set I ∪C. The sets I and C are
independent set and a clique of GA, respectively. Each ui ∈ I is adjacent to all vertices
in V and vertices w1,w2, . . . ,wai . More formally, E(GA) is defined as follows:

E(GA) = {{c, c′} | c, c′ ∈ C} ∪ {{u, v} | u ∈ I, v ∈ V}
∪ {{ui,w j} | ui ∈ I,m + 1 ≤ j ≤ ai}.

Recall that ai > m for any i ≥ 1. The degrees of vertices in GA can be determined as
follows: degGA

(ui) = ai, degGA
(vi) = |C| + |I| − 1, and degGA

(wi) = |C| + |{ j | a j ≥ i}| − 1.
Some edges of GA have heavy weights. Let k = 2B + 2|C| + 2|I| − 15. Then

wei(e) =

α := (k + 1)/2 if e = {x, vi},
βi := k − degGA

(wi) + 1 if e = {x,wi},
1 otherwise.

Clearly, GA is a split graph with weighted edges only in the clique C. The weighted
degrees of vertices in GA is as follows: wdegGA

(ui) = ai, wdegGA
(vi) = α+ |C|+ |I| − 2 =

k − B + 6, and wdegGA
(wi) = k.

Lemma 2.4. Let k = 2B + 2|C| + 2|I| − 15. Then A is a yes instance if and only if
stc(GA) ≤ k.

Proof. Omitted. �

3 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

IPSJ SIG Technical Report

... ...

...

I u1 u2 ui u3m

v1 v2 vm

α

x

C

wm+1 wai wa3mwm+2

βai

Fig. 2 Reduction. (Unweighted edges in C are not depicted.)

Now we prove the NP-hardness of STC for unweighted split graphs. To this end, we
first reduce an instance A of 3-Partition to a weighted split graph GA as stated above.
Recall that all weighted edges of GA are in GA[C]. We need the following lemma.
Lemma 2.5. Let G be an edge-weighted split graph with a partition (C, I) of V(G),
where C and I are a clique and an independent set of G, respectively. If the weighted
edges are only in G[C] and the maximum edge weight is wmax, then an edge-unweighted
split graph G′ satisfying stc(G) = stc(G′) can be obtained from G in O(wmax · |E(G)|)
time.

Proof. Let {u, v} ∈ E(G) be an edge of weight w = wei({u, v}) > 1. We replace the
weighted edge between u and v by an unweighted edge, and add w − 1 unweighted u–v
paths of length two, where the inner point of ith path is a new vertex xi ∈ I (see Fig. 3).
Let us call the obtained graph H. Obviously, this can be done in O(w) time, H has less
weighted edges than G, and stc(H) = stc(G) by Lemma 1.2. Also it is easy to see that H
is a split graph with weighted edges only in H[C]. Therefore, repeatedly applying this
local modification, we eventually obtain the desired graph G′ in O(wmax · |E(G)|) time.

�

Observe that the maximum edge-weight in GA is bounded by a polynomial function
on B and m. Thus the above lemma implies that from an instance A of 3-Partition, we
can construct in polynomial time an unweighted split graph G′A and k ∈ Z+ such that A
is a yes instance if and only if stc(G′A) ≤ k. This proves Theorem 2.1.

...

C

x1 x2 xw−1
I

C

I

u v
wei({u, v}) = w u v

⇐⇒

Fig. 3 Weighted edge in the clique C.

2.2 Hardness for chain graphs
Next we prove the NP-hardness for chain graphs. Given an instance A of 3-Partition,

we construct the graph GA = (P,Q; E). For convenience, let M = B + 3m − 4 and
γi = |{a j ∈ A | a j ≥ i}|. Note that 0 < γi ≤ 3m for m + 1 ≤ i ≤ a3m. In particular,
γm+1 = 3m and γa3m > 0. First we define the vertex sets P = U∪V∪W and Q = X∪Y∪Z
as follows:

U = {ui | 1 ≤ i ≤ m}, X = {xi | 1 ≤ i ≤ 3m},
V = {vi | m + 1 ≤ i ≤ a3m}, Y = {yi | m + 1 ≤ i ≤ a3m},
W = {wi | 1 ≤ i ≤ M − a3m}, Z = {zi | 1 ≤ i ≤ M − a3m}.

Next we define the edge set as follows:?1

E = (X × U) ∪ (Y × (U ∪ V)
) ∪ (Z × (U ∪ V ∪W)

)
∪ {{xi, v j} | xi ∈ X,m + 1 ≤ j ≤ ai}
∪ {{yi,w j} | yi ∈ Y, 1 ≤ j ≤ M − a3m − γi}.

See Fig. 4 for a simplified illustration of GA.
Let G0 and G1 be two disjoint copies of GA. That is, GA ' G0 ' G1 and V(G0) ∩

V(G1) = ∅. By Pi, Qi, Ui, Vi, Wi, Xi, Yi, and Zi, we denote the vertex sets of Gi, i ∈ {0, 1},
that correspond to the vertex sets P, Q, U, V , W, X, Y , and Z of GA, respectively.
Similarly, we denote the vertices of Gi, i ∈ {0, 1}, that correspond to vertices u j, v j, w j,
x j, y j, and z j of GA by ui

j, vi
j, wi

j, xi
j, yi

j, and zi
j, respectively. We define the graph HA as

follows (see Fig. 4): V(HA) = V(G0)∪ V(G1) and E(HA) = E(G0)∪ E(G1)∪ (P0 × P1).
Lemma 2.6. The graph HA is a chain graph.

?1 For simplicity, we denote by S × T the set of unordered pairs {{s, t} | s ∈ S , t ∈ T }.

4 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

IPSJ SIG Technical Report

U V W

X Y Z

P

Q

P0

Q0

U0 V0 W0

X0 Y0 Z0 P1

Q1Z1 Y1 X1

W1 V1 U1

GA HA

Fig. 4 Graphs GA and HA. A solid line between two sets implies that the two sets induce a complete bipartite
graph, and a dotted line between two sets implies that there are some (but not all) edges between the
two sets. Two color classes of HA are P0 ∪ Q1 and Q0 ∪ P1.

Proof. Observe that in HA the following relations hold:
NHA (x0

1) ⊆ · · · ⊆ NHA (x0
3m) ⊆ NHA (y0

1) ⊆ · · · ⊆ NHA (y0
a3m

)
⊆ NHA (z0

1) = · · · = NHA (z0
M−a3m

) ⊆ NHA (w1
M−a3m

) ⊆ · · · ⊆ NHA (w1
1)

⊆ NHA (v1
a3m

) ⊆ · · · ⊆ NHA (v1
1) ⊆ NHA (u1

m) = · · · = NHA (u1
1).

This ordering shows that HA is a chain graph. �

Lemma 2.7. degHA
(ui

j) = 2M + 2m, degHA
(vi

j) = 2M − m + γ j > 2M − m, 2M − a3m ≤
degHA

(wi
j) ≤ 2M − m, degHA

(xi
j) = ai, degHA

(yi
j) = M − γ j < M, and degHA

(zi
j) = M.

Moreover, ∆(HA) = 2M + 2m and δ(HA) = a1. �
Now we prove that A is a yes instance of 3-Partition if and only if stc(HA) ≤ k. We

divide the proof into the only-if-part (Lemma 2.8) and the if-part (Lemma 2.9).
Lemma 2.8. Let k = 3M − m − 2. If A is a yes instance, then stc(HA) ≤ k.

Proof. Let A1, . . . , Am be the partition of A such that |Ai| = 3 and
∑

a j∈Ai
a j = B for

1 ≤ i ≤ m. We shall show that there is a spanning tree T of HA such that cngHA
(T) ≤ k.

Roughly speaking, T is constructed as follows (see Fig. 5).
• Take all edges incident to u0

1 in HA.
• Take {u1

j , x
1
h} if and only if ah ∈ A j.

• Take a perfect matching between {u0
2, . . . , u

0
m} and {x0

2, . . . , x
0
m}.

• Take a perfect matching between Vi and Yi for each i ∈ {0, 1}.
• Take a perfect matching between Wi and Zi for each i ∈ {0, 1}.

...

...

y1
a3m

...

...

z1
M−a3m

{x1
h | ah ∈ A1} {x

1
h | ah ∈ A j} {x

1
h | ah ∈ Am}

...

......

w1
1

z1
1y1

m+1

v1
m+1 v1

a3m
u1

1 u1
j

...

u1
m

z0
M−a3m

z0
1y0

a3m
y0

m+1

w1
M−a3m

x0
mx0

2x0
1 x0

3mx0
m+1

w0
1v0

m+1 v0
a3m

w0
M−a3m

...

u0
2 u0

m

......... ...

u0
1

Q0

P1

Q1

P0

Fig. 5 Spanning tree T in the proof of Lemma 2.8.

More precisely, the edge set of T is defined as follows:
E(T) = {{u0

1, v} | v ∈ Q0 ∪ P1} ∪ {{u1
j , x

1
h} | ah ∈ A j, 1 ≤ j ≤ m}

∪ {{u0
j , x

0
j } | 2 ≤ j ≤ m} ∪ {{vi

j, y
i
j} | i ∈ {0, 1}, m + 1 ≤ j ≤ a3m}

∪ {{wi
j, z

i
j} | i ∈ {0, 1}, 1 ≤ j ≤ M − a3m}.

Clearly, T is a spanning tree of HA. It is easy to see that edges not incident to u0
1 are

leaf edges. The congestions of these edges are at most ∆(HA) = 2M + 2m. Since B ≥ 8,
it follows that 2M + 2m = k − B + 6 < k. There are four types of inner edges, and they
divide V(HA) as follows.
(1) {u0

1, u
1
j } divides V(HA) into {u1

j } ∪ {x1
h | ah ∈ A j} and its complement.

(2) {u0
1, x

0
j }, 2 ≤ j ≤ m, divides V(HA) into {u0

j , x
0
j } and its complement.

(3) {u0
1, v

1
j } or {u0

1, y
0
j } divides V(HA) into {vi

j, y
i
j} and its complement.

(4) {u0
1,w

1
j } or {u0

1, z
0
j } divides V(HA) into {wi

j, z
i
j} and its complement.

Hence, it suffices to show that all |θHA ({u1
j }∪{x1

h | ah ∈ A j})|, |θHA ({u0
j , x

0
j })|, |θHA ({vi

j, y
i
j})|,

and |θHA ({wi
j, z

i
j})| are at most k. Note that {u1

j } ∪ {x1
h | ah ∈ A j} induces a star K1,3, and

all {u0
j , x

0
j }, {vi

j, y
i
j}, and {wi

j, z
i
j} induce edges in HA. Recall that M = B + 3m − 4 and

k = 3M −m− 2. Thus 2M + 2m = k− B+ 6. (1) Since degHA
(u1

j) = 2M + 2m = k− B+ 6
and
∑

ah∈A j
degHA

(x1
h) = B, we have |θHA ({u1

j } ∪ {x1
h | ah ∈ A j})| = (k − B+ 6)+ B− 6 = k.

5 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

IPSJ SIG Technical Report

(2) Since degHA
(u0

j) = 2M+2m = k−B+6 and degHA
(x0

j) = a j, we have |θHA ({u0
j , x

0
j })| =

(k − B + 6) + a j − 2 = k − B + a j + 4. Assumptions a j < B/2 and B ≥ 8 imply that
|θHA ({u0

j , x
0
j })| ≤ k. (3) Since degHA

(vi
j) = 2M −m + γ j and degHA

(yi
j) = M − γ j, we have

|θHA ({vi
j, y

i
j})| = 3M −m − 2 = k. (4) Since degHA

(wi
j) ≤ 2M −m and degHA

(zi
j) = M, we

have |θHA ({wi
j, z

i
j})| ≤ 3M − m − 2 = k. �

Lemma 2.9. Let k = 3M − m − 2. If stc(HA) ≤ k, then A is a yes instance.

Proof. Omitted. �

3. Exponential-time exact algorithm

We have shown that STC is NP-complete even for very simple graphs. It is widely
believed that NP-hard problems cannot be solved in polynomial time. Thus we need fast
exponential-time (or sub-exponential-time) algorithms for these problems. Nowadays,
designing fast exponential-time exact algorithms becomes an important topic in theo-
retical computer science. See a recent textbook of exponential-time exact algorithms
by Fomin and Kratsch8). For STC, we can easily design an O∗(2m)- or O∗(nn)-time
algorithm that examine all spanning trees of input graphs, where n and m denote the
number of vertices and the number of edges, respectively. In this section, we describe
an algorithm for STC that runs in O∗(2n) time. Although it is still an exponential-time
algorithm, it is significantly faster than a naive algorithm.

Let G = (V, E) be a given undirected graph. For convenience, we denote |θG(X)| by
c(X). Note that c(∅) = c(V) = 0. Consider a spanning tree T with congestion at most
k. We regard T as a rooted tree with root r ∈ V . We denote this rooted tree by (T, r).
Let e = {u, v} ∈ E(T) be an edge of T , and without loss of generality, let u be the parent
of v. Then, the congestion of e in T is equal to c(DT,r(v)), where DT,r(v) denotes the
set of descendants of v in (T, r). Since the congestion of T is at most k, we see that
c(DT,r(v)) ≤ k. See Fig. 6. Conversely, if c(DT,r(v)) ≤ k for all v ∈ V \ {r}, then the
congestion of T is at most k. This is because there exists a one-to-one correspondence
between the edges e of T and the vertices v in V \ {r} so that v is a deeper endpoint of e.
We summarize this observation in the following lemma.
Lemma 3.1. The congestion of a rooted tree (T, r) is at most k if and only if c(DT,r(v)) ≤
k for every vertex v ∈ V \ {r}. �

r

v

DT,r(v)

Fig. 6 The definition of DT,r(v).

X

v

u

X \ {u}

v

(X, v) is good. (X \ {u}, u) is good ∧ c(X) ≤ k. (Y, v), (X \ Y, v) are good.

⇐⇒
or

v

Y X \ Y

Fig. 7 An illustration of Lemma 3.2.

The lemma above suggests the following dynamic-programming approach. We call a
pair (X, v) of a subset X ⊆ V and a vertex v < X a rooted subset of V . By definition,
X , V for a rooted subset (X, v) of V . A rooted subset (X, v) of V is good if there exists
a rooted spanning tree (T, v) of G[X ∪ {v}] such that c(DT,v(u)) ≤ k for all u ∈ X. Here, c
is a cut function of G, not of G[X ∪ {v}]. By definition (X, v) is good when X = ∅. Note
that there exists a rooted spanning tree (T, r) of G with congestion at most k if and only
if the rooted set (V \ {r}, r) is good.

The following lemma provides a recursive formula that forms a basis of our algorithm
(see Fig. 7).
Lemma 3.2. Let (X, v) be a rooted subset of V with |X| ≥ 1. Then, (X, v) is good if and
only if at least one of the following holds.
(1) There exists a vertex u ∈ X ∩ NG(v) such that c(X) ≤ k and (X \ {u}, u) is good.
(2) There exists a non-empty proper subset Y ⊆ X such that both of (Y, v), (X \ Y, v)

are good.

Proof. Omitted. �

Lemmas 3.1 and 3.2 above readily give an O∗(3n)-time dynamic programming algo-
rithm. However, the fast subset convolution method enables us to solve the problem in

6 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

IPSJ SIG Technical Report

O∗(2n) time. We give a more detail below.
Let S be a finite set. For two functions f , g : 2S → R, their subset convolution is a

function f ∗ g : 2S → R defined as
(f ∗ g)(X) =

∑
Y⊆X

f (Y)g(X \ Y)

for every X ⊆ S . Given f (X), g(X) for all X ⊆ S , we can compute (f ∗ g)(X) for all
X ⊆ S in O∗(2n) total time, where n = |S |1).

Back to the spanning tree congestion problem, let v ∈ V be an arbitrary vertex. We
define the function fv : 2V\{v} → R by the following recursion: fv(X) = 1 if X = ∅;
otherwise,

fv(X) =
∑

u∈X∩NG(v)

fu(X \ {u}) max{0, k − c(X) + 1} +
∑
∅,Y(X

fv(Y) fv(X \ Y),

where the empty sum is defined to be 0. It is easy to verify that fv(X) is non-negative for
every v ∈ V and every X ⊆ V \ {v}.

The following lemma connects the functions fv, v ∈ V and good rooted sets.
Lemma 3.3. Let (X, v) be a pair of a subset X ⊆ V \ {v} and a vertex v ∈ V. Then,
fv(X) > 0 if and only if (X, v) is a good rooted subset of V.

Proof. Omitted. �

To apply the subset convolution method, we use the following functions. For each
i ∈ {0, 1, . . . , n − 1}, where n = |V |, and v ∈ V , let f i

v : 2V\{v} → R be defined by

f i
v(X) =

 fv(X) if |X| ≤ i,

0 if |X| > i,
for all X ⊆ V \ {v}. Then, it is not difficult to see the following.
(1) For all v ∈ X and X ⊆ V \ {v}, f n−1

v (X) = fv(X).
f n−1
v (X) = fv(X).

(2) For all v ∈ V and X ⊆ V \ {v},

f 0
v (X) =

1 if X = ∅,
0 otherwise.

(3) For all i ∈ {1, . . . , n − 1}, v ∈ V , and X ⊆ V \ {v}
f i
v(X) =

∑
u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k − c(X) + 1}

+
∑
∅,Y(X

f i−1
v (Y) f i−1

v (X \ Y)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k − c(X) + 1}

+
∑
Y⊆X

f i−1
v (Y) f i−1

v (X \ Y) − 2 f i−1
v (∅) f i−1

v (X)

=
∑

u∈X∩NG(v)

f i−1
u (X \ {u}) max{0, k − c(X) + 1}

+ (f i−1
v ∗ f i−1

v)(X) − 2 f i−1
v (∅) f i−1

v (X).
Our algorithm is based on these formulas.

Step 1. For all v ∈ V and X ⊆ V \ {v}, compute f 0
v (X) based on the formulas above.

Step 2. For each i = 1, . . . , n − 1 in the ascending order, do the following.
Step 2-1. For all v ∈ V , compute the subset convolution f i−1

v ∗ f i−1
v .

Step 2-2. For all v ∈ V and all X ⊆ V \ {v}, compute f i
v(X) based on the formula

above.
Step 3. If f n−1

v (V) > 0, then output Yes. Otherwise, output No.
The correctness is immediate from the discussion so far. The running time is O∗(2n)

since the running time of each step is bounded by O∗(2n). This is an algorithm for
solving the decision problem, but a simple binary search on k ∈ {1, . . . , |E|} can provide
the spanning tree congestion. Thus, we obtain the following theorem.
Theorem 3.4. The spanning tree congestion of a given undirected graph can be com-
puted in O∗(2n) time.

Note that the algorithm also works for the weighted case with the O(n)-factor increase
of the running time, since the number of distinct cut values c(X) is bounded by 2n and
so the binary search over the all possible values of c(X) takes at most O(log(2n)) = O(n)
iterations. This is possible if we compute c(X) for all X ⊆ V beforehand, which only
takes O∗(2n) time.

4. Remarks on cographs

We showed NP-completeness of STC for graphs of clique-width at most three. There-
fore, it is quite natural to ask whether or not STC is NP-complete for graphs of clique-

7 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

IPSJ SIG Technical Report

width at most two; that is, for cographs7). Although the complexity of STC for cographs
remains unsettled, we have the following theorem.
Theorem 4.1. The spanning tree congestion of cographs can be approximated within a
factor three in polynomial time. Furthermore, the spanning tree congestion of chordal
cographs can be determined in linear time.

Let µG(u, v) be the maximum number of edge-disjoint u–v paths in G, and let µ(G) =
maxu,v∈V(G) µG(u, v). Ostrovskii19) showed that stc(G) ≥ µ(G) for any graph G. Let G be
a connected cograph with at least two vertices. Then G can be expressed as G1 ⊕G2 for
some nonempty cographs G1 and G2. Recall that a vertex v ∈ V(G) is universal if v is
adjacent to all other vertices in G.
Lemma 4.2. The spanning tree congestion of a graph with a universal vertex can be
determined in linear time.

Proof. Omitted. �

Let G = G1 ⊕G2 is a chordal cograph. We can assume that one of G1 and G2 is K1
23).

Therefore, every connected chordal cograph with at least two vertices has a universal
vertex. Thus we have the second part of Theorem 4.1. The first part of Theorem 4.1 is a
corollary to the following lemma.
Lemma 4.3. The spanning tree congestion of G = G1 ⊕G2 can be approximated within
a factor three in polynomial time.

Proof. Omitted. �

References

1) A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast subset
convolution. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC ’07), pages 67–74, 2007.

2) H.L. Bodlaender, F.V. Fomin, P.A. Golovach, Y.Otachi, and E.J. van Leeuwen. Parameter-
ized complexity of the spanning tree congestion problem. submitted.

3) H.L. Bodlaender, K.Kozawa, T.Matsushima, and Y.Otachi. Spanning tree congestion of
k-outerplanar graphs. Discrete Math., 311:1040–1045, 2011.

4) A.Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.
5) A.Brandstädt and V.V. Lozin. On the linear structure and clique-width of bipartite permuta-

tion graphs. Ars Combin., 67:273–281, 2003.

6) A.Castejón and M.I. Ostrovskii. Minimum congestion spanning trees of grids and discrete
toruses. Discuss. Math. Graph Theory, 29:511–519, 2009.

7) B.Courcelle and S.Olariu. Upper bounds to the clique width of graphs. Discrete Appl.
Math., 101:77–114, 2000.

8) F.V. Fomin and D.Kratsch. Exact Exponential Algorithms. Springer, 2010.
9) M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, 1979.
10) M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume57 of Annals of

Discrete Mathematics. North Holland, second edition, 2004.
11) P.Hliněný, S.Oum, D.Seese, and G.Gottlob. Width parameters beyond tree-width and their

applications. Comput. J., 51:326–362, 2008.
12) S.W. Hruska. On tree congestion of graphs. Discrete Math., 308:1801–1809, 2008.
13) K.Kozawa and Y.Otachi. Spanning tree congestion of rook’s graphs. Discuss. Math. Graph

Theory, to appear.
14) K.Kozawa, Y.Otachi, and K.Yamazaki. On spanning tree congestion of graphs. Discrete

Math., 309:4215–4224, 2009.
15) H.-F. Law. Spanning tree congestion of the hypercube. Discrete Math., 309:6644–6648,

2009.
16) H.-F. Law and M.I. Ostrovskii. Spanning tree congestion: duality and isoperimetry; with an

application to multipartite graphs. Graph Theory Notes N. Y., 58:18–26, 2010.
17) H.-F. Law and M.I. Ostrovskii. Spanning tree congestion of some product graphs. Indian J.

Math., to appear.
18) C.Löwenstein, D.Rautenbach, and F.Regen. On spanning tree congestion. Discrete Math.,

309:4653–4655, 2009.
19) M.I. Ostrovskii. Minimal congestion trees. Discrete Math., 285:219–226, 2004.
20) M.I. Ostrovskii. Minimum congestion spanning trees in planar graphs. Discrete Math.,

310:1204–1209, 2010.
21) Y.Otachi, H.L. Bodlaender, and E.J. van Leeuwen. Complexity results for the spanning

tree congestion problem. In WG 2010, volume 6410 of Lecture Notes in Comput. Sci., pages
3–14. Springer-Verlag, 2010.

22) S.Simonson. A variation on the min cut linear arrangement problem. Math. Syst. Theory,
20:235–252, 1987.

23) J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete Appl. Math.,
69:247–255, 1996.

24) M.Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2:77–79, 1981.

8 c© 2011 Information Processing Society of Japan

Vol.2011-AL-136 No.5
2011/9/6

