
IPSJ SIG Technical Report

GPU-based approach for elastic-plastic

deformation simulations

Irina Demeshko,†1 Matsuoka Satoshi†1

and Toshio Endo†1

In this article, we describe GPU-based parallel algorithm for the numeri-
cal simulation of elastic-plastic deformations by finite element analysis method
(FEM). This kind of mechanical problems gives us non-symmetric bonded struc-
ture of the stiffness matrix, which requires some optimization on data assign-
ments and assembling techniques. Described algorithm was implemented on
TSUBAME2 supercomputer using CUDA programming environment.

1. Introduction

Dramatic increase in the amount of computations, necessary for the solution

of scientific problems, leads to strong needs to look for a way to accelerate a

computation time.

In recent years graphic processor unit (GPU) computing has been used to

accelerate calculations performed on a classical central processor unit (CPU).

GPU have been used for acceleration a wide range of scientific problems from

earth and weather simulation to such physical problems as fluid dynamics or

astrophysical simulations.

In this paper we describe the GPU-mapping algorithm for the numerical sim-

ulation of elastic-plastic problem with big plastic deformations by FEM.

The solution is based on the principle of virtual power in the speed form with

the finite-element approximation, which results in the solution of linear algebraic

equations system with banded non-symmetric matrix. Due to the fact that we

have both elastic and plastic deformations, structure of the stiffness matrix is

non-symmetric, that make the problem two times more computations and data

†1 Tokyo Institute of Technology

Geometrical model definition

Geometry decomposition
by finite element

Mesh definition

Stiffness matrix and load vector
computation for each element

Assembling local information from
each element to global stiffness matrix

and global load vector

Solution of the system of linear equations
with the global stiffness matrix as a system

matrix and global load vector as a
right hand side of the system

,

-

Get an approximate solution

Shape function definition

I n
a

c
y
c
leG
lo

b
a

l
m

a
tr

i x
c
o

m
p

u
ta

ti
o

n

Fig. 1 General FEM algorithm.

intensive comparing to the symmetric case.

Banded structure of the matrix forced us to think about some changes in data

storage model, which helps to reduce amount of memory and computation time.

2. Common FEM algorithm

The standard procedure of FEM computation consists of obtaining week for-

mulation of a problem, domain decomposition into finite elements, definition of a

system of linear equations with the global stiffness matrix as the system matrix,

by using basis functions, constructed from element shape functions and solving

a system to obtain approximate solution.

More in detail this algorithm is presented in Fig. 1.

To find a solution u for non-linear problems iterative strategies, such as a

Newton-Raphson, are often used. Matrix A depends on the value of each ap-

proximate solution u and needs to be assembled on each iteration to solve the

problem.

1 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.12
2011/7/27

IPSJ SIG Technical Report

Two stages of this FEMmost significantly impact performance of the algorithm:

• computation of global stiffness matrix A and vector F

• solution of the system of linear algebraic equations (LAES) for u

The algorithm for an acceleration of these two stages by using CUDA program-

ming environment is described below.

3. Related work

Recently the number of the numerical simulation problems, which have been

mapped to GPU, starts significantly increasing.

Algorithms, such as finite-difference and finite-volume methods, are show large

accelerations because they involve regular memory access pattern. On the other

hand, finite-element method is more difficult to accelerate since they tend to have

irregular memory access.

Dimitri Komatitsch and his co-workers [1, 2] have successfully implemented

their finite-element algorithm on a CPU cluster enhanced by GPUs. The algo-

rithm is based on the dividing elements to the block, by using coloring algorithm,

and then computing blocks concurrently. They implemented it on the problem

of numerical modeling of seismic wave propagation.

Comparison of CUDA and OpenCL techniques for FEM GPU implementation

is presented in [4]

In [2] are presented several approaches for the implementation of the Global

stiffness matrix assembling step on GPU. Authors compared next approaches:

using coloring algorithm for element discretization, global memory algorithm

shared memory algorithm and local memory algorithm. It was shown that the

algorithm, based on using shared memory, has better performance.

In our paper we presented algorithm for parallelization FEM based on mapping

to the GPUs local matrices computation and the solution of LAES steps. Our

CUDA local matrices computation algorithm is similar to algorithms, described

in [2], but modified for banded matrices. CUDA algorithm for the solution of

LAES is based on iterative method parallelization.

There are also some other finite-element implementations for GPU not de-

scribed here.

Fig. 2 Simulation of elastic-plastic cylinder compression problem

4. Problem statement

As an example, we consider 2-dimensional problem of cylinder compression

from an elastic-plastic isotropic and isotropic-strengthened material by flat plates

(see Fig. 2). The solution is based on a principle of virtual power in the speed

form (1): ∫
V

(σ +∆tσ̇) · ·∇h dV +

∫
Σ

(P +∆tṖ) · hdΣ = 0

With constitutive equations :

σ̇ = λΘ̇ + 2(λΘ+ µ)D −∇v · σ − σ · ∇vT − JbS,

S = σ − σ0I,

σ0 = KΘ

K = λ+ 2/3µ,

D = 0.5(∇v +∇vT),

F (S, k) = 0.5S · ·S − k2 = 0,

2 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.12
2011/7/27

IPSJ SIG Technical Report

b =

[[
µ
(
1− 2

3Θ
)
S − S · S

]
· ·D − µ

3 tΘ̇S · ·I
]

[
k2

(
1 + 1

µ
dk
dχ

)]
Here σ - is Cauchy’s strain tensor; P - surface force density; ∇t - period for an

increment interval of load; h and ∇h - kinematically admissible velocity fields

variation and its inverted delta; V ,
∑

- solid volume and surface; dV , d
∑

-

volume and cylinder surface area elements.

The Coulomb’s law was applied on contact with plates. A lateral surface of the

cylinder is free from loadings.

We use finite-element discretization by rectangular elements.

The FEM algorithm for our problem is based on dividing the load by time iter-

ations and computing of approximation solution for each load increment. About

1000-1500 time steps are necessary to get a satisfactory solution for described

type of mechanical problems. Also, on each time step we perform about 10

computational iterations to get refined solution.

By means of finite element approximation the equation (1) is leads to the linear

algebraic equation system (LAES):

Az = b,

where A, b, z - parent matrix, right part vector and decision vector of the sys-

tem, respectively. Here A is the asymmetrical sparse matrix, which is expressed

as a banded matrix in this paper.

To exclude unnecessary computation and reduce the amount of memory to be

used, we change square matrix A NxN to the band form matrix A′ NxW , where

W - is the width of the band (see Fig. 3).

5. GPU algorithm

Global matrix computation and solution of the systems of linear equations

resulting from FEM are the most computationally demanding steps of the method

and, therefore we mapped these steps to GPU. As these steps are need to be

computed sequentially, we realized them in 2 different CUDA kernels. Our GPU

algorithm in general is presented in Fig. 4.

Width

A NxN A NxW'

Fig. 3 matrix A transformation

A CUDA application consist of a sequential host program run on the CPU

(white blocks in Fig. 4) that launches kernel 1 and kernel 2 (gray blocks in the

Fig. 4) written in CUDA to be run on the parallel GPU device.

5.1 Sequential local matrices computation

Local matrices computation step in FEM consists of 3 sub-steps: shape func-

tion definition, stiffness matrix and load vector computation for each element,

assembling local information from each element to global stiffness matrix and

global load vector.

Typical local matrices and local load vectors computation algorithm based on

given element subroutines to compute an element matrix Ae and element forcing

vector F e.

Each element matrix Ae has size 8x8. After local matrices are computed for

all elements, they are assembling to the Global stiffness matrix. This assembling

is based on using connectivity matrix, which yields the local nodes numbers for

the eth element to the global nodes numbers.

These element subroutines changes according to partial differential equation,

the basis functions, the element type, boundary conditions and forces.

The input information is nodal data, contained in N for each node in element.

5.2 local matrices computation on a GPU

Local stiffness matrices and load vectors are calculated independently for each

element and therefore can be carried out concurrently.

Calculations on GPU are managed by CPU. General algorithm for the kernel

3 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.12
2011/7/27

IPSJ SIG Technical Report

Load loopincrements

...

shape function definition
and computational of initial

information

Launch kernel 1 for computation
of local matrixes

Loop on
elements blocks

Assembling local matrixes
to Global matrix

Launch Kernel 2 for
computation of SLAE

Stress analysis
at the end of loading iteration

Refining solution loop

stress analysis

Fig. 4 General CUDA algorithm for FEM. The computations, performs on CPU, are in the
white blocks. GPU computations are colored in grey

1 can be described by 3 steps:

• uploading data into device

• local matrices and load vectors computations on GPU

• copy to CPU computed local matrices and load vectors

Data that are common for all elements is calculated once on CPU in precondi-

tion computations step.

Our approach is assigns one thread to compute the element data for one mesh

element and, for the purpose to avoid race conditions, write the element data to

global data for later assembling to the Global matrix and load vector.

In the case that the global memory cannot hold all the element data, the

calculations can be divided into multiple passes. Each pass would compute the

element data for some block of elements and copy result to CPU in precisely the

same way.

More in detail the algorithm is presented in Fig. 5

Because of the small size of the matrices involved, this kernel performs a rela-

tively large number of memory access compared to small amount computations.

As an optimization we group the input data into a single buffer to minimize

uploading time by execution of one large CPU-GPU transfer instead of many

small ones. Due to the fact that each thread responsible for one grid element we

prevent any possible race conditions.

5.3 Iterative methods for the solution of LAES

Next iterative methods for the solution of LAES were compared in preliminary

experiments with CPUs:

• Prime Iteration method

• Minimal residual method

• Steepest descent method

• Biconjugate Gradient method (Conjugate Gradient Type Method with some

precondition computations for non-symmetric matrices)

Prime Iteration method, Minimal residual method and Steepest descent

method shows similar wall time results. Biconjugate Gradient method requires

more iterations than the other examined methods and therefore needs more time

for solving of linear algebraic equations.

Comparing scalability of methods, we found that Minimal residual method has

4 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.12
2011/7/27

IPSJ SIG Technical Report

Load loopincrements

Assemble node information
to one structure

Upload data to GPU

Launch kernel
hreads 512

n blocks kelement 512
_ = ,
_ = /

n t

Computation A and F
for each element

Ee Ee

CUDA threadSyncronyse()

Rcord computed matrixes
and load vectors for the
block of elements
cudaMemcpy(... DeviceToHost)

For each block of elements

Global matrix
assembling

...

...

Fig. 5 CUDA algorithm for the step of local matrices and local load vectors computation

potential better performance. Therefore, this method was chosen for the GPU

implementation.

5.4 CUDA algorithm for the solution of LAES

Minimal residual method is based on iterative computation of next approxima-

tion solution vector Zk+1, by using already known vector Zk (2):

zk+1 = zk − (A(Azk − b), Azk − b)

||(A(Azk − b)||2
(Azk − b),

z0 = 0

this iterations performs till ||AZ − b||/||B|| <= ε, where ε is accuracy of the

solution.

It can be observed from the formula 2 that the base of the numerical computa-

tions in iterative method is matrix-vector multiplication. Therefore our algorithm

is based on performing matrix-vector multiplication on GPU.

Due to specific of the matrix A structure (non-symmetric bounded) general

matrix multiplication CUDA algorithm was modified with the purpose to not

perform unnecessary computations.

Some other optimization was applied for this kernel. Since the shared memory

is banked, with the purpose to avoid bank conflict each thread accesses a different

bank. This leads to the coalesced memory transactions. It is realized by dividing

the non-zero bound of stiffness matrix to the set of square submatrices, which

sizes are equal to the number of threads in one block.

6. Evaluation environment

Described GPU-mapping algorithm was implemented and evaluated on the

TSUBAME 2.0 supercomputer, established at Tokyo Institute of Technology.

TSUBAME 2.0 consist of 1408 compute nodes of two Intel Xeon Westreme-

EP 2.9 GHz CPUs and three NVIDIA M2050 GPUs with 52GB and 3GB of

system and GPU memory, running SUSE Linux Enterprise Server 11 SP1. Each

node is interconnected by dual QDR Infinitband networks with a full bisection-

bandwidth fat-tree topology. We use NVIDIA CUDA v 3.2 compiler for the GPU

code and g++ v4.1.2 compiler for the CPU code.

5 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.12
2011/7/27

IPSJ SIG Technical Report

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

400 1600 3600 6400 10000

the number of elements

GPU

implementation

CPU

implementation

W
a

ll
ti

m
e

u
s
e

c
,

Fig. 6 Average running time as a function of the number of elements for the CPU and GPU
implementations of the step for local matrices an local load vectors computation

The algorithm was applied to the elastic-plastic cylinder compression problem.

Results were compared with sequential CPU implementation for different grid

sizes.

7. Performance evaluation

The running times of described GPU algorithms are shown in Fig. 6 and Fig. 7.

These times measured in wall time and include GPU call overheads, but do

not include precomputational time of the program. To ensure accurate timing

cudaThreadSynchronize is called after CUDA kernels.

Fig. 6 presents average running time as a function of the number of elements

for the first CUDA kernel in our problem (CUDA local matrices and local load

vectors computation algorithm).

It is shown that the CPU implementation runtime almost linearly increases as

the number of elements continues increase due to the fact computation time for

one element is almost the same for any grid dimension. The GPU implementa-

tion shows about 3.5 times faster speed with 3600 elements or more(see Fig. 8).

However the speed up is smaller when we have less elements. We consider that

this due to (1) CUDA kernel invocation overhead dominates, and (2) parallelism

is insufficient to keep all CUDA cores busy.

Fig. 7 presents average running time as a function of the number of elements for

CUDA kernel 2 (CUDA LAES computation algorithm). The time is measured

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 400 1600 3600 6400 10000

the number of elements

CPU

implementation

GPU

implementation

W
a

ll
ti

m
e

u
s
e

c
,

Fig. 7 Average running time as a function of the number of elements for the CPU and GPU
implementations of the LAES solution step

0.00

1.00

2.00

3.00

4.00

5.00

6.00

400 1600 3600 6400 10000

the number of elements

Kernel 2

Kernel 1

C
P

U
t o

G
P

U
im

p
le

m
e

n
ta

ti
o

n
s

ti
m

e
ra

te

Fig. 8 The rate of CPU to CUDA GPU implementations times for the described algorithms.

for one iteration, becouse for different matrices the number of iterations can be

differen. Similar to the local matrices and local load vectors computation algo-

rithm, CPU implementation runtime increases almost linearly to the increases

number of elements. The CUDA implementation shows about 5.2 times faster

speed with 6400 elements or more(see Fig. 8). Similar to Kernel 1 for smaller

number of elements the speed up is lower because of the same reasons.

From the Fig. 8 we can see that GPU to CPU implementations acceleration

higher for the Kernel2 comparing to the Kernel1. It can be explained by the

fact that the rate of computations, performed on GPU to ones on CPU for the

6 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.12
2011/7/27

IPSJ SIG Technical Report

CUDA LAES computation algorithm is higher then for the CUDA linear matrices

computations algorithm.

8. Conclutions and future work

In this paper we investigate the use of single GPU to accelerate FEM for elastic-

plastic mechanical problems.

We propose to use two independent CUDA kernels to accelerate the most time

consuming steps in the FEM algorithm: computation of local matrices an local

load vectors for all elements and solution of the system of linear equations with

banded non-symmetric matrix, which is produced in the FEM discretization.

Described algorithms were implemented on the TSUBAME 2.0 supercomputer,

established at Tokyo Institute of Technology.

Performance evaluation shows a significant acceleration comparing to single

CPU implementation.

As future work we would like to modify our single-GPU approach to multi-

GPU. Also we are going to investigate the possibility to map our sequential

Global matrix assembling step to GPU approach.

References

1) Dimitri Komatitsch, Gordon Erlebacher, Dominik Goddeke and David
Michea:High-order finite-element seismic wave propagation modeling with MPI on
a large GPU cluster, Journal of Computational Physics, Vol. 229, pp.7692-7714
(2010).

2) Cristopher Cecka, Adrian J. Lew and Eric Darve: Asembly of finite element meth-
ods on graphics processors, International Journal for Numerical Methods in Engi-
neering, Vol. 85, No 5, pp.640–669 (2011).

3) Dimitri Komatitsch, David Michea and Gordon Erlebacher: Porting a high-order
finite-element earthquake modeling application to NVIDIA graphics cards using
CUDA, Journal of Parallel and Distributed Computing, Vol.69, No 5, pp.451-460,
DOI:10.1016/j.jpdc.2009.01.006 (2009).

4) Dimitri Komatitsch, David Michea and Gordon Erlebacher: Higher order FEM
numerical integration on GPUs with OpenCL, IMCSIT, pp.337-342 (2010).

7 c© 2011 Information Processing Society of Japan

Vol.2011-HPC-130 No.12
2011/7/27

