
IPSJ SIG Technical Report

An Energy Optimization Framework

for Embedded Applications

Hideki Takase,†1,†2 Gang Zeng,†1

Hirotaka Kawashima,†1 Noritoshi Atsumi,†1

Tomohiro Tatematsu,†1 Lovic Gauthier,†3

Tohru Ishihara,†3 Yoshitake Kobayashi,†4

Shunitsu Kohara,†4 Takenori Koshiro,†4

Hiroyuki Tomiyama†5 and Hiroaki Takada †1

This paper presents a framework for the purpose of energy optimization of
the embedded systems. Our framework is synthetic, that is, multiple tech-
niques optimize the target application simultaneously. The main technique of
our approach is to utilize the trade-off between energy and performance of the
embedded processor configuration. Additionally, the optimization technique
about the memory allocation is employed in our framework. Our framework
is also gradual, that is, the target application is optimized in a step-by-step
manner. The characteristic and behavior of target application are optimized
in both intra-task and inter-task level at the static time. Based on the results
of the static optimization, the energy-optimal processor configuration is dy-
namically changed according to the behavior of the application. Moreover, we
implemented the presented framework as a toolchain and a real-time operating
system. The energy minimization in the average case can be achieved with
keeping the real-time performance.

1. Introduction

Our life is surrounded by a large number of equipments into which comput-
ers are embedded. If the energy reduction per one equipment even a little can
be achieved, it is possible to give the meaningful contribution to the whole so-

†1 Nagoya University
†2 The Japan Society for the Promotion of Science
†3 Kyushu University
†4 Toshiba Corporation
†5 Ritsumeikan University

ciety. Also, the amount of energy consumption might decide commodity value
of the product. The energy saving has become one of the primary goals in the
embedded systems. So far, a number of techniques have been proposed for the
energy optimization of embedded applications. However, the man-hour for the
energy optimization cannot be thrown in the development process of embedded
applications due to its growing scale and complexity.

This paper presents a synthesizing and gradual framework for energy opti-
mization of the embedded applications. The term ‘synthesizing’ means that our
framework includes multiple energy optimization techniques. It is advisable to
apply as many techniques as possible for the energy reduction. Besides, combin-
ing individual elemental techniques will achieve a synergistic effect on the energy
consumption. The term ‘gradual’ means that the whole optimization process is
split into three phases, i.e., the intra-task, the inter-task, and the runtime opti-
mization phases. The static optimization obtains the characteristic and behavior
of target application at both the intra-task and inter-task level. Then, the run-
time optimization performs with the results of the static optimization. The main
idea of our approach is to utilize the trade-off between energy and performance
of the embedded processor. It aims the energy minimization in the average case
while guaranteeing task deadline constraints. It should be noted that though our
approach employs application-dependent optimization, it is widely applicable in
many embedded applications.

An optimization toolchain at static phase and a real-time operating system
(RTOS) for the runtime optimization are implemented in this work. In the em-
bedded domains, there is a commonly-held view that the characteristic and run-
time behavior of the application are known at the design phase. These are enough
obtained by our analytic and optimization toolchain at static phase. Then, the
RTOS utilizes the acquired analysis results for the purpose of runtime optimiza-
tion. Our toolchain will contribute the reduction of incidence in the man-hour
to the embedded application’s developers since the energy optimization process
is designed to be automatically performed.

The rest of this paper is organized as follows. Section 2 presents our objective
and overview of the framework. From Section 3 to Section 5, the respective phases
of the energy optimization framework are described in the order of processing.

c© 2011 Information Processing Society of Japan1

Vol.2011-SLDM-149 No.3
Vol.2011-EMB-20 No.3

2011/3/18

IPSJ SIG Technical Report

DEPS

table

intra-task

optimization

HW

configuration

･bugdet distribution

･inter-task

 SPM partitioning

･compile DEPS

profile

linker

info.

･simulation

･checkpoint

 extraction

･intra-task

 memory allocation

･DEPS profiling

task

code

inter-task

optimization

test

data

･SPM switching

･slack estimation

･DEPS

runtime

optimization

SPM

table

task set

info. loadable

module

Fig. 1 The overview of the energy optimization framework.

Section 6 presents the implementation of the prototype of our framework. Finally,
Section 7 concludes this paper.

2. Overview of the Energy Optimization Framework

2.1 Objective and Target Systems
Our objective is to minimize the energy consumption in the average case of the

embedded application. The framework presented in this paper targets the hard
real-time embedded systems where the high responsiveness is indispensable to
execute its processing exactly. In the real-time systems, one of the most impor-
tant things is that all tasks must be completed within their deadline. Therefore,
our framework takes a policy for guaranteeing the task deadline constraint in the
optimization.

In the target systems, a set of independent periodic tasks or sporadic tasks
(aperiodic tasks with minimal inter-arrival separation) is assumed to constitute
the application. Also, we assumed the environments where tasks are scheduled
according to the priority based preemptive scheduling with static priority assign-
ment to ensure the real-time performance.

2.2 Workflow
Fig. 1 indicates the workflow of our framework. It consists of three phases.

The first is an intra-task optimization phase. Characteristic of each task is an-
alyzed with execution traces obtained by the instruction-set simulation. The

second is an inter-task optimization phase. Based on the results obtained at the
former phase, an application level characteristic and behavior are analyzed and
optimized. each task is assigned to a processor and execution time budget is
distributed to a task. The last is a runtime optimization phase. The runtime
optimization achieves maximal energy savings with two management tables gen-
erated at previous phase. This runtime mechanism is designed as the function of
a RTOS.

The framework treats source code of task and input data set for the task
with weight as pieces of input information. So that the average case energy
consumption becomes minimum, a frequently executed input data set has to have
a large weight. It should be noted that the characteristics of target application
are enough obtained at static time in the embedded domain. We use an analytic
approach by using a number of execution traces obtained by the simulation.
The reason why we use the trace analysis is that execution traces includes the
information about the characteristics and realistic behavior of target application.
Moreover, execution traces are easily acquired since the worst case execution time
analysis or the functional test is generally performed by a set of representative
test data at development time. These obtained results are fully exploited at
runtime phase for the purpose of energy optimization. Since the optimization is
performed based on the execution traces of the target application, our approach
is widely applicable to many embedded applications.

2.3 Elemental Techniques
As a key technique of our framework, dynamic energy and performance scaling

(DEPS) technique has been proposed in 1), 2). The DEPS is a generalized
technique of commonly used DVFS (Dynamic Voltage and Frequency Scaling).
The rationale behind DEPS is the existing trade-off between performance and
energy by selecting different processor configurations. In addition to the voltage
and frequency of the processor, any reconfigurable hardware mechanisms that
can trade-off performance for energy savings are considered in the DEPS.

In general, the performance requirements of application are different from phase
to phase. The DEPS tries to set the processor configuration at runtime to the
lowest energy consumption subject to the performance constraint. A main is-
sue of DEPS is to determine when and what processor configuration should be

c© 2011 Information Processing Society of Japan2

Vol.2011-SLDM-149 No.3
Vol.2011-EMB-20 No.3

2011/3/18

IPSJ SIG Technical Report

used. To cope with it, we developed several software tools for fully exploiting the
performance/energy characteristics of givens applications at design time, and an
energy-aware RTOS for processor reconfiguration at run time. To evaluate and
validate the DEPS, we have developed a multi-performance processor (MPP)3),4).
The MPP has two processing elements with different voltage and frequency, and
they can be dynamically switched between them rapidly (within 1 us). Moreover,
instruction cache of MPP is resizable by changing its associativity.

Additional technique to be synthesized to the framework is the optimization of
the memory allocation. We have proposed the memory allocation techniques for
the scratch-pad memory (SPM)5)–8). SPM is a fast, tiny, and energy-efficient on-
chip SRAM compared with the cache memory. The basic idea of these techniques
is that concentrated allocation of a frequently accessed code and data to the SPM
will bring energy reduction of the embedded systems. The technique of 5) can
arrange the code and static data placement at the single task level. The technique
of 6) is able to apply to the stack data. A dedicated sequence of instructions is
inserted to the source code to control the value of stack pointer for allocating a
part of stack frame to SPM. Moreover, efficient SPM allocation techniques for
multi task environments were proposed in 7), 8). The space of SPM is spatially
or temporarily partitioned to the tasks for the purpose of energy minimization.

3. Intra-task Optimization Phase

Fig. 2 indicates the workflow of the intra-task optimization phase. The pieces
of output information in this phase are the modified task code, the information
about intra-task level memory allocation, and a DEPS profile. This section
describes the processing of the intra-task phase in the order of step.

3.1 Simulation
At first step of the intra-task phase, a number of execution traces are obtained

by the simulation of target application with various kinds of input data set. It is
advisable that the number of obtained execution traces is expected to be larger.
Additionally, each input data set is weighted by its appearance frequency. The
different execution paths are generated by using the different input data set.
These can improve the effectiveness of optimization for the average case energy
consumption since an importance of execution path is related to the appearance

simulation
task

code

test

data

HW config.

info.

execution

trace
checkpoint

extraction
task code with
checkpoints

intra-task

memory

allocation

DEPS

profiling

DEPS

profile

intra-task

memory
linker info.

modified

task code

Fig. 2 The workflow of the intra-task phase.

frequency of input data set.
3.2 Checkpoints Extraction
The purpose of this step is to insert checkpoints appropriately into the source

code of task. We define a checkpoint as the location in a program where the
appropriate processor configuration may be changed. Checkpoints are inserted
into the program as a sequence of instructions.

To achieve this purpose, we have proposed an execution trace mining in 9),
which is an analytical technique for deriving the characteristics of the task auto-
matically from the set of execution traces. This technique is applied to extract
the most effective checkpoints with the large amount of execution traces obtained
by the previous step.

It is important where to insert checkpoints to enhance the effectiveness of the
DEPS. Checkpoints should be inserted at which the calculation of the remaining
worst case execution time can be greatly changed or at which characteristic of
the task can be greatly changed. These are extracted as checkpoints where the
energy-efficient processor configuration may change at runtime. Note that too

c© 2011 Information Processing Society of Japan3

Vol.2011-SLDM-149 No.3
Vol.2011-EMB-20 No.3

2011/3/18

IPSJ SIG Technical Report

many checkpoints raise the significant overhead on both execution time and en-
ergy consumption at runtime. Therefore, only effective checkpoints are selectively
inserted in the source code.

3.3 Intra-task Memory Allocation
Next optimization is the memory allocation about each task. The allocations

of program code and data are decided to whether SPM or main memory based
on the memory access history obtained from execution traces.

At first of this step, stack data allocation proposed in 6) is performed. A
frequently accessed part in the stack frame is decided to be allocated to the space
of SPM. The dedicated sequences (warp/unwarp instructions6)) are inserted into
the source code to control the value of stack pointer. The completely modified
source code is generated in this optimization. No modification to the source code
of target application is made after this optimization. Then, the method proposed
in 5) optimizes the allocation of program code and static data. It should be noted
that this optimization decides only the amount of SPM used by a task.

3.4 DEPS Profiling
The last step of the intra-task optimization phase is a DEPS profiling pro-

posed in 10). By running the cycle-level simulation with modified task code
and determined memory allocation, the worst case execution time and the aver-
age energy consumption of each configuration at each checkpoint are obtained.
The DEPS profiling uses these information to calculate the worst case execution
time and the average energy consumption of the possible combinations of the
processor configuration. A challenge is that there are too many combinations
of processor configuration to check them. Our approach is to only reserve the
Pareto-optimal configuration combinations that have higher performance or less
energy consumption than any other ones, and other combinations are pruned at
this analysis. We call its results a DEPS profile10), that consists of configura-
tion combination of checkpoints, and their worst case execution time and average
energy consumption.

4. Inter-task Optimization Phase

Fig. 3 shows the workflow of the second phase of our framework. The appli-
cation level behavior is optimized with the information of a task set, i.e., the

task set

info.

DEPS

profile

HW config.

info.

budget

distribution

inter-task

SPM

partitioning

compile
SPM

table

intra-task

memory
linker info.

DEPS

table

inter-task

memory
linker info.

loadable

module

kernel /
library code

modified

task code

Fig. 3 The workflow of the inter-task phase.

activate interval, the deadline and priority of each task within the application.
Additionally, the inter-task optimization uses the results of the prior phase as
shown in Fig. 3. There are two management tables as outputs of this phase.

4.1 Budget Distribution
In this step, tasks are assigned to cores, and execution time budgets are dis-

tributed to each task in such a way that the total system energy is minimized
and all deadlines are met. To achieve the above objective, an integer linear prob-
lem is constructed, and it is solved by using the task set information and DEPS
profiling of each task2).

The output of this step is a DEPS management table. As shown in Fig. 4, this
table consists of all selectable processor configurations for each checkpoint and
corresponding remaining worst case execution time. Note that these configura-
tions are sorted as increased remaining worst case execution time and decreased
energy consumption to simplify their use at the runtime phase.

c© 2011 Information Processing Society of Japan4

Vol.2011-SLDM-149 No.3
Vol.2011-EMB-20 No.3

2011/3/18

IPSJ SIG Technical Report

Fig. 4 An example of the DEPS management table.

4.2 Inter-task SPM Partitioning
In a multi-task environment, SPM is to be shared among the tasks. The space

of SPM is spatially or temporarily partitioned to the tasks in order to minimize
the amount of SPM where multiple tasks share by using the technique proposed
in 7), 8). Note that the allocation of each task’s memory object has been decided
in the intra-task optimization phase. The inter-task SPM partitioning step only
determines the address in which each task uses.

Like prior step, this step outputs a table about the SPM optimization. We call
this output information as a SPM management table as shown in Fig. 5. The
SPM management table falls into two types; the task-level and the system-level
management tables. These management tables are utilized at the runtime phase.
The space of SPM where multiple tasks use is maintained so that a running task
temporarily uses it.

5. Runtime Optimization Phase

The pieces of optimization processing in the runtime phase are as follows;
(1) Switch the contents of SPM at each task switching
(2) Calculate the amount of slack time at each checkpoint
(3) Switch the processor configuration at each checkpoint

The first is performed with the SPM management table described in Section 4.2.
When a task is switched to running state, its code and static data are temporarily

rgn dram addr

0 0x600

2 0x630

3 0x670

task-level table

index alloc spm addr mm size

0 2 0x00 0x30

1 2 0x50 0x10

2 3 0x60 0x40

3 1 0xa0 0x30

system-level table

ROM area

RAM area

Fig. 5 An example of the SPM management table.

allocated to the space of SPM. The second is conducted at each checkpoint to
estimate the runtime slack approximately at low cost. The third is performed
based on the slack time calculated at runtime and the DEPS management table
described in Section 4.1. The optimal processor configuration that can meet the
deadline constraint and with the minimum energy consumption is selected.

In our framework, the runtime overhead is limited because most of the analysis
and optimization are performed at the static phase, and their results are saved
as tables for runtime use.

6. Implementation

To evaluate the effectiveness of this work, we implemented the prototype of the
presented framework as a toolchain.

As the target processor, the Toshiba MeP11) was employed in our imple-
mentation. We developed the RTOS which has the runtime mechanism pre-
sented in Section 5 as the extended version of TOPPERS/FMP kernel12). TOP-
PERS/FMP kernel is the open source RTOS for the multi-processor systems.
For calculating energy consumption, we have developed an energy estimation
tool in the work of 13). The amount of energy consumption is estimated by the
execution trace and the characterized information of the chip as shown in Fig. 6.

Our prototype is designed to be executed on the multi-performance processor
(MPP)3),4). The MPP has two processing elements and resizable 4-way instruc-
tion cache. Our RTOS treats these eight combinations of configuration as the
selectable processor configuration by the DEPS function.

As the target application, we deal the brief version of the video-conference
application shown in Fig. 6. It consists of video encoding/decoding tasks, audio

c© 2011 Information Processing Society of Japan5

Vol.2011-SLDM-149 No.3
Vol.2011-EMB-20 No.3

2011/3/18

IPSJ SIG Technical Report

application

VENC
IOC

ULP RTOS (extended TOPPERS/FMP)

VDEC
AENC ADEC

VE VE VD VD

Core1 Core2 Core3 Core4 Core5

execution

trace

energy

optimization

program

analysis

chip

characterizing

energy

estimation

simulator
HW

specification

chip design

Fig. 6 The constitution of the video-conference system and the workflow of the energy
estimation.

encoding/decoding tasks, and the I/O control task. Moreover, each video codec
is further divided to multiple tasks. Each task is executed concurrently on the
multi processor environment. We are planning to evaluate the effectiveness of
implemented toolchain with its application.

7. Conclusion

This paper presented a synthesizing and gradual framework for the energy
minimization of the embedded applications. Our approach mainly utilizes the
trade-off between energy and performance on the processor configuration. The
characteristic and runtime behavior of target application are enough analyzed at
static phase of our framework. Then, energy optimization is performed at runtime
based on the information of two management tables generated at static phase.
We implemented the optimization framework as the toolchain and the RTOS. In
future, we are planning to evaluate the effectiveness of presented framework via
the practical applications.

Acknowledgments This work is supported by Core Research for Evo-
lutional Science and Technology (CREST) of Japan Science and Technology

Agency.

References

1) Zeng,G., et al.: A Generalized Framework for Energy Savings in Hard Real-Time
Embedded Systems, IPSJ Transactions on System LSI Design Methodology , Vol.2,
pp.180–188 (2009).

2) Zeng,G., et al.: A Generalized Framework for Energy Savings in Real-Time Multi-
processor Systems, Proc. Intl SoC Design Conference (ISOCC), pp.44–49, (2008).

3) Ishihara,T. et al.: AMPLE: An Adaptive Multi-Performance Processor for Low-
Energy Embedded Applications, Proc. IEEE Sympo. on Application Specific Pro-
cessors (SASP), pp.83–88 (2008).

4) Ishihara,T.: A Multi-Performance Processor for Reducing the Energy Consump-
tion of Real-Time Embedded Systems, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, Vol.E93-A, No.12, pp.2533–
2541 (2010).

5) Ishitobi, Y., et al.: Code and Data Placement for Embedded Processors with
Scratchpad and Cache Memories, Journal of Signal Processing Systems, Vol. 60,
No.2, pp.211-224 (2008).

6) Gauthier,L. and Ishihara,T.: Optimal Stack Frame Placement and Transfer for En-
ergy Reduction Targeting Embedded Processors with Scratch-pad Memories, Proc.
IEEE Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia),
Grenoble, France, pp.116–125 (2009).

7) Takase,H., et al.: Partitioning and Allocation of Scratch-Pad Memory in Priority-
Based Multi-Task Systems, IPSJ Transactions on System LSI Design Methodology ,
Vol.2, pp.180–188 (2009).

8) Takase,H. et al.: Partitioning and Allocation of Scratch-Pad Memory for Priority-
Based Preemptive Multi-Task Systems, Proc. Design Automation and Test in Eu-
rope (DATE), Dresden, Germany, pp.1124-1129 (2010).

9) Tatematsu,T., et al.: Checkpoints Extraction Using Execution Traces for Intra-
Task DVFS in Embedded Systems, Proc. Intl Sympo. on Electronic Design, Test
and Applications (DELTA), Queenstown, New Zealand, pp.19–24 (2011).

10) Kawashima,H., et al.: Intra-task Analysis of Worst Case Execution Time and
Average Energy Consumption on DEPS Framework, IEICE Technical Report , to
appear.

11) MeP (Media embedded Processor). http://www.semicon.toshiba.co.jp/

product/micro/selection/mep/index.html (accessed 2011-02-10).
12) TOPPERS project. http://www.toppers.jp/en/ (accessed 2011-02-10).
13) Ishihara,T. and Goudarzi,M.: System-Level Techniques for Estimating and Reduc-

ing Energy Consumption in Real-Time Embedded Systems, Proc. Intl SoC Design
Conference (ISOCC), pp.67–72 (2007).

c© 2011 Information Processing Society of Japan6

Vol.2011-SLDM-149 No.3
Vol.2011-EMB-20 No.3

2011/3/18

