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Supporting Collective Queries in Database System

for Data-intensive Workflow Applications

Ting Chen∗1 and Kenjiro Taura∗1

Workflow system becomes the most important and necessary tool for data-
intensive applications, enabling the composition and execution of complex anal-
ysis on distributed resources. Due to simple and effective query expression
and high performance on query processing of parallel DBMS, we proposed a
database system for workflows in which task in workflows can be expressed as a
SQL query and processed by our systems. To be effectively used in the support
of workflows, our database system supports collective queries in which multiple
clients collectively issue a set of queries operated on a collection of data set as
if a large data-scanning query is sent. Collective queries are integrated into a
single SQL query which will be transformed into a logical plan composed of
relational operator and sub-query and parallelized into multiple underlying re-
sources. Finally result data is distributed into multiple clients in a coordinated
way which can reduce a lot of data communication cost. Experiments show
that our current database system is feasible and scalable to some extends.

1. Introduction

The world of science has experienced paradigm of experimental science, theo-

retical science, computational science and now come to the forth paradigm data-

intensive science termed by Jim Gray1). This new paradigm introduces a wave

of data-driver approaches to data captured by instruments or generated by sim-

ulations before being processed by software. Researches in many disciplines such

as environment, weather, and medicine, are considered as typical data-intensive

applications. A typical situation is that researchers are collecting data either

from instruments or sensors, or from running simulations, then pretty soon they

end up with a large amount of data (files) and there is no easy way to manage

or analyze these data.

There is very wide agreement that data-intensive methods are key to data-
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intensive applications in many disciplines and receive more and more interest2).

Such methods are expected to play an increasing role in providing evidence for

well-informed decisions and policies. Therefore, they are of great scientific and so-

cial importance. There are many approaches to support data-intensive methods,

such as workflow technologies3)4)5), augmented familiar tools and Map-Reduce

framework6) over large-scale distributed systems.

Scientific workflow systems have become the most important and necessary

tool for many applications, enabling the composition and execution of complex

analysis on distributed resources. To make it easier for scientists to focus on

their research rather than computation management, scientific workflow systems

aim at automating a cycle of moving data to a supercomputer for analysis ,

simulation, launching the computations and managing the storage of the output

results. A Workflow refers to the activity of defining the sequence of tasks needed

to manage a business or computational science or engineering process. A Work-

flow Instance is a specific instantiation of a workflow for a particular problem

and includes the definition of input data. To take advantage of workflow sys-

tem, firstly a composition of the workflow is designed which specifically is tasks

with their dependencies through a number of different means, such as text and

graphic. Then, the workflow (tasks) is mapped to underlying resources. Each

task may perform an independent computation to the data or a similarly complex

computation that involves dividing the data set into smaller ones in order to sup-

port concurrent processing. So finally task is executed based on some semantic

rules on mapped resource and the result data comes out after execution of the

workflow.

Another attractive method for data-intensive applications is MapReduce

Model6). It provides a simple model through which users can express relatively

sophisticated distributed programs while hiding the messy details of paralleliza-

tion, fault-tolerance, data distribution and load balancing. A user-defined map

function is applied to each key/value pair of the input, which produces a set

of intermediate key/value pairs, and then a user-defined reduce function is used

to aggregate all the values with the same key. For data-intensive applications,

lots of researchers focus on constructing map-reduce enabled workflow systems

in which a heavy task can be expressed as Map and Ruduce jobs7) or a whole
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workflow composition is created as mapreduce style8).

Given this, a natural question is proposed that why don’t take advantage of

parallel DBMS. Parallel database systems9) have been commercially available for

nearly two decades, and there are now about a dozen in the marketplace, includ-

ing Teradata, Microsoft SQL Server, Vertica10), DB2 (via the Database Parti-

tioning Feature), and Oracle (via Exadata). They are robust, high performance

computing platforms. Like MapReduce, they provide a high-level programming

environment and parallelize readily. Therefore, we would like to introduce them

into workflow systems to support data-intensive applications better.

First of all, during the task execution phase, users have to specify the compu-

tation on the data. It is a great burden for them if they are not very familiar

with computer technology and the structure of data. Using a kind of high-level

language such as SQL which is a very general and powerful to express user’s

requirement is a good alternate. Secondly, parallel DBMSs have very good per-

formance on query processing. Parallel DBMS and Map-Reduce framework are

always considered as two main approaches to perform large-scale data processing.

There are some publications11)12) to compare the two approaches and the result

shows that parallel DBMSs have much better performance on query processing

due to data scheme, index and flexible query optimization mechanism.

With so many good properties of database system, we do not hesitate to use it.

People may ask that, however, there must be many sophistcated parallel DBMSs,

why not using them directly? A significate reason is that all the current parallel

DBMSs are not constructed for workflow systems, therefore, we cannot customize

special functions to support workflow systems well. Moreover, current parallel

DBMSs have several common drawbacks. (1) it costs too much time to load data

since data has to be adhered some schema and stored into pre-defined tables. (2)

They can only support transaction-level fault recovery, which means that during

the query processing, no matter a error occurs in whichever stage, the whole

query will be re-processed. Finally, since parallel DBMSs are commercial, they

are too expensive for some users.

Therefore, our goal is to make a database system to be widely and effectively

used in the support of workflow systems. To achieve it, some key issues should be

addressed such as collective query supporting, complex computation expressive,
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Fig. 1 Simple workflow of event recognition application

fast data loading. We focus on how to support collective query in this paper.

In section 2, we introduce what is collective query and why it is necessary. Sys-

tem architecture is proposed in section 3 to explain how each component works.

Then some experiments are shown to verify our system in section 4, only query

processing performance experiments are done and others are ongoing. Finally,

conclusion and future works are introduced in section 5.

2. Collective Query

In this section, I will explain what is collective query and why it is necessary

in workflow systems using a NLP (Natural Language Processing) application

which is called event-recognition13)14). Its purpose is to extract and classify bio-

molecular events mentioned in English texts. Example bio-molecular events of

interest are an expression of a certain gene, a phosphorylation of a protein, a

binding of several proteins, and a regulation of certain reactions. The entire data

set is split into many chunks and the structure of the workflow for each chunk is

shown in Fig. 1.

In the workflow, there are six dependent tasks. Usually, system checks depen-

dent file for each task . Once it exists, system will start a job to perform the

task and schedule it to an available node. Since the entire data set is split into

many small ones, assuming N chucks, N jobs actually are started to perform the

task. So the task does not care about the exact input file and takes any input

file (such as %.xml, %.abst) to perform computation on.

Now we want to use database system to perform the computation. Firstly,
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Fig. 2 The benefit of collective query

data is partitioned into N chucks and stored as a table medline data respectively

on multi-nodes. For simple task such as an abstract extraction task in Fig. 1,

a simple query is used to express the computation shown below. (Of course,

some complex computations cannot be expressed by general SQL query. How to

support them is one of our future works.)

select abstract from medline data.

Then N clients have to issue a group of queries at the same time to the database

server but each query is applied to a part of data set. The queries operate not

on single table, but on entire table collections. These kinds of query are called

collective query which is collectively issued by multiple clients to perform a large

data-scanning task. If collective queries are processed as many small, distinct

SQL queries to database server, the performance degrades drastically due to the

communication cost under an incoordination pattern. Fig. 2 shows the problem

in detail.

In the left part, since each query is processed as a distinct single query, data

has to be transferred among different nodes to meet the data requirement of

each client. Note that, in workflows, actually clients only care about if all data is

processed and results are returned. They do not care about which exact partition

of data they will get. So we can easily collect all quries from these clients and

coordinate them so that data transfer can be reduced as much as possible. The

ideal situation is shown in the right part of Fig. 2 where no data is transferred

among nodes any all.
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Fig. 3 System architecture

3. Architecture

The key structure to connect each logical component in our system is a logical

plan which is organized as a tree (may with a virtual root node). Each node in

the logical plan is a job either a relational operator or a sub-query and edges

represent data channels. It is a logical computation tree that is automatically

mapped onto physical resources by the runtime. At run time each channel is used

to transport a finite amount of data. This channel abstraction may has several

concrete implementations that use TCP pipes, or files temporarily persisted in a

file system.

The architecture of our system is shown in Fig. 3. We use classic master/-

worker pattern to organize nodes. A master constructs the job tree and schedule

jobs across worker nodes coordinately. All data is sent directly between worker

nodes and thus the master is only responsible for control decisions and is not a

bottleneck for any data transfers.

A simple and straightforward flow to process a (set of) query(es) is as follows:

First of all, we use database system (here is SQLite15)) pre-installed on each
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worker node to store our data. Data is partitioned into worker nodes based on

either hashing fashion, range fashion or round-robin fashion and stored as a pre-

defined table in a database. A master node receives queries from clients and

identifies them as collective queries or general ones firstly. If all queries received

are collective queries, the master integrate them into a single SQL query which

is then translated into a logical plan. After the logical plan is created, a set

of dependent jobs are scheduled into worker nodes and will be executed by Job

Manager. On each worker node, there is a job agent which is a daemon to start

a process to handle jobs and monitor job execution states. A query is completed

successfully after all jobs in the logical plan are finished. Finally, results stored

on worker nodes are distributed to clients.

3.1 Collective Query Identification

Since collective queries have the same expression but are applied to different

partitions, we express them using the modification of SQL query by adding an

”partition” clause:

SELECT * FROM table WHERE ’conditions’ PARTITION ’expression’

Here the expression could be the enumeration of the partition, e.g. ’1, 2, 3...’ ,

numeric set notation such as [[1-4]], ’ALL’ or ’ANY’. So we use two methods to

identify them:

• Identified with a specific string: Each collective query is appended a string

’CT’ at the start of the modified SQL. Master node groups all the queries

which start with ’CT’ and considers them as one single query.

• Identified without a specific string: Note that the expressions of the collective

queries are the same except the PARTITION clauses which target at different

partitions of data. So a natural idea is to identify them by comparing the

substring of queries.

The identification for collective queries should have a prerequisite that all queries

are issued at the same time or within a limit period of time.

3.2 Query Transformation

Query Transformer transforms SQL query into a logical plan which is a set of

jobs. The logical plan is a DAG of relational operators (such as filter(where),

select (project), join, aggregation or sub-query) that operate as iterators: each

operator forwards a data tuple to the next operator after processing it.

Considering the set of following collective queries:

select * from x join y on x.a = y.b and x.a > 10

join z on x.c = z.d and z.d < 20 PARTITION i

They are firstly merged into a single query without partition clause which are

processed along with the following chain:

(1) Syntax Parser: It translates query into a abstract syntax tree consisted of

keyword tokens based on modified SQL grammar. At the same time, it analyzes

the query semantically through the interaction with information center which

stores information about data partitioning, table attributes, resource usage situ-

ation and so on.

(2) Logical Planner: It transforms the syntax tree to logical plan composed of

relational operators that are executable program or sub-queries. For the example

query, the logical plan is shown in (b) graph of Fig. 4. The operators J(oin)1 and

J(oin)2 implement join x, y and x, z and the W(here) operators apply the filter

condition x.a > 10 and z.d < 20 to the output of J operators respectively. Then

the A(nd) operator integrates two out streams from W operators. Actually, the

exist of A(nd) node is to make our plan constructed easier. It does not perform

real process for data and will be eliminated in the optimized phase. Finally,

P(roj) operator output the satisfied columns of result (all columns here).

(3) Plan Optimizer: It re-constructs the query plan to be more efficient based

on rules.

• WHERE-RULE: Filter(where) operator applies some arithmetic calculation

to data and gets satisfied data. In most of cases, it reduces a large amount

of data. Hence, we push these where operators as close as possible to data

to reduce the data communication. In Fig. 4 , the WHERE operator in (2)

is put before join operator.

• AND-RULE: it integrates A(nd) operator’s children that perform compu-

tation on the same table. In the example, both two join operators have

operations on table x, so one join can be a child of another instead of the

same table.

• SPLIT-RULE: We cannot directly send the SQL query to each worker to

execute due to the join and group by operators. For example, if the key

to be joined is different from the data partitioned key, we surely cannot
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Fig. 4 The process of a single SQL query

get right results. So SPLIT-RULE is used for join and group by operators

to repartition data based on appropriate keys. Two special operators are

inserted into logical plan before each join and group by operator. Splitter is

responsible for splitting the output of an operator into several stream based

on the join key while merger merges the several input streams before the

next operator executes. In the join1 operator in Fig. 4, the join keys are a

for table x and b for table y which are the same with the partition keys of

these two tables, so there is no splitter and merger operators before the join1.

Oppositely, these two special operators are required for the join2 operator

since the join keys are different from the partition keys of table x and z.

• SUB-SQL-RULE: To take full advantage of SQL server, that has more so-

phisticated, adaptive or cost-based optimizers on each worker node, we want

to re-organize operators as many as possible into a single SUB-SQL to be

executed by the SQL server. We retrieve the logical plan bottom to up and

put all operators into a single SQL until a splitter operator is encountered.

In Fig. 4 SQL1 is select * from x join y on x.a = y.b and x.a > 10

SQL2 is select * from z where z.d < 20

(4) Parallel Planner: We provide partitioned parallelism which is due to the

data being partitioned. All input data files are partitioned into n parts. The

operator S1i is a SQL query involved both X and Y tables to be executed by

SQLite. It takes the partitioned Xi and Yi as the input data and then a S(plitter)

operator partitions the output of S1 into n parts called U1 through Un by the c

attribute of table x. Similarly, the S(QL)2i operator is fed by partitioned Zi and

the output is also partitioned into P1 to Pn by the d attribute of table Z. Then

J2i operator implement join by taking partitioned Ui and Pi inputs from all S1

and S2 nodes and merging them (keyed on x.c and z.d respectively) to produce

satisfied records.

At this point, we assume that communication cost is much larger than compu-

tation cost during the query processing. So We want to put operators as many as

possible on a node which means that all operators in one branch can be executed

on one node along the logical plan tree.

3.3 Job Execution

Job Manager schedules jobs to underlying resources and traces their execution

state. There is a simple daemon called job agent running on each computer in the

cluster that is responsible for creating processes on behalf of the job manager.

When an operator is executed on a computer its binary is sent from the job
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manager to the daemon. The job manager can communicate with the remote

job agent and monitor the state of the computation. Later, some fault tolerant

mechanisms will be implemented. An operator may be executed multiple times

due to failures, and more than one instance of a given vertex may be executing

at any given time to solve the skew problem.

At present the job manager performs greedy scheduling which means no matter

whether the node is busy or not, a job will be scheduled on mapping resources

immediately when all of an operator input files become ready. Here file-based

method is used to transfer data between nodes. Each operator outputs data

into a single file or a set of file if the data is partitioned by a splitter operator.

Operators that rely on these files read data from them and perform computations.

During execution the job manager receives periodic status updates from the

Job Agent on. If any operator is re-run more than a set number of times then

the entire job is failed. Temporary files are stored in directories managed by the

daemon and cleaned up after the job completes.

3.4 Data Distribution to Multiple Clients

After a query is processed successfully, an important question is how to dis-

tribute result data to clients (Result Distribution Stage in Fig. 3). We always

split data into N streams, so, a more general problem setting should be, given

N data (D1, D2, ..., Dn) and M clients (C1, C2, ..., Cm), determine which data

should go to which clients shown in Fig. 5. In data intensive applications, client

may perform a significate amount of computation, therefore, we should consider

not only communication cost but also computation cost.

First of all, let’s think about the granularity of data to be distributed. If we

just simply map each data Di to Cj , the performance will be degraded due to

the bad load balance if the size of Di is large. To achieve load balance, we split

data on each node into small pieces called data units and only one data unit can

be transferred at one time.

A dynamic probing method is used for load balance of the computation on

multi-nodes. It detects available nodes (CPU usage is low) and sends data unit

to them according to the order:

(1) Allocate data unit on the same node to the available node so that there is

no data transfer.

Data

Client

Partition 1 Partition 2 Partition 3 Partition n

client1 Client 2 Client m

Data Unit 

Fig. 5 Distribution of result to multiple clients

(2) Allocate data unit on the closest nodes that don’t have clients on to the

available node. The ’close’ is defined by the hop from source node to destination

node according to network topology.

(3) Allocate data unit on the closest rest nodes to the available node.

4. Experiments

We have done several experiments to verify our system in a 20-node cluster.

Each node has 16 2.40 GHz Intel Xeon processor running 64- bit Debian 2.6.26

with 24GB RAM. We use NFS to share files within cluster. The source data set

comes from the Andrew Pavlo’s comparison paper11). They are two documents

with random HTML, similar to that which a web crawler might find. We created

two tables to store them in database system. The schema of tables is as follows:
CREATE TABLE Rankings ( CREATE TABLE UserVisits (

pageURL VARCHAR(100) sourceIP VARCHAR(16),
PRIMARY KEY, destURL VARCHAR(100),

pageRank INT, visitDate DATE,
avgDuration INT ); adRevenue FLOAT,

userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),

duration INT );

Each node is assigned 1GB document for Rankings(18,028,863 Records) and

0.5GB for UserVisits (4,114,693 Records). We designed three tasks related to

HTML document processing.

• Selection Task
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Fig. 6 Time cost for the three tasks

It is a lightweight filter to find the pageURLs in the Rankings table (1GB/n-

ode) with a pageRank above a user-defined threshold. For our experiments,

we set this threshold parameter to 2, which yields approximately 3,177,285

records per data file on each node. Our system executes the selection task

using the following simple SQL statement:

select pageURL, pageRank from Rankings where pageRank > X;

This query is executed by SQLite on each node. From Fig. 6, we can see that

average processing time is approximately 32 sec mainly due to the sub-query

execution and writing result data into file.

• Aggregation Task

Aggregation task requires system to calculate the total adRevenue generated

for each sourceIP in the UserVisits table, grouped by the sourceIP column

and produces 1,978,880 records (54 MB). In this task, nodes need to exchange

intermediate data with one another in order compute the final value. The

following SQL query is used to express the task:

select sourceIP, sum(adRevenue) from UserVisits group by sourceIP;

The sub-query is executed on each node and the result is partitioned by

sourceIP to all nodes and finally aggregated to get the sum of adRevenue.

The experiments show that the total execution time increased less then 4 sec

when the number of node varies from 2 to 20 and the average time is about

60 sec. It mainly includes time of sub-query execution, data partitioning,

data persisting to files and data aggregation. Each part of time almost has

little change with the increasement of nodes.

• Join Task

Join task is to get the sourceIP and from its destination URLs there exists

one whose rank is more than 2. It is expressed as following SQL query:

select UserVisits.sourceIP from Rankings, UserVisits

where Rankings.pageRank > 2 and Rankings.pageURL = UserVisits.destURL;

A join operator takes the partitioned output of two sub-query on

the key of pageURL and destURL respectively. The first sub-

7 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.28
2011/7/28



IPSJ SIG Technical Report

query is select pageURL from Rankings where pageRank > 2; which pro-

duces about 167MB (3,177,258 records)intermediate data. Another is

select sourceIP, destURL from UserVisits; producing approximately 271MB

(4,114,693 records). The join operator applies the condition Rank-

ings.pageURL = UserVisits.destURL to the intermediate result, gets all satis-

fied records and outputs UserVisits.destURL, approximately 5.4MB (386,008

records). The experiments show that the total time increases a little with the

increasement of nodes mainly due to the join operator. Join operator firstly

sorts all input files and gets two big files, one is for table Rankings and the

other is the result of table UserVisits. The sort operation cost more time

when the number of files to be sorted increases.

Discussion

File Writing and sub-query processing cost most of total execution time. We

persist intermediate data into file and use file-based data communication method

due to the consideration of node failure. If some nodes fail, the whole query does

not need to be reprocessed and only jobs on the failed node are required to be

re-executed since all the data files are already there. However, writing data into

file really costs much time. A good alternate is to integrate the data pipeline

mechanism which transfers data to a node directly maybe by TCP pipes into

file-based method and find a trade-off between them.

The sub-query processing relies on the performance of SQLite. We are consid-

ering to improve it by changing some compiling parameters such as temp store

which indicates the position of intermediate result either in memory of temp files

and cache size setting the number of database file pages stored in memory at a

time.

5. Future Works

We constructed a database system to support collective query for workflow

systems. Experiments shows that our database system is scalable at least 20

nodes for query processing. However, at this point, we only have one client

to issue query. So in the future, we will firstly test the collective queries from

multiple clients and result data distribution to them. In addition, since data has

to be loaded into database system before each task is executed, the extra cost will

be increased a lot leading to user frustration. Hence, another important future

work is to find a method for fast data loading.
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