
情報処理学会研究報告
IPSJ SIG Technical Report

An Evaluation on Power Consumption and

Performance Balancing Distributed Storage Systems

Hieu Hanh LE†1 Satoshi HIKIDA†1 Haruo YOKOTA†1

In distributed storage system, replicating data on multiple nodes for improv-

ing performance also extends power consumption of whole system. As the

result, it becomes more important to control both power consumption and per-

formance in storage system. Recently, a number of proposals that allows the

system to be available to control power consumption have been proposed and

confirmed to be success in certain circumstance and applications. In these pro-

posals, system is made available to operate in multiple modes with containing

different number of active datanodes that store data. Consequently, at each

mode, the system obtains performance which is proportional with the number

of active datanodes it contains. However, this approach faces a problem of per-

formance degradation when the system needs to correct its data layout while

moving up to high mode from power-saving modes if the dataset is updated

during power-saving mode. In this paper, the function of data layout correc-

tion is added into two existing data placement methods in distributed storage

system and the degradation in performance of these methods is then evaluated

through empirical experiments.

†1 Department of Computer Science, Graduate School of Information Engineering and Science,

Tokyo Institute of Technology

1. Introduction

Nowadays, balancing performance and power consumption of distributed storage in

datacenters has gained a lot of interested with the expansion of data intensive services

in cloud computing. Usually, in such kind of services, the provider has to store a huge

amount of user’s data, and responds to user’s requests with high availability and per-

formance. In order to guarantee such kind of characteristics, one of popular techniques

is replicating data in different locations inside storing system. Data replication can not

only prevent failure of each nodes in storing system, but also improve request’s latency

through parallel processing. Here, a node is defined as common computer machine

that has at least processor, memory and hard disk. However, the increasing in the

number of necessary nodes in order to apply data replication also expanding the power

consumption of whole data storage.

Balancing both power consumption and performance can be achieved through data

placement methods by controlling the total number of active nodes in the system 2),4),

5). These proposals are common in the way of managing energy in a group of nodes

instead of controlling a single node individually. Specifically, at first the system divide

all their storage nodes into certain small separated groups and then is organized to be

able to operate in multiple gears that each gear containing a number of groups whose

datanodes are active. The higher the gear is, the higher the number of activate nodes.

At each gear, which contains different number of nodes, system is ensured to store all

necessary data for guaranteeing the availability of systems. By controlling power man-

agement in the granularity of gear, those approaches are considered to be success in

control the power consumption of whole system.

Although a number of proposals, introduced like above, are evaluated to be success

at certain circumstances, however they have been still not compared with each other in

the same environment yet. In 3), the authors reported the first comparison evaluation

of two representative proposals, i.e. PARAID 2) and RABBIT 4) through empirical

experiment on actual machines to compare their read performance while concerning

system’s power consumption. From this result, it was confirmed that both methods are

good in balancing read performance characteristic and storage’s power consumption.

1 c⃝ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.6
Vol.2011-IFAT-103 No.6

2011/8/2

情報処理学会研究報告
IPSJ SIG Technical Report

It is also concluded that RABBIT slightly overcome PARAID because of better data

distribution over datanodes storing data in system.

However, the above paper just dealed with the relationship between system’s power

consumption and performance over fixed dataset. If the dataset was modified when

system contains a number of deactivate datanodes, then the original data layout policy

is violated. As the result, system has to catch up with the newest status of the dataset

through correction data layout when system moves to higher gear. In this gear, all

deactivate nodes at previous lower gear are reactivated. In this case, system needs to

deal with both correcting the data layout according to its fixed data placement policy

and guaranteeing the availability of its service to users. The data layout correction

process which depends on the amount of new data written newly to system is thought

to have important effect to system’s performance in such scenario.

The contribution of this paper is as follows.

First, we decide to develop new writing modules and data layout correction. The idea

here is inspired by Write Offloading technique proposing in 7) that is considered as stan-

dard technique in distributed environment allowing some datanodes to be turned down

to save power consumption. This technique’s idea is summarized as firstly, to write

new data to any available datanodes; secondly taking logs that describe this event; and

finally correct the data layout later based on the log files.

Next, an evaluation of above modules is achieved through empirical experiment with

PARAID and RABBIT, following the work in 3). The experiment is performed by

using a benchmark that requires distributed Input/Output over large dataset and the

performance degradation when system makes a change of its operation mode from low

gear to high gear is reported. From the experiment result, because of better data place-

ment which requires smaller amount of data needed to reallocate, PARAID was found

to achieved faster execution time than RABBIT.

The paper is organized as follow. Section 2 gives a description of data placement

methods of PARAID and RABBIT, a brief review of other approaches in balancing

performance and power consumption in distributed storage systems. New functions of

write data at low mode and data reallocation process when system upshifts to higher

mode to serve a service which are newly implemented in PARAID and RABBIT will

be explained in Section 3. Section 4 is planned to describe and report the experiment

results on actual machines. The conclusion and future works will be summarized in

Section 5.

2. Related Work

In this section, because PARAID and RABBIT’s data placement methods were used

in experiments, these methods are described. And then, some other proposals in this

area are also introduced briefly.

2.1 PARAID and RABBIT Data Placement

Although not like RABBIT, PARAID was originally designed inside a RAID unit,

the idea can be expanded to distributed environment that contains a large number of

nodes connected through network. In this context, a node is defined as an normal

computer machine including processor, memory and hard disks. In this part, we de-

scribe the modified skewed data placement in PARAID in order to apply in distributed

environment.

Both of these two proposals are based from the idea of dividing the total number

of nodes in the system into small separated groups. Consequently, the system then

contains a certain number of gears that include number of groups. A low gear with

small number of powered nodes is supposed to consume low power and vice versa.

Given a dataset D with total B blocks, a total number of nodes N are divided into

G groups. Each group contains a different number of nodes. In detail, each node is

symbolized as n(g,i), where g (1 ≤ g ≤ G) , i (1 ≤ i ≤ N) indicate i-th of node at g-th

group. For example, nodes n(1,1), n(1,2) belong to Group 1, while nodes n(2,3), n(2,4)

belong to Group 2 and so on.

2.1.1 PARAID

PARAID is the first work to introduce the concept of gear-shifting based on load of

system within a RAID unit. It utilized the idea of skewed striping pattern to adapt to

the system load by varying the number of powered nodes.

PARAID takes advantage of replicating and striping data blocks in a skewed fashion

to nodes. Then, nodes could be organized into a number of groups and a number of

groups forms gear.

2 c⃝ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.6
Vol.2011-IFAT-103 No.6

2011/8/2

情報処理学会研究報告
IPSJ SIG Technical Report

表 1 PARAID data placement
Group 1 Group 2 Group 3

Node n(1,1) n(1,2) n(2,3) n(2,4) n(3,5) n(3,6)

Gear 3 B1 B2 B3 B4 B5 B6

Gear 2 B1 B2 B3 B4 - -

B5(
1
4) B5(

1
4) B5(

1
4) B5(

1
4) - -

B6(
1
4) B6(

1
4) B6(

1
4) B6(

1
4) - -

Gear 1 B1 B2 - - - -

Gear 1 B3(
1
2) B3(

1
2) - - - -

B3(
1
2) B3(

1
2) - - - -

B3(
1
2) B3(

1
2) - - - -

B3(
1
2) B3(

1
2) - - - -

In PARAID, at first, all data D of B blocks are allocated evenly to all nodes. Next,

at lower gear that allows a number of nodes to be power off, in order to guarantee

the availability, the data from nodes which are going to be deactivate will be evenly

migrated to nodes that are active in next higher gear.

Table 1 indicates a simple example of number of data at each node corresponding

to system’s operation gear through a storage cluster with six nodes, three groups and

three gears. Gear 1 contains only active node in Group 1, Gear 2 needs all four nodes in

both Group 1 and Group 2 be active and the highest gear, Gear 3, all six nodes are set

to be activated. When the system move from Gear 3 to Gear 2 to save power, because

all the data in Group 3’s nodes are already replicated to active nodes in Group 1 and

Group 2, the system is able to provide all the data in the dataset to clients using it.

Through the above techniques, PARAID is considered to be able to control the power

consumption and performance of storage system.

2.1.2 RABBIT

RABBIT is a power-proportional distributed file system (PPDFS) that uses a cluster-

based storage data placement to control power and performance of system.

Assuming that r replicas of B blocks of dataset D are desired to be stored to n nodes

with G groups and G gears. At first, one replica of all B blocks are evenly stored in

first primary p nodes at Group 1 (also called primary group). Consequently, each node

in Group 1 contains B
p
blocks. The remaining (r−1) replicas are distributed to (N −p)

nodes in the way that the node n(g,i), where g > 2 and p < i ≤ N , stores B
i

blocks.

表 2 RABBIT data placement
Group 1 (Primary) Group 2 (Secondary) Group 3 (Secondary)

Node n(1,1) n(1,2) n(2,3) n(2,4) n(3,5) n(3,6) n(3,7)

Gear 3 B(1
2) B(1

2) B(1
3) B(1

4) B(1
5) B(1

6) B(1
7)

Gear 2 B(1
2) B(1

2) B(1
3) B(1

4) - - -

Gear 1 B(1
2) B(1

2) - - - - -

Here, in the constraint of keeping number of replica r small with fixed number of nodes

RABBIT can guarantee that the number of blocks stored by i-th node must not be

less than B
N

for all i ≤ N when N nodes are active. Obeying this constraint makes it

possible for the load to be shared equally among active nodes. Thus, the performance

of the system is suggested to be linear with the number of powered nodes, i.e. implicitly

corresponds to the power consumption of the system.

Table 2 shows an example of data placement and corresponding number of data at

each node in RABBIT for a 7-node cluster with two primary nodes and 2-replica. It

is well recognized that 5 nodes in Group 2 and Group 3 store are enough for storing

the necessary data of second replication. Like PARAID, the system in RABBIT can

operate in multiple gears. For example, as shown in Tab. 2, Gear 1 only includes the

first two nodes belonging to Group 1, Gear 2 includes active disks in Group 2 joining

with Group 1, and Group 3 activates all nodes inside the system.

2.2 Others

Like PARAID, GRAID 6) is a green storage architecture aiming for improving energy

efficiency and reliability within RAID unit. In this proposal, the data mirroring redun-

dancy of RAID10 is extended by incorporating a dedicated log disk. The function of

this log disk is to store all updates since last mirror-disk update. Using these informa-

tion for log disk, the system only needs to update the mirroring disks only periodically,

thus being able to spin down all the mirroring disks to lower power mode most of the

time to save energy.

Designed as a power-proportional, distributed file system as RABBIT, SIERRA 7)

is a replicated object store that allows storage servers to be put into low power states

when load is low. This allows servers hosting inactive replicas to be powered down. For

example, in three-way replicated system like in normal Hadoop Distributed File System

3 c⃝ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.6
Vol.2011-IFAT-103 No.6

2011/8/2

情報処理学会研究報告
IPSJ SIG Technical Report

(HDFS) 1) or Google File System, SIERRA allows up to 2
3
of the storage servers to

be in standby. Comparing with RABBIT, SIERRA’s data placement is simpler as all

storage servers keep the same amount of data.

Kim et. al 5) suggest a fractional replication method in order to achieve balancing

power consumption and performance of system. In this proposal, the data placement

layout is inspired by PARAID as performing fractional replication and the decision of

down shift operation modes to lower gear for saving power consumption by a proba-

bilistic prediction model based on historical observations. However, this work still does

not cover with power degradation problem at versus process, a movement of storage

system’s operation mode from low gear to high gear.

In 3), the authors reported an evaluation comparison between PARAID and RAB-

BIT under similar distributed environment through empirical experiment. The idea of

PARAID is extended from RAID unit to HDFS, a popular and open source distributed

file system. From this paper, it is said that RABBIT, because of better data distribu-

tion gained better performance in read feature. However, the write modules and also

the data layout correction when system restores from low gear to high gear are still not

covered yet.

3. Data Catchup Process

In this section, focusing on the performance degradation occur when the system moves

up from low gear to high gear with the existing of write request to dataset, the process

catchup process from the time system accepts new write request at low gear, to the time

it finishes a service requiring process over new dataset is describe. This paper follows

the work done in 3) so the idea of data placement of PARAID is extended to be able

to implement in HDFS, a distributed file system.

3.1 Overview of Catchup Process

Figure 1 describes an overview of catchup process. At first, considering that system

operates in low gear with certain storing dataset. Then, it accepts requests that re-

quire writing new data to this dataset. Because in this gear, some of datanodes are

in deactivate mode, in order to correspond to this write request, system is needed to

implement write offloading technique in this step. Otherwise, new data could not be

Service

NameNode
Dataset

NameNode
Dataset NameNode

Updated Dataset

Distributed Storage System

Service

Up Gear

Low Gear High Gear

Distributed Storage System Distributed Storage System

Write New Data to Dataset

Provide data to serviceWrite new data with

Write offloading

Provide data to service

Correct data layout

図 1 Overview of catchup process

written completely in case of PARAID, or replicated fully in case of RABBIT.

Next, when a service requiring new dataset to be stored and desiring higher perfor-

mance, system is changed to high gear. In this step, not only providing data to this

service, but also data layout correction is needed inside storage system.

The detail operation of above two processes is described in the following parts of this

section.

3.2 Write New Data Using Write Offloading Technique

When system in low gear and has to deal with requests of writing new data to dataset

which was already stored, it performs its data layout policy as defined according to its

policy. Because system is operating in low gear, some of datanodes are powered off. As

the results, certain parts of new data cannot be written to corresponding deactivated

datanodes. In such cases, system randomly chooses another node from active nodes to

4 c⃝ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.6
Vol.2011-IFAT-103 No.6

2011/8/2

情報処理学会研究報告
IPSJ SIG Technical Report

A

Low Gear High Gear

B D

C A

B
C D

Name

Node

Node 1 Node 2 Node 3 Node 4

E

(Data, Temporal Node, Corresponding Node)

- E, Node 2, Node 4

- …

E

A

B D

C A

B
C D

Name

Node

Node 1 Node 2 Node 3 Node 4

E

1. Locate new data E to

Node 2 instead of

Node 4

2. Save write offloading

information log file

E

1. Correct data layout

through Write

offloading log file

Transfer data E to Node 4

Write offloading log file

図 2 Data layout correction from write offloading

serve this request. The information of data, temporally chosen node and corresponding

node is saved in a log file. This in formation will be retrieved when system decides to

change its operation mode from low gear to high gear.

The example of write offloading process is shown in Fig. 2. In this example, according

to data placement policy, Node 4 should serve write request of data E. However, during

low gear, it is powered off, so the system decide to opt another node alternatively, here

Node 2 is chosen. The system saves all of this information into a log file.

3.3 Data Layout Correction

When system changed to high gear to serve a service that requires processing over

new updated dataset with higher performance desires, it needs to perform two functions.

The first function in to transfer the data written temporally at temporal datanodes to

corresponding nodes. It could be achieved by reading the information from log files.

The second function is to serve the service which scans all new dataset storing in storage

system. It is well noticed that, comparing with normal serving at high gear when there

is no need of correcting data layout, the cost of allowing system to operate in multiple

mode for power saving highly depends on the amount of this catchup data.

4. Experiments

The purpose of the experiment is to evaluate the effect of data catchup resulting to

power degradation when system changes its operation from low gear to high gear with

the occurrence of dataset updating.

4.1 Experiment Method

The functions of write offloading explained in Sec. 3 were added into HDFS source

code. And the evaluation is achieved by using grep benchmarks accompanied with

HDFS. This benchmark is a very typical application that utilizes Map-Reduce frame-

work to find out from whole dataset elements that matches certain pattern. In this

frame work, the dataset is split into multiple parts for multiple workers to perform

an action of seeking for appropriate results. Worker needs to read all its responsible

dataset so, when multiple workers perform their job at the same time, it could be im-

plied that there exits certain distributed I/O to the storage system. As the result, the

performance of system can be evaluated through the execution time of this benchmark.

At first, guaranteeing original data placement policy, system is operated at high gear

and already stores certain dataset. Then we set the system to low gear and perform

new requests that appending new data to old dataset. Next, we set the system’s oper-

ation mode from low gear to high gear and run the benchmark. In this experiment, we

designed two gears that Gear 1 contains only first three nodes to be active and Gear2

contains all seven nodes need to be powered on.

The effect of data catch up process leading to performance degradation of each method

(PARAID, RABBIT) is evaluated through the execution time of grep benchmark over

updated dataset when upshift system from low mode to high mode. The experiments

were performed multiple times and memory cache was flushed between each time.

4.2 Experiments Environment

There are two elements in our framework.

First, in storage, we use a number of nodes which play a role of datanode as in HDFS.

Each datanodes is an autonomous disk which contains processor, memory, hard disk

and is designed for low power consumption.

Next, in order to implement data placement and to manage information about data

5 c⃝ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.6
Vol.2011-IFAT-103 No.6

2011/8/2

情報処理学会研究報告
IPSJ SIG Technical Report

表 3 Nodes specification
Namenode Datanode

CPU Intel Pentium 4 3.00GHz Transmeta Efficeon TM8600 1.0GHz

Memory SDRAM 2048MB DRAM 512MB

HDD SATA 320GB IDE 100GB

Network Interface Card 1000Mb/s 100Mb/s

OS Linux 2.6.18 Linux 2.6.18

Java JDK-1.6.0 JDK-1.6.0

HDFS 0.20.2 0.20.2

Block Size 64MB 64MB

表 4 Dataset specification

Name Value

File size 200MB

Old dataset 1000MB (5 files)

New data 200MB (1 files)

location such as which datanode is containing what data, a namenode is used. At this

namenode, the source codes relating to data placement of normal HDFS are touched to

make it available to implement the layout policy of RABBIT and PARAID. Further-

more, the function of implementing write offloading, setting operation mode of system

through command line was added into namenode while datanode’s functions was kept

untouched.

The interconnect between datanodes and namenode is Extreme Network Summit

16101 Gigabit Ethernet switch.

The specification of namenode and datanodes are summarized in Tab. 3.

Here, the dataset is a text file contains a number of fix 4-word length phrases, and

the pattern used in grep are generated randomly using Java-1.6.0. The size of storing

dataset was fixed to 1GB while the size of new written dataset was fixed to 200MB.

The block size used in HDFS was 64MB and the number of replicas of data using in

RABBIT was set to 2.

4.3 Experiments Results

Figure 3 shows the experiment result with grep benchmark. The results were aver-

aged from two times running. Normal shows the execution time of 1.2GB dataset when

no catchup occurred. Catchup indicates the result starts from the point system change

313.9
334.2

20.3

314.1 316.3

2.2

0

50

100

150

200

250

300

350

400

Normal Catchup Penalty Cost

RABBIT PARAID

Execution time [s]

図 3 Experiment result with grep benchmark

to higher gear node to perform benchmark over updated dataset. Penalty cost describes

the difference between Normal and Catchup results.

From this result, it is seen that in normal, both two nodes obtained similar results.

However, the penalty cost of RABBIT well overcome the one of PARAID by 10 times,

20 seconds comparing with 2 seconds. It is well reasoned that in this case, because the

amount of data needed to transfer inside storage system was much larger in RABBIT

than in PARAID. There were only 8 MB needed to be write offloading in PARAID,

while the corresponding number in RABBIT was 196 MB. It is explained by the fact

that in this experiment, the number of replicas in RABBIT was set to 2, so it needs

much more data than PARAID to be stored in the system. However, with no repli-

cated data, PARAID is suggested not to be tolerant with the occurrence of failure in

datanode.

6 c⃝ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.6
Vol.2011-IFAT-103 No.6

2011/8/2

情報処理学会研究報告
IPSJ SIG Technical Report

5. Conclusion

Balancing performance and power consumption has become an important issue in

distributed storage system area. For serving certain service over large amount of data

storing in storage system, in order to achieve high performance, higher number of stor-

age element is needed. However, it also makes the power consumption of whole system

increased. Recently, a number of methods have been proposed to control the power

consumption and system’s performance. It makes the system can operate in multiple

modes, however the power degradation occurred when system needs to catch up with

new data while changing its operation mode from low gear to high gear is still not

considered yet enough.

In this paper, we decided to choose two representative methods, i.e PARAID and

RABBIT in this field and compared them in the context of power degradation when

the system has to catch up newest status of storing dataset and serves service requiring

process over this dataset. Following the previous work, we developed this functions

in PARAID and RABBIT over popular and open source Hadoop Distributed File Sys-

tem. In low gear, we applied the idea write offloading technique to write new data to

temporal datanodes and when system changed to high gear, data layout correction is

fulfilled.

An empirical experiment through comparing execution time of grep benchmark that

utilizes Map Reduce framework to find appropriate elements that matches certain pat-

tern was performed. In both methods, the execution time of this benchmark at time

catchup new data is needed and not needed were abstracted. From this experiment

results, PARAID gained better performance comparing with RABBIT with faster ex-

ecution time. The penalty cost for PARAID is 10 times better than RABBIT. One of

considerable reasons is that because of its data placement policy, PARAID needs less

amount of data to be relocated in data layout correction phase so, the bottleneck of

system at that time was far behind one in RABBIT.

In the future, we would like to examine with larger dataset and another benchmark.

Furthermore, because the power consumption in this paper was implied as the number

of active datanodes used in storage system, we also would like to obtain real numeric

results through real deactivating nodes.

Acknowledgements

This work is partly supported by Grants-in-Aid for Scientific Research from Japan

Science and Technology Agency (A) (#22240005).

参 考 文 献

1) : Hadoop, http://hadoop.apache.org.

2) Charles, W., Mathew, O., Jin, Q., Andy, W. A.-I., Peter, R. and Geoff, K.: .

3) HieuHanh, L., Satoshi, H. and Haruo, Y.: Performance Comparison of Power-

Proportional Approaches in Storage Systems through Empirical Experiment, in

the Proceedings of the 3rd Data Engineering and Information Management Forum

(2011).

4) Hrishikesh, A., James, C., Varun, G., Gregory R., G., Michael A., K. and Karsten,

S.: in the Proceeding of the 1st ACM Symposium on Cloud Computing, New York,

NY, USA.

5) Kim, J. and Rotem, D.: Proceedings of the 14th International Conference on Ex-

tending Database Technology, New York, NY, USA.

6) Mao, B., Feng, D., Jiang, H., Wu, S., Chen, J. and Zeng, L.: in the Proceeding of

IEEE International Symposium on Modeling, Analysis and Simulation of Comput-

ers and Telecommunication Systems, 2008. MASCOTS 2008.

7) Thereska, E., Donnelly, A. and Narayanan, D.: SIERRA: A Power-Proportional,

Distributed Storage System (2009).

7 c⃝ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.6
Vol.2011-IFAT-103 No.6

2011/8/2

