
IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011)

Regular Paper

A Library-based Performance Tool

for Multicore Pervasive Servers

Sayaka Akioka,
†1

Yuki Ohno,
†1

Midori Sugaya
†1,∗1

and Tatsuo Nakajima
†1

This paper proposes SPLiT (Scalable Performance Library Tool) as the
methodology to improve performance of applications on multicore processors
through CPU and cache optimizations on the fly. SPLiT is designed to relieve
the difficulty of the performance optimization of parallel applications on multi-
core processors. Therefore, all programmers have to do to benefit from SPLiT is
to add a few library calls to let SPLiT know which part of the application should
be analyzed. This simple but compelling optimization library contributes to en-
rich pervasive servers on a multicore processor, which is a strong candidate for
an architecture of information appliances in the near future. SPLiT analyzes
and predicts application behaviors based on CPU cycle counts and cache misses.
According to the analysis and predictions, SPLiT tries to allocate processes and
threads sharing data onto the same physical cores in order to enhance cache
efficiency. SPLiT also tries to separate cache effective codes from the codes
with more cache misses for the purpose of the avoidance of cache pollutions,
which result in performance degradation. Empirical experiments assuming web
applications validated the efficiency of SPLiT and the performance of the web
application is improved by 26%.

1. Introduction

Information appliances have become more sophisticated in order to provide
more enhanced services, and are designed to support multi-tasking, multi-
network, and intuitive user interface. It is a realistic projection of the future
computational environment that people will be able to access information and
services anytime anywhere via a high performance appliance at hand, which is
connected to servers in the world on some kind of overlay network, such as a
cloud computing environment. Such ubiquitous services strongly rely on web

†1 Waseda University
∗1 Presently with Yokohama National University

services and database systems, therefore, the service providers, called pervasive
servers 1), are expected to be highly optimized for web services and databases.

A multicore processor is a strong candidate to support pervasive servers from
the hardware layer. A multicore processor is not only faster than a single core
processor, but also superior to a flock of single core processors in terms of energy
saving, which is one of the most important features for battery-powered informa-
tion appliances. Many of the modern operating systems (OS) and applications
are also ready to run on multicore processors, however, the techniques utilized
in these softwares are basically migrations of the techniques developed for sin-
gle core processors. This simple but immature approach will soon reveal several
problems such as performance degradation caused by resource contention. Addi-
tionally, parallel applications are often optimized based on the characteristics of
both the target application and the parallel environment, and there is no trivial
clue universal for any environment.

Therefore, this paper proposes SPLiT (Scalable Performance Library Tool) to
support any kinds of parallel applications on multicore processors from the OS
layer, which knows very detailed process behaviors. Here, we use software such as
MySQL or Apache applications. SPLiT provides both CPU and cache optimiza-
tions based not only on CPU utilization, but also on statistics and predictions
of data accesses of the target application. The major contributions of SPLiT
are 1) SPLiT improves the performance of applications up to 26%, 2) the over-
head of SPLiT is small i.e., 2.5–5%, 3) all the features are available with small
code modifications, and 4) the validations in this paper are highly applicable to
power-efficient pervasive servers on multicore processors.

The rest of this paper is organized as follows. Section 2 defines the problems this
paper addresses. Section 3 introduces conventional solutions. Section 4 illustrates
detailed design of SPLiT, and Section 5 discusses the effect and performance of
SPLiT through Empirical experiments. Finally, Section 6 concludes this paper.

This article is the brushed up version based on the article in Proceedings of The 16th IEEE
International Conference on Embedded and Real-Time Computing Systems and Applica-
tions (RTCSA 2010).

2378 c© 2011 Information Processing Society of Japan

2379 A Library-based Performance Tool for Multicore Pervasive Servers

2. Problem Statement

SPLiT deals with three problems; programming, resource sharing, and thread
scheduling. A detailed description of each problem is as follows.
Programming Recent speed-ups of CPUs basically come from the increase

of parallelism, therefore, applications will never run faster unless the appli-
cations themselves run in parallel. Besides the parallelization, diversity of
CPU architectures also intensifies the difficulty of software implementation.
Considering these situations, programmers are required to optimize their ap-
plications according to the target architecture, however, this is not easy for
every programmer, and great efforts should be taken to optimize one appli-
cation to several architectures.

Resource sharing When a parallel application runs on a multicore processor,
functionalities to maintain consistency of data often cause bottle necks, such
as locking mechanisms for threads and processes, and overhead caused by
inappropriate cache coherency. More parallelism brings out more conflicts of
data accesses. Data confliction limits the speed up by the parallelism.

Thread scheduling Wentzlaff, et al. 3) pointed out scheduling on multicore
processors should be aware of both space and time sharing. That is, some
applications are ideal for being evenly scattered over the available cores,
rather than allocated onto one particular core. This is the problem of space
sharing, and a similar discussion is effective for time sharing of each CPU
core as well. Sometimes all the cores communicate with each other all at
once, and the equality of core usage is the key to decrease the blocking for
communication.

SPLiT provides library tools to optimize CPU allocation for applications on
multicore processors, which predict data accesses of the target application, and
provides optimum thread allocation avoiding data sharing and cache efficiency.
SPLiT library tools also requires programmers only to add the start point and
the end point of the target in the source code, and programmers benefit from all
the optimizations SPLiT provides.

3. Related Work

There are several researches on optimization techniques looking at the applica-
tion layers such as the work by Parello, et al. 4). These optimization techniques,
however, often require enormous trials, and are not portable to the other ar-
chitectures are they are. There are many proposals on infrastructures 5)–11) or
optimization techniques on data parallel applications 12) as well, which are not
applicable to applications with no data parallelism.

There are also several projects on optimization techniques approaching from OS
kernel layers, which is the same approach to SPLiT. Meng, et al. 13) succeeded
in an improvement of cache efficiency by handling thread private data on the
cache, however, their approach possibly restricts memory usage and requires
detailed control on thread private data and caches. Azimi, et al. 14), and Tam,
et al. 15) successfully decreased cache misses, reducing the latency of web server
applications.

4. SPLiT

4.1 Overview
SPLiT monitors applications, predicts process behavior based on the collected

data, and allocates resources. Figure 1 illustrates the overview of SPLiT. SPLiT

Fig. 1 Overview of SPLiT.

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

2380 A Library-based Performance Tool for Multicore Pervasive Servers

Table 1 Performance data to be recorded.

Data Features
Shared

For Each Application
app id application ID
related app id ID of related application
hash size hash size of data storage

For each code
code id code ID
count counts executed the code
cycle count number of cycles for the code
cache miss number of cache misses
related code id ID of related code
cpu mask core ID to be utilized

Non-Shared
code key type code key
code key table hash data for code recognition

library provides APIs to user programs, and SPLiT library function, which is
embedded at the entering (split start()) and evacuating (split end()) points of
the target process by the programmer, and is required to start the sequence of
monitoring and analysis. Programmers also have to call up the initialization
function, split init(), for the initialization of SPLiT in the beginning of their
applications. The callee function counts CPU cycles and cache misses of the
monitoring section, then, another library function saves the monitoring results
onto the memory.

Monitoring is enabled via Performance Monitoring Unit (PMU), which many
of the recent processors are equipped 14). The overhead of monitoring is much
smaller than the overhead by software monitoring, as PMU is a hardware sup-
ported functionality. PMU support by kernel is indispensable in order to com-
plete this monitoring process. CPU does not recognize which thread is running,
therefore, OS kernel has to save the register values and rearrange the events to
observe on thread switching. PMU support also provides APIs to accept requests
of PMU monitoring from user programs.

In the rest of this paper, we call the continuous part of the program to be
monitored a “code”. SPLiT library creates code id, records performance data,
and schedules threads for each code. Here, code id is provided as the return
value of split start() call. SPLiT lib also creates app id and records performance

Fig. 2 Illustration of how code id and split start() are utilized.

Table 2 Library API.

API functions features
app id split init(app id, related app id, code key type) initialize the application
code id split start(related code id, code key type) the beginning of a code
void split end() the end of a code
void split set(setting type, value) modify the settings
void split get(setting type, value) get the settings

data for each application in the similar fashion, and app id is the return value of
split init() call.

Table 1 shows the data to be recorded by SPLiT lib. Here, As already men-
tioned, code id is the return value of split start(), and app id is the return value
of split init() that is called only one at the beginning of the application. These re-
turn values are utilized to declare the relationship among codes. That is, code id
is expected to be passed as related code id to split start(), and app id is expected
to be passed as related app id to split init(). Figure 2 illustrates how code id
and split start() are utilized. The relationship between code id and split start()
is applicable to the relationship between app id and split init().

Table 2 summarizes functional calls of SPLiT, return values of these functional
calls, and parameters to the functional calls.

4.2 Statistics
SPLiT counts CPU cycles and the number of cache misses for each application.

The current version of SPLiT calculates an average for each metric, however, it
switches the way to calculate the average depending on the number of samples
(Eq. (1)). SPLiT utilizes an arithmetic average with smaller samples in order to

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

2381 A Library-based Performance Tool for Multicore Pervasive Servers

moderate the effect by jutted measurements. On the other hand, an exponential
moving average is utilized with a sufficient number of measurements. An expo-
nential moving average weights more on recent values, taking over older values.
Here, an is the current statistics, n is the counts of codes, a is the new mea-
surement, and an+1 is the updated statistics. θ is the threshold to switch the
methodology of statistics, and w is the weight of the exponential moving average.

an+1 =

{
(an × n + a)/(n + 1) (n < θ)
an × w + a × (1 − w) (n ≥ θ)

(1)

4.3 Resource Allocation Based on Predictions
SPLiT predicts the behavior of the application based on the statistics, and

then decides resource allocations. First of all, SPLiT categorizes codes into two
groups according to cache misses. Secondly, SPLiT decides the number of cores
to be allocated to each code, and then finally, starts allocation considering both
cache efficiency and the related codes. In the rest of this section, we describe
each step more specifically.

4.3.1 Code Categorization Based on Cache Efficiency
In order to increase cache hit rates, codes sharing the same data should be

allocated on the same core. Therefore, SPLiT categolizes codes based on cache
efficiency, and puts more priority on code categorises with better cache efficiency.
Dirty-code/clean-code

We call a code with more cache misses than the threshold a dirty-code, and
all the other codes clean-codes. A clean-code is eligible for better cache
efficiency, while a dirty-code is not.

Dirty-core/clean-core
We also categorize cores into dirty-cores, and clean-cores, depending on the
codes to process. We do this categorization in order not to degrade the
performance of clean-code by cache pollutions by dirty-codes.

4.3.2 Load Balancing Based on CPU Cycles
For the purpose of load balancing, SPLiT decides the number of cores to al-

locate for each code depending on the ratio of cycle clocks for clean-codes, and
dirty-codes.
Dirty-core allocation

As a dirty-code often rewrites a cache, the cache is hard to be utilized effec-
tively. Therefore, SPLiT does not consider cache efficiency for dirty-codes,
however, it balances loads. OS scheduler usually takes care of CPU load
balancing, and SPLiT mostly relies on OS scheduler for detailed process
scheduling with one exception to prohibit dirty-codes from allocation over
clean-cores.

Clean-core allocation
A clean-code has a chance for better cache utilization depending on core
allocation, therefore, SPLiT decides to allocate clean-codes to clean-cores
considering dependency among codes. Hints to analyze code dependency are
app id, related app id, code id, and related code id. Clean-core allocation
policy is as follows.
(1) When code ids are equal, the codes are allocated on to the same core,

as codes with the same ID often share data.
(2) When app ids are equal, the codes are allocated on to the cores shar-

ing the cache, as applications with the same ID often share data. Re-
lated applications are also allocated close to the application with re-
lated app id.

(3) Based on the ratio of CPU clocks of each application to the total CPU
clocks of the environment, SPLiT decides the number of cores to be
allocated for each application.

(4) SPLiT decides core allocation for codes, in descending order of CPU
clocks of the corresponding code. On this allocation, SPLiT considers
core allocation starting with cores allocated to the application, cores
allocated to the related codes, and then finally considers all the cores.

The overall sequence of core allocation is as follows.
(1) SPLiT calculates the average clock count for each core in advance. The

average clock counts is calculated as total clock counts for all the codes
divided by the number of cores.

(2) Among the cores allocated to the application, SPLiT chooses the core with
minimum clock counts in total.

(3) If the total clock counts spent will not exceed the average clock counts even
after the allocation of codes, SPLiT allocates code onto the core.

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

2382 A Library-based Performance Tool for Multicore Pervasive Servers

(4) If the total clock counts spent exceeds the average clock counts after the
allocation of codes, SPLiT tries to allocate the codes to the cores which
the related codes are allocated to.

(5) If there is no related code, SPLiT chooses the core with the minimum clock
counts spent among all the cores.

When all the core allocation is decided, Analyzer writes to cpu mask to specify
the allocated cores. When split start is called in the beginning of the code,
threads are moved to the core related to code key type.

5. Empirical Performance Evaluation

5.1 Setup
We implemented SPLiT onto the environment with features listed as Table 3.

Intel Core i7 975 equips four cores inside one CPU. Each core has two logical
processors, and two threads run in parallel on one core with HyperThreading
Technology 16). Intel Core i7 975 has three levels of cache structure. Each core has
L1 and L2 cache shared by the two threads, and L3 cache and the main memory
shared by all the threads 17). We also utilized Perfmon3 20) and mBrace 21) for
the full functionalities of SPLiT.

The effect of the resource management by SPLiT is measured through the ex-
periments with Apache 2.2.11 18), and MySQL 5.1.32 19). We chose Apache and
MySQL as workloads on the assumption that SPLiT is utilized for Web applica-
tions. As already described in Section 1, ubiquitous services come to rely on web
servers more and more, and pervasive servers utilized for these services comes
to be sufficient. Therefore, we can easily imagine the situation that pervasive
servers provide web services via Apache, and provide information requested by
clients referring to MySQL servers. Therefore, we picked up Apache and MySQL
for this experiment as strong candidates of near-future killer applications for per-

Table 3 Hardware and operating system for this implementation.

Processor Intel Core i7 965 (3.20 GHz)
Memory DDR SDRAM 3 GB
Network Device Marvell Yukon 88E8056

PCI-E Gigabit Ethernet Controller
OS Linux 2.6.30

vasive servers. Table 4 shows the hardware information of a client. For the Web
server, we utilized the same configuration shown in Table 3. Ideally, the hard-
ware is not a PC, but a more likely embedded hardware, however, such a rich
hardware is not available for embedded equipment yet. Therefore, we believe
PC with Intel CPU is a reasonable selection as the near-future pervasive servers.
Another reason for this hardware is PMU support. As SPLiT relies heavily on
PMU, therefore, PMU support is indispensable. Fortunately, Intel CPUs are very
common in practical use, and we believe the validation and efficiency for other
CPUs with PMU support. Further validation on this point, however, is reserved
a future work. Parameters such as the threshold for dirty-code recognition, θ, w,
and any others are determined through some experiments in advance. That is,
we ran through the experiments with several settings, and chose the best com-
bination. The proper methodology for parameter decision is reserved as future
work.

For Apache, SPLiT utilizes URL of the requested web page as code key type.
For this experiment, code key type is utilized to recognize the process, and is
passed as the parameter for split start() or split init(). SPLiT starts measure-
ment when the process, or thread, which is generated by Multi-Processing Module
(MPM) by Apache in advance, accepts an HTTP request from the client. When
the requested data is completely sent to the client, SPLiT finishes the measure-
ment. We modified Apache to send code id with an SQL query, as a query is sent
through SQL library when an application on Apache sends the query to MySQL
server. By this modification to Apache, an application on Apache always sends
code id without any modification to modules or applications.

For MySQL, SPLiT utilizes a query type and a target table as code key type.
SPLiT starts the measurement when the SQL server process accepts a query. On
this point, the code id passed with the SQL query from Apache is passed over to
the split start function as related code id. SPLiT ends the measurement, similar

Table 4 Hardware for a client.

Processor Intel Core 2 Duo (2.0 GHz)
Memory DDR3 SDRAM 2 GB (1067 MHz)
Network Device 10/100/1000BASE-T (Gigabit) Ethernet
OS Mac OS X 10.5.8

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

2383 A Library-based Performance Tool for Multicore Pervasive Servers

Fig. 3 Overview of measurement of Apache, and MySQL application.

to the case of Apache, when the requested data is completely sent to the client.
Figure 3 summarizes the flow of the target application, and how SPLiT is uti-
lized.

We utilized Rice University Bidding System (RUBiS) 22), and Apache JMeter
(JMeter) 23) as the workload for the benchmarks. RUBiS is a prototype of auction
sites, which is modeling eBay 24), and sales products are managed by MySQL
with seven tables. JMeter is an application for load testing and performance
measurements. The experiments here utilized JMeter in the client, and let the
client access RUBiS as a web server for performance measurements.

5.2 Prediction Accuracy
In order to measure the prediction accuracy of SPLiT, each code is repeated

1,000 times for statistics, and the same code is repeated 1,000 times again with
the same settings for measurement. The target codes are one code for Apache,
and another code for MySQL, however, be aware that these codes are utilized
repeatedly whenever a new request comes from a client. We also tested the
case with and without core allocations by the proposed methodology in order
to compare the efficiency of core allocation. Table 5 is the summary of the
empirical results. Here, error is defined as Eq. (2) with sn for statistics, and mn

for the actual measurement. The maximum error of cycles, or the maximum

Table 5 Prediction accuracy.

W/O Core Allocation W/ Core Allocation
Apache MySQL Apache MySQL

Error for Cycles [%] 11.2 5.7 9.0 1.3
Error for
Cache Misses [%] 9.0 6.7 4.1 1.8
Maximum Error
for Cycles [%] 129.3 230.1 134.2 148.1
Maximum Error for
Cache Misses [%] 100.4 227.2 94.7 170.0

error of cache misses is the maximum value of ((sn − mn)/mn) for each case.

e =
1
N

N∑
n=1

sn − mn

mn
(2)

Based on Table 5, we can conjecture that core allocation reduces both errors
and the maximum error with the exception of the maximum error for cycles of
Apache. The reason for this exception is that variations of cycles, and cache
misses are suppressed by restricting available cores by core allocation.

5.3 Response Time
Utilizing JMeter in the client, we measured the turn around times of web

applications. Here, the turn around time of a web application is defined as the
duration of the process at a client. During the processing time, the client sends
HTTP requests to the Web applications according to the scenario in JMeter,
and completely accepts the responses for all the requests sent. We prepared two
kinds of scenario of JMeter. One scenario is that each process accesses pages
with a small amount of data to exchange frequently (many accesses). The other
scenario is that the total number of accesses to a page is small, however, the
total amount of data to exchange for each access is huge (huge data). Table 6
summarizes the number of files to access, the total amount of data to receive, and
the number of SQL queries for each scenario. For each scenario, we measured
the performance of 1) the original versions of Apache, and MySQL (Original), 2)
the modified version only with performance prediction by SPLiT (Prediction),
and 3) the modified version with performance prediction and core allocation by
SPLiT (Prediction + Core Allocation).

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

2384 A Library-based Performance Tool for Multicore Pervasive Servers

Table 6 Details of scenarios.

Many Accesses Huge Data
Number of Clients 1,000 100
Number of Files to Access 14,000 1,300
Number of SQL Queries 10,000 4,542,500
Lines of Database [millions] 184.4 23.0
Total Data Files Received [MB] 218.2 409.7

Table 7 Turn around time for many accesses scenario.

Turn Around Time [ms] Overhead [%]
Original 21,788 —
Prediction Only 22,888 + 5.0
Prediction + Core Allocation 20,759 − 4.7

Table 8 Turn around time for huge data scenario.

Turn Around Time [ms] Overhead [%]
Original 152,426 —
Prediction Only 156,275 + 2.5
Prediction + Core Allocation 112,738 − 26.0

Table 7 summarizes the results with the scenario of many accesses. In this
scenario, the overhead of SPLiT is 5.0%, and the overall performance is improved
with 4.7% utilizing both prediction and core allocation by SPLiT.

Table 8 summarizes the results with the scenario of huge data. In this scenario,
the overhead of SPLiT is 2.5%, and the overall performance is improved with
26.6%, which is better than the results the with scenario of many accesses. SPLiT
optimizes applications with both many accesses, and huge data, however, there
are more effects on applications with huge data transfer. Regardless of senario,
the network cost for the same process in the same senario is identical, therefore,
the key for the speed-up is the process on CPU, which is the very part SPLiT
optimizes. Compared with the many accesses senario, the number of SQL queries
is huge in the huge data senario. We can conjecture that the optimization on
SQL query thread by SPLiT speeds up the corresponding process at a certain
level, and then the effect cumulatively made a big difference on the speed-ups on
the two senarios.

5.4 Core Allocation
We measured the turn around times of two kinds of core allocation policies

Table 9 Turn around time with core allocation.

Turn Around Time [ms] Overhead [%]
Original System 152,426 —
Intensive 127,462 − 16.4
Extensive 243,898 + 60.0

Table 10 Overhead of each part of SPLiT.

Overhead [ms] Ratio [%]
Shared Memory Access for Statistics 1,731 34.0
PMU Control by Perfmon3 839 16.5
Thread Migration 101 2.0
Analyzer 410 8.1
SPLiT lib and Related Codes 570 11.2
Modification of Apache, and MySQL 1,439 28.3
Total 5,090 100.0

with the huge data scenario in order to validate the effect of the core allocation
policy by SPLiT. One policy is that each application is allocated onto each phys-
ical core, and the two logical cores on the same physical core execute the same
application. We call this allocation intensive allocation, which is implemented
as the core allocation policy of SPLiT. The other policy is that one logical core
executes Apache, and the other logical core on the same physical core executes
MySQL. We call this type of core allocation extensive allocation. Table 9 com-
pares the turn around times of the original system, intensive allocation, and
extensive allocation. The intensive allocation is 16.4% better than the original
system, while the extensive allocation is 60.0% worse. We can conjecture that
core allocation has a strong impact on the performance of applications, and the
intensive allocation is the right approach.

5.5 Overhead of SPLiT
We measured the duration of the huge data scenario in order to clarify the

overhead of each part of SPLiT, disabling the corresponding part of SPLiT.
Table 10 summarizes the measured overheads. Here, the sum of all of the ratio
is not equal to 100% because of the effect of rounding errors.

5.6 Total Amount of Code Modification
One huge advantage of SPLiT is that a small modification to the application

enables all the features of SPLiT including performance monitoring and resource

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

2385 A Library-based Performance Tool for Multicore Pervasive Servers

Table 11 Total amount of code modifications.

Number of Lines
Application modified or deleted added

Apache (moduled) 0 73
Apache (embedded) 0 10

MySQL library 0 162
MySQL server 6 48

optimizations. All SPLiT requires of programmers is adding several lines to
the applications for SPLiT library calls. Table 11 shows the total amount of
code modifications for Apache with moduled SPLiT, Apache with embedded
SPLiT, MySQL library, and MySQL server respectively. Here, the modification
to MySQL library is to let web applications on Apache send code id with SQL
query to SQL server. As summarized in Table 11, only small changes to the
application source codes are enough to embed SPLiT library calls.

6. Conclusion

In this paper, we proposed SPLiT, which predicts the behaviors of processes
and threads, and optimizes resource allocations based on the predictions on the
fly. For predictions, SPLiT utilizes the statistics collected via PMU. All the
programmers are required to do is simply to specify the target codes of the
application by surrounding the function calls to tell SPLiT which part of the
codes should be optimized. Once this small modification to the application is
made, all the monitoring, analysis, and optimizations through resource allocation
provided by SPLiT are turned on.

We implemented SPLiT library on the linux environment and validated the ef-
ficiency of SPLiT through experiments assuming optimizations on web services.
The experiments are set up realistically utilizing RUBiS and JMeter, and SPLiT
improved the performance of web applications by 26%, and the total code mod-
ification was only 10–162 lines.

SPLiT will play a more important role for a good solution of optimum resource
usage, which is an especially challenging goal in a multicore environment. For
better resource management and further optimizations by SPLiT, we are planning
a greater improvement of predictions, as well as support for other hardwares and

multi-threading.
Acknowledgments This material is based in part on work supported by

“New IT Infrastructure for the Information-explosion Era”, MEXT Grant-in-Aid
for Scientific Research on Priority Areas.

References

1) Nakajima, T.: Pervasive Servers: A framework for creating a society of appliances,
Pers Ubiquit Comput, Vol.7, pp.182–188 (2003).

2) Veal, B. and Foong, A.: Performance scalability of multi-core web server, Proc.
3rd ACM/IEEE Symposium on Architecture for Networking and Communications
Systems (ANCS’07), pp.57–66 (2007).

3) Wentzlaff, D. and Agarwal, A.: Factored operating systems (FOS): The case for a
scalable operating system for multicores, SIGOPS Oper. Syst. Rev., Vol.43, No.2,
pp.76–85 (2009).

4) Parello, D., Temam, O., Cohen, A. and Verdun, J.-M.: Toward a systematic, prag-
matic and architecture-aware program optimization process for complex processors,
Proc. 2004 ACM/IEEE Conference on Supercomputing (SC’04), p.15 (2004).

5) Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly, D.: Dryad: Dis-
tributed data-parallel programs from sequential building blocks, Proc. 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007 (EuroSys’07),
pp.59–72 (2007).

6) Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., et al.: OpenMPI: Goals,
concept, and design of a next generation MPI implementation, Proc. 11th European
PVM/MPI Users’ Group Meeting (2004).

7) Dagum, L. and Menon, R.: OpenMP: An industry-standard api for shared-memory
programming, IEEE Computer Science and Engineering, Vol.5, No.1, pp.46–55
(1998).

8) Munshi, A.: OpenCL: Parallel Computing on the GPU and CPU, SIGGRAPH,
Tutorial (2008).

9) Dean, J. and Ghemawat, S.: MapReduce: Simplified data processing on large clus-
ters, Proc. 6th OSDI, pp.137–150 (2004).

10) Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G. and Kozyrakis, C.: Eval-
uating mapreduce for multi-core and multiprocessor systems, Proc. High Perfor-
mance Computer Architecture 2007 (HPCA2007) (2007).

11) Reinders, J.: Intel threading building blocks, O’Reilly & Associates, Inc., Se-
bastopol, CA, USA (2007).

12) Chen, S., Gibbons, P.B., Kozuch, M., Liaskovitis, V., Ailamaki, A., Belelloch, G.E.,
Falsafi, B., Fix, L., Hardavellas, N., Mowry, T.C. and Wikerson, C.: Scheduling
threads for constructive cache sharing on cmps, Proc. 19th Annual ACM Symposium

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

2386 A Library-based Performance Tool for Multicore Pervasive Servers

on Parallel Algorithms and Architectures (SPAA’07), pp.105– 15 (2007).
13) Meng, J. and Shadron, K.: Avoiding Cache Thrashing due to Private Data Place-

ment in Last-level Cache For Manycore Scaling, Proc. 2009 IEEE International
Conference on Computer Design (ICCD’09) (2009).

14) Azimi, R., Tam, D.K., Soares, L. and Stumm, M.: Enhancing operating system sup-
port for multicore processors by using hardware performance monitoring, SIGOPS
Oper. Syst. Rev., Vol.43, No.2, pp.56–65 (2009).

15) Tam, D., Azimi, R. and Stumm, M.: Thread clustering: Sharing-aware schedul-
ing on smp-cmp-amr multiprocessors, Proc. 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (EuroSys’07), pp.47–58 (2007).

16) Kaufaty, D. and Marr, D.T.: Hyperthreading thechnology in the netburst microar-
chitecture, IEEE Micro, Vol.23, No.2, pp.56–65 (2003).

17) Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3B: System Programming Guide, Part 2 (2009).

18) Apache. http://www.apache.org/
19) MySQL. http://www.mysql.com/
20) Perfmon project. http://perfmon2.sourceforge.net/
21) van der Zee, A., Courbot, A. and Nakajima, T.: mBrace: action-based performance

monitoring of multi-tier web applications, Proc. 3rd Workshop on Dependable Dis-
tributed Data Management (WDDM’09), pp.29–32 (2009).

22) RuBiS. http://rubis.ow2.org/
23) JMeter. http://jakarta.apache.org/jmeter/
24) eBay. http://www.ebay.com/

(Received December 5, 2010)
(Accepted May 14, 2011)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.19, pp.421–429.)

Sayaka Akioka is a researcher in Information Technology Re-
search Organization of Waseda University. She received her Ph.D.
in computer science from Waseda University in 2004. Prior to join-
ing Waseda University in April 2010, she was an assistant profes-
sor in The University of Electro-Communications. Her research
interests lie in the area of a parallel computing and data mining.
In particular, her research focuses on the resource management

in parallel computing environment. Recent projects have included the dynamic
scheduling of data intensive applications in a cloud environment, and the design
of efficient algorithms for machine learning algorithms on GPU processors.

Yuki Ohno received his B.S. degree in computer science from
Waseda University, Japan, in 2008, and Master Degree in 2010
in the Department of Computer Science at Waseda University,
Japan. His research interests are in monitoring, operating system
and resource management in distributed system.

Midori Sugaya is a lecturer of Yokohama National University.
She has eight years of work experience in the software industry.
She received her Master Degree in computer science from Waseda
University, Japan, in 2004, and belonged to Dependable Embed-
ded OS R&D Center, Japan Science and Technology Agency (JST)
in 2008 and received her Ph.D. in computer science from Waseda
University in 2010. Her research interests include operating and

dependable systems and proactive fault management system.

Tatsuo Nakajima is a professor of the Department of Com-
puter Science and Engineering at Waseda University. His research
interests are distributed systems, embedded systems, ubiquitous
computing and interaction design. Currently, his group is work-
ing on three topics. The first topic is to develop a virtualization
layer for multicore processor based embedded systems. The sec-
ond topic is to develop ambient media that are new media to help

human decision making. The third topic is to develop a crowdsourcing services
to exploit human computation.

IPSJ Journal Vol. 52 No. 8 2378–2386 (Aug. 2011) c© 2011 Information Processing Society of Japan

