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An execution time prediction analytical model for GPU

with instruction-level and thread-level parallelism

awareness

Luo Cheng∗1 and Reiji Suda∗1,∗2

Even with a powerful hardware in parallel execution, it is still difficult to
improve the application performance without realizing the performance bottle-
necks of parallel programs on GPU architectures. To help programmers have a
better insight into the performance bottlenecks of parallel applications on GPU
architectures, we propose an analytical model that estimates the execution time
of massively parallel programs which take the instruction-level and thread-level
parallelism into consideration. Our model contains two components: memory
sub-model and computation sub-model. The memory sub-model is estimating
the cost of memory instructions by considering the number of active threads
and GPU memory bandwidth. Correspondingly, the computation sub-model is
estimating the cost of computation instructions by considering the number of
active threads and the application’s arithmetic intensity. We use ocelot1) to
analysis PTX codes to obtain several input parameters for the two sub-models
such as the memory transaction number and data size. Basing on the two sub-
models, the analytical model can estimates the cost of each instruction while
considering instruction-level and thread-level parallelism, thereby estimating
the overall execution time of an application. We compare the outcome from
the model and the actual execution in GTX260; and the results show that the
model can reach 90 percentage accuracy in average for the benchmarks we used.

1. Introduction

In recent years, the computing power of the Graphics Processing Units (GPUs)
has been improved tremendously. For example, the latest GPU from Nvidia,
GeForce GTX560 GPUs2) provide 1075 Gflop/s in single precision with 336 cores.
Comparing to Intel’s latest CPU, Intel Core i7-980 XE3) providing 107.6 Gflop/s,
GPUs have considerably higher computing power than CPUs. Although the hard-
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ware is providing high computing performance, how to write parallel programs
to make full use of GPUs is still a big challenge.

Nvidia now supports C for Compute Unified Device Architecture (CUDA)4) for
programmers to write parallel programs on GPU. There are also some other new
programming languages that help programmers with writing parallel applications
for GPUs such as OpenCL5) and Brook+6). With these programming and archi-
tectural features, programmers can quickly port their programs to a GPU based
platform. However, if programmers want to have a better performance, they still
need to spend much time and effort to optimize their applications. They need
to have a further understanding at the various features of the low-level architec-
ture and the associated performance bottlenecks in their applications, which will
increase their burdens in writing parallel applications.

To help programmers understand the performance bottlenecks and to release
their burdens in GPU architectures, we propose an execution time prediction
analytical model. The model can be used to predict execution time cost without
running applications on GPUs. The execution time cost of applications can be
divided into two parts: computation part and memory access part. In the com-
putation part, there exist instruction-level parallel executions within warps and
between warps which can be varied due to different application types. Therefore,
we introduce computing parallel degree (CPD) to describe the parallel execution
for the computation instructions and to present the features of applications. In
the memory access part, the latency of each memory access can be hidden by
executing multiple memory accesses concurrently. We also introduce memory
parallel degree (MPD) to present the maximum number of memory accesses can
be executed concurrently. Using the two definitions, we analysis the low-level
assembly codes of the CUDA program to estimate the overall execution time of
a CUDA program.

We test our model with CUDA programming language in version 3.2. We
compare the results from our model prediction and actual execution time on
GPUs. The experiments show that the model can predict the execution time
cost with 90 percentage accuracy in average.

The contributions of our work are as follow:
1, We propose an execution time prediction model with instruction-level and
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Fig. 1 GPU architecture in GeForece 200 Series

thread-level awareness.
2, We propose two definitions, CPD and MPD, to predict the execution time by

considering both the feature of applications and the performance of GPU devices.

2. Background and Motivation

2.1 GPU architecture and CUDA programming model
The GPU architecture contains a scalable number of streaming multiple pro-

cessors (SMs) as illustrated in Fig. 1. Each SM contains 8 streaming processors
(SPs) in the old GPUs like GTX 2602) while the number has reached to 32 SPs
in an SM in the latest Fermi chips7). The GTX 260 has 24 SMs, which makes
for a total of 192 processing cores.

Programmers can use CUDA API to create large number of threads to execute
program on GPUs. Threads are grouped into blocks while blocks make up grid.
Blocks are serially assigned for execution on each SM. One SM can have multiple
concurrently running blocks we called active blocks in this paper. The number
of blocks running on one SM is determined by the resource requirement of the
blocks. Each block is divided into SIMD groups called warps which contains 32

threads in current devices and can be executed by an SM at one time. In this
paper, we use a warp as a batch of 32 threads. CUDA has a very high efficient
scheduling with zero cost to enable warp stalled on a memory access operation
to be swapped for another warp.

The GPU has various memories at different level. In each SM, there is a set of
32-bit registers shared by the threads in one block running on the SM. There are
also 16 KB of shared memory like a user-managed cache for each SM and they
can be shared by all threads in one block running on the SM. The GTX 260 has
1 GB off chip global memory which can be accessed by all threads in the grid
and will cost hundreds of GPU clocks for each access.

Computations to be executed on the GPU can be specified in the program as
kernels. Before launching a kernel, all the data required for the computations
should be transferred from the CPU (host) memory to the GPU (device) global
memory. A kernel call will hand over the control to the device, and the device
code will be executed on this data.

2.2 Motivation
Ideally, we thought that the more threads we use to run applications, the better

performance we can have. In fact, the performance will not always be improved
with the increase of the number of threads. There are lots of factors that can
affect the performance such as the processor clock, the bandwidth of GPU globe
memory and the application type. For computing intensive applications, increas-
ing the number of threads will lead to a linear increase of performance. This is
because the application can utilize the computing power of all processors with
more threads. However, when the utilization of GPU reaches the peak com-
puting power, the increase of threads will lead to degradation of performance
because of the increase of extra overheads such as thread launch overheads and
the thread synchronization overheads. Thus, the limited computing power be-
comes a performance bottleneck. For the memory access intensive application,
there is a similar issue. The bandwidth of global memory is limited while the
increase of threads will lead to the increase of bandwidth used by application.
In this case, the bandwidth of global memory comes to be the performance bot-
tleneck. Therefore, to help programmers have a better understanding with these
performance bottlenecks, a performance analytical model with memory-level and
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Fig. 2 Multiple warps execution in GPU architecture

instruction-level awareness is required.

3. Analytical model

3.1 Assembly code analysis
Parallel Thread Execution (PTX)8) is a pseudo-assembly language used in

Nvidia’s CUDA programming environment. The NVCC compiler translates the
CUDA programs into PTX codes, and the GPU driver has a compiler which
translates the PTX codes into machine codes to execute on GPUs. By analyzing
the PTX codes, we can have a deep insight into the performance bottlenecks in
GPU architecture.

With the help of ocelot1), many details of PTX codes from CUDA program
can be obtained. Ocelot is a modular dynamic compilation framework for het-
erogeneous system, providing various backend targets for CUDA programs and
analysis modules for the PTX virtual instruction set. To get time cost of each

Table 1 Time cost of part of PTX instructions in GTX 260 (Unit: GPU clocks)

int const int reg float const float reg
add 22 65 22 65
sub 22 65 22 65
mul 44 136 22 65
div 728 753 748 783
neg 22 22 17 17
min 62 62 62 62
max 62 62 62 62
and 64 64 64 64
or 62 62 62 62
xor 62 62 62 62
not 22 22 22 22
ld/st 200

Fig. 3 The execution of multiple warps with MPD awareness

PTX instructions, we design a set of micro benchmarks which repeat instructions
10000 times. For each PTX instruction, two kernels are designed in which there
exists only one PTX instruction difference. By calculating the difference of time
between two kernels, we can get the time cost for the PTX instruction. Table 1
shows the time cost of part of PTX instructions thus obtained in GTX 260.

3.2 Execution of multiple warps
To explain how the execution of multiple warps in each SM affects the total

execution time, we use a typical scenario to illustrate as shown in Fig. 2.
For each warp, the PTX codes can be considered as an instruction queue of

computation instructions and memory access instructions. We define a set of
continuous computation instructions in one warp as a computation task. As
the same, we also define a set of continuous memory access instructions in one
warp as a memory access task. With these definitions, the PTX codes can
be considered as a crossed permutation of computation tasks and memory access
tasks. The time period from the beginning of one computation task to the be-
ginning of the next computation task in one warp is called calculate period.
The time cost of the ith calculate period is Ti. In GPU architecture, each SM
can only execute one warp at a time. Therefore, the computation tasks between
warps cannot be paralleled. However, the memory access tasks between warps
can be executed in parallel. During the memory access waiting time, another
active warp will be swapped to execute until the next memory access arrive.
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3.3 MPD sub-model
MPD is the memory access parallel degree which is used to present the maxi-

mum warp number that can be executed in parallel. The MPD can greatly affect
the total execution time. For example as shown in Fig. 3, when there are not
enough warps to execute or the value of MPD is very low (an extreme example is
1), the execution process would be serial execution like the case 1. When there
are enough warps to execute and the value of MPD is very high (the value of
MPD is higher than the number of active warps), the execution process would be
like case 2. With high MPD, the latency of each memory access can be hidden
by executing multiple memory access concurrently.

The value of MPD can be affected by the bandwidth of GPU device, the band-
width used by each warp, the number of active warps in each SM and the number
SMs in the GPU device. For each memory access task, we introduce the following
equations to calculate MPD:

Warpbwt = (Nthread ∗ Dmem)/(Ntrans ∗ tmem), (1)
MPD = min{Nact, bGPUbwt/(Nact ∗ Nsm ∗ Warpbwt)c}. (2)

Nthread: the number of threads in one warp, in this paper is 32;
Dmem: the data size required for each thread during each memory access;
Ntrans: the number of memory transactions for each memory access instruction;
Nact: the number of active warps in one SM;
Nsm: the number of SMs;
tmem: the latency of memory access;
Warpbwt: the bandwidth used by one warp during one memory access;
GPUbwt: the bandwidth of GPU device.
We obtain the memory access addresses of half-warp threads with ocelot1)

and calculate the number of memory transactions by following the rule of the
generation of memory transaction in PTX 1.48)

3.4 CPD sub-model
CPD is the computation parallel degree which is used to present the parallel

execution between warps and within warps in one SM. The parallel executions
for the computation instructions in GPU are so complex that it is hard to give a
perfect model to present. Many factors can affect the parallel execution degree
such as the relationship of adjacent instructions, instruction types, computing

resource requirements, the number of warps and the features of applications.
To simplify the model, we only take the number of warps and the features of
applications into consideration.

We use computation instruction proportion in the PTX codes to present
the features of applications which is defined as follows. We sum up all PTX
instructions time cost and only the computation instructions time cost respec-
tively. Then the computation part time cost is divided by the total time cost of
all PTX instructions to get computation instruction proportion. When the com-
putation instruction proportion is very low, the increase of the number of warps
will lead to the increase of parallel execution of computation instructions. With
more warps, the number of computation instructions which can be executed in
parallel will show a linear increase. Because of the low computation instruction
proportion, the computing resources are always available to execute computation
instructions in parallel. On this reasoning, we propose the following equation to
calculate the CPD:

CPD1 = (c − P ) ∗ (Nact − b) + a. (3)
P : the computation instruction proportion in the PTX codes;
a, b and c: the empirical parameters which get from each specific GPU device.

(We write a micro benchmark to obtain these parameters. In the GTX 260, a is
set to 3, b is set to 11 and c is set to 0.5).

The GPU will schedule warps to execute once there are spare computing re-
sources. When the computation instruction proportion is high enough, the in-
crease rate of the CPD will decrease along with a big enough warp number.
Although the increase of warps leads to a linear increase of computation instruc-
tions that can be parallelized, the available computing resources become fewer
and the increase rate of computation instructions that have enough computing
resource to execute in parallel decreases. Therefore, when all computing resources
are used up, the CPD will come to a limitation. In this situation, we use the
following equations to calculate the CPD:

CPD2 = (n/(m − 1)) ∗
√

(m − 1)2 − (Nact − m)2 + a, (4)

n = d ∗ (P − c)2. (5)
m: the maximum warp number can be executed in GPU;
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Fig. 4 Calculate period type 1

Fig. 5 Calculate period type 2

d: the empirical parameters which get from each specific GPU device.
We write a micro benchmark to obtain the parameter and d is set to 80 in

GTX260. Therefore, the final value of CPD for a specific number of warps is
equal to min{CPD1, CPD2}.

3.5 Execution time prediction model
So far, we have explained the execution of multiple warps and two sub-models.

In this section, we put them all together into the prediction model to predict the
total time cost of the execution.

By analyzing the PTX codes, we can calculate the time cost of each calculate
period and sum them up to get the total time cost. The calculate methods
for each calculate period may be different due to long memory access waiting
from current calculate period or previous calculate period. Ideally we hope the
processors always have instructions to execute. However, long memory access
tasks can let the processors wait because the following computation tasks need the
results from the previous memory access tasks. Therefore, according to whether
the calculate period has been affected, we classify the calculate periods into
4 types. We can analyze the relationships between time cost of computation
tasks and memory access tasks in current period and previous period to select a

Fig. 6 Calculate period type 3

corresponding type.
As Fig. 4 shows, the type 1 is that there is no long memory access waiting

influence from current period and previous period which means ci−1 ≥ mi−1 and
ci ≥ mi. Here, the parameters are defined as follows:

ci: the time cost of computation task in the ith calculate period;
mi: the time cost of memory access task in the ith calculate period;
Ti: the time cost of the ith calculate period.
Therefore, only the computation tasks make contribution to the total time cost.

We sum up the time cost of all computation tasks while the parallel execution
of computation parts should also be taken into consideration. We can use the
following equation to calculate the ith calculate period time cost:

Ti = d(Nact ∗ ci)/CPDe. (6)
In type 2, ci−1 ≥ mi−1 and ci < mi as illustrated in Fig. 5. The long mem-

ory access tasks in current period will cause a waiting period between the last
computation task in current period and the first computation task in the follow-
ing period. In this case, we can use the following equations to calculate the ith
calculate period time cost:

Ti = d(Nact ∗ ci)/CPDe + Tc, (7)
Tc = max{mi − (n − 1) ∗ ci, 0}. (8)

Tc: the extra time cost caused by the long memory access tasks in current
period.

In type 3, ci−1 < mi−1 and ci ≥ mi as illustrated in Fig. 6. The long memory
access tasks in previous period will cause a waiting time between the execution
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Fig. 7 Calculate period type 4

of computation tasks in current period because the results of memory access task
in previous period do not arrive. Therefore, we can use the following equations
to calculate the ith calculate period time cost:

Ti = d(Nact ∗ ci)/CPDe + Tp, (9)
Tp = max{mi−1 ∗ b(Nact/MPD) − 1c − (Nact − 1) ∗ ci, 0}. (10)

Tp: the extra time cost caused by the long memory access task in previous
period.

In type 4, ci−1 < mi−1 and ci < mi as illustrated in Fig. 7. The long memory
access tasks from current period and previous period both make extra time cost
in the current calculate period. We can use the following equations to calculate
the ith calculate period time cost:

Ti = d(Nact ∗ ci)/CPDe + Tp + Tc, (11)
Tp = max{mi−1 ∗ b(Nact/MPD) − 1c − (Nact − 1) ∗ ci, 0}, (12)
Tc = max{mi − ((Nact − 1) ∗ ci + Tp)}. (13)

Finally, we can calculate the time cost for each calculate period according to
the different scenarios and sum up to obtain the total time cost.

Table 2 The features of GPUs used in this work

features GTX260
the number of SMs 24
the number of SPs 192
Graphics clock 576 MHz
Processor clock 1242 MHz
Memory size 896 MB
Memory bandwidth 111.9GB/s
Peak Gflop/s 715

4. Experiment

4.1 Experiment configuration
The GPUs used in our experiments are shown in Table 2. We use cudaEven-

tRecord API in CUDA 3.2 to measure the execution time of GPU kernels. All
the benchmarks are compiled with NVCC.

To test the performance of our prediction model, we use 5 different benchmarks
that are mostly used in Linderman’s work9) and we port them from multi-core
platform to GPU platform. Basing on the blackscholes, we make the reasult
from each computing equation plus an additional parameter which requires a
memory access. Therefore, blackscholes-7 is generated by increasing the number
of memory access instructions to reduce the computation instruction proportion
in blackscholes. The benchmarks we used to test our work are explained in
Table 3. The computation instruction proportions of the 6 benchmarks are
different from very low 26.23% to very high 86.97%. We use these in the hope of
proving our model can have good prediction results in all kinds of applications.

4.2 Results
We compare the results from measured and predicted execution time on

GTX260 as shown in Fig. 8. The number of warps per SM is varied from 1
to 32 which is the maximum number of warps that one SM can have. For each
benchmark, we change the number of warps to run the kernel with the same data
size. In another words, when we increase the number of warps, the data size

Table 3 The features of benchmarks

benchmarks description input size com proportion

Svm9) Kernel from a SVM-based algorithm 512 × 768 26.23%
Matrix Matrix multiple 256 × 256 28.2%

Linear9) Image filter to compute 9-pixels avg 800 × 800 45.84%

Sepia9) Filter for artificially aging images 800 × 800 52.97%
Blackescholes-7 Modified European option pricing 900000 76.62%

Blackescholes9) European option pricing 900000 86.97%

Table 4 The means of accuracy for each benchmark in GTX260

benchmarks svm matrix linear sepia blocks-7 blocks
arithmetic means(%) 95.6 90.7 91 93.9 82.6 88.4
geometric means(%) 95.4 90.5 90.8 93.8 82.5 88.1
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Fig. 8 The total execution time of the benchmarks on GTX260

for each warp decreases. Therefore, the execution time decreases along with the
increase of the number of warps as more and more memory access latency are
hidden by the parallel execution. Due to the limitation of global memroy band-
width, the execution time will come to a limitation when the number of warps is
big enough. We define the accuracy to present the performance of our model.
We introduce the following equation to calculate accuracy:

Pacc = min{Ttest, Tmodel}/max{Ttest, Tmodel}. (14)
Pacc: the accuracy for a specific number of warps;
Ttest: the time cost for a specific number of warps from measured results;
Tmodel: the time cost for a specific number of warps from predicted results.
The accuracy of the benchmarks are shown in Fig. 9. The arithmetic mean

and geometric mean of accuracy for each benchmark are shown in table 4.
The memory access intensive benchmarks such as svm, matrix, linear and sepia

have a higher accuracy than 90% while the computing intensive benchmarks such
as blockscholes and blockscholes-7 have a accuracy between 80% and 90%. This

is because the CPD sub-model is an empirical model based on a set of experiment
data which will reduce the accuracy of CPD. This will lead to unsteady perfor-
mance of our model on computing intensive applications. In the future works,
we will try to build up a better model for CPD to have a better prediction for
computing intensive applications.

5. Related work

The parallel algorithms community has provided several models for the design
and analysis of parallel algorithms such as Log-P10) and QRQW11). These models
can help programmers to find out the problem in the parallelism. However, they
are mostly architecture independent which makes them to provide litter help for
an insight into a specific architecture.

In Ryoo’s work12), they discuss the parameter space and present ways to reduce
the size of space and get an optimized code. Schaa13) provides an extension to
Ryoo’s work where they consider the multiple GPU design space optimization.
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Fig. 9 The accuracy of the benchmarks on GTX260

There are also some similar works for performance prediction. In Meng’s work14),
they focus on separating memory and compute requirements. However, their
work is only applicable for a class of specific programs. Hong and Kim15) propose
a model that can predict the runtime of a kernel on the GPU with a set of
23 parameters. Although we have a similar approach, a few differences exist
between our works. First of all, we provide an insight to the assembly codes
of CUDA programs for performance analysis. We analyze the assembly codes
with instruction-level parallelism awareness to obtain a high accuracy analysis
results. Secondly, we take the parallelism execution of computation instructions
into consideration.

6. Conclusion

This paper proposed and evaluated an execution time prediction analytical

model for GPU architecture with instruction-level and memory-level awareness.
We use ocelot to analysis PTX codes and obtain time cost of each PTX instruc-
tions. With the time cost of each PTX instruction as input, We use an MPD
sub-model to dynamically calculate the maximum number of warps for concur-
rent memory access and a CPD sub-model to present the parallel execution of
computation instructions between warps and within warps. With the two sub-
models, we predict the total execution time cost of CUDA programs with the
analysis of assembly codes. Our evaluation shows that the average accuracy of
our model on a set of benchmarks is 90%. We believe that this analytical model
can help programmers to improve their applications.
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