
Evaluation of a Power Saving Method

Storing XML Data

†Xuehua Jiang ††Yousuke Watanabe

†Haruo Yokoa

Abstract A growing number of applications are choosing to use XML

format to transfer data on internet or save data. As a result, volume of XML

data is increasing speedy so that data centers use several to some dozens of

servers to store XML data. In this case, there is a problem for power

consumption in hard disks. This study proposes an XML data allocation

algorithm for power consumption(XAPC). We analyze query patterns to

find out which part of file are not accessed frequently and separate this part

to different disks to cut down power consumption by putting the disk into a

low power consumption mode. Finally, we evaluate power consumption of

proposed algorithm using a simulator.

Keyword: XML, Query Patterns, Data Allocation, Power Consumption,

Evaluation

1. Introduction

XML has been emerged as a standard for data presentation and exchange on W3C.

Data exchange format XML has been penetrating virtually all areas of internet

application programming. As a result, volume of XML data is increasing day by day.

Due to high capacity of data, multiple hard disks are used to save data. In this case,

there is a problem that data centers consume so much electric power. Several recent

studies have pointed out that data centers consume several Mega-watts of power[1]. It

has been observed that power densities of data centers was grow to over 100 watts per

square foot. Thus decreasing the power consumption consumed by data centers is one

of urgent problems should be solved in near future.

In order to cut down electric energy in hard disks, we should put the disks which are

not accessed frequently to a low power consumption mode. A disk should be spun up

whenever it is accessed if it is in a low power consumption mode no matter how much

of data are accessed in a request. Therefore, like in figure 1 which shows research

overview, we should separate the data into frequent and infrequent part and try to put

disks which store infrequent data into the low power consumption mode as much as we

can.

There is our pervious study[2] which proposed XML data allocation algorithm.

However, that study considers only count-based transaction which consists of the fixed

number of queries. But that study did not consider time-based transaction. In this study,

we consider time-based transaction and improve association algorithm proposed in

earlier study and propose XML data allocation algorithm for power

consumption(XAPC). Improved algorithm still tries to decrease power consumption in

hard disks with slight influence of retrieve performance by analyzing query patterns.

Correct mining result can offer good idea for proposing data allocation algorithm in

hard disks and suitable data allocation algorithm could lead to cut down energy

consumption by putting disk which is not accessed frequently to a low power

consumption mode. Try to get correct mining result, we should retrieve all nodes

including those issued by special symbols, such as “//” and “*”. In addition, a query

does not retrieve nodes only, but also retrieves attributes of the nodes as well. Therefore,

we consider attributes as well as node in the mining algorithm. Data with high

† Department of Computer Science, Graduate School of Information Science and Engineering,

Tokyo Institute of Technology

 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8552 JAPAN

 †† Global Scientific Information and Computing Center, Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8552 JAPAN

IPSJ SIG Technical Report

1 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

frequency and that with low frequency are stored in the different disks respectively. The

disk with data which are not accessed frequently is able to be in low power

consumption mode, by which we can cut down energy consumption. Finally, we use a

simulator to evaluate power consumption of our algorithm and compare the result with

other approach.

The reminder of this paper is organized as follows. Section 2 introduces 3 types of

disk mode. Section 3 introduces related work about XML data caching algorithm. The

caching algorithm could not be applied to power saving in hard disks directly . However,

it can offer preliminary idea about data allocation algorithm. Next in Section 4 and

section 5, we introduce detail mining algorithm and data allocation algorithm

respectively. We have done simulation to evaluate the algorithm we proposed. All

particulars and result will be remarked in Section 6. Finally, conclusion and future work

will be mentioned in the last section.

Figure 1: Research Overview

2. Disk Mode

There are 3 different types of mode due to its power consumption: active, idle and

standby.(shown in figure 2)

 Active Mode: A disk is in active mode when it is processing read or write requests

from outside. In the active mode, both disk and magnetic header are rotating to looking

for a certain address on disk. As a result, response cost is very low in the active mode.

However, power consumption is very high.

 Idle Mode: When the disk finished processing requests, the header stops moving. We

call this mode as idle mode. In idle mode, power consumption is a bit lower than in

active mode and response cost is still very low.

 Standby Mode: When there is no access to a disk for a certain period of time(which

we call spin down threshold below), the disk spins down disk rotation and the disk stops

finally. This is standby mode. The disk should spins up disk rotation to idle mode first,

then further to active mode to process requests if there are requests to the disk in

standby mode. Generally, spinning up takes from several to a dozens of seconds. As a

result, response cost is very high. However, standby mode is the mode that consumes

minimum power cost.
The data allocation algorithm in hard disks tries to separate the data into several parts

due to its access frequency. When there is a request to the disk in standby mode, the

response may take some seconds. However, average response cost is not influenced so

much because almost requests happen to the disks which hold frequent data.

In order to separate file due to its access frequency, we should catch which parts of

file are requested frequently. Therefore, we should mine frequent nodes by analyzing

query log from users first.

Figure 2: Disk Mode

3. Related Work

 As mentioned above, caching algorithms can offer preliminary idea about data

allocation algorithm because caching algorithms try to find out the frequent nodes as

well. In addition, there is an earlier work which proposed allocation algorithm for XML.

Here, we introduce related work in two subsections.

3.1 Caching Algorithm

 [3] and [4] proposed a XML caching system called XCache. XCache processes

XPath queries using cached XML data and combine result from cached data from

remote server in case that not all results could be retrieved from cache memory only. [5]

and [6] proposed XML data mining algorithms based on query patterns to save data

most retrieved frequently in the cache memory in order to enhance query performance.

In [7], authors proposed a positive and negative association rules for XML caching

algorithm called LRU_AR. In that work, a node could not be associated into more than

one association tree because cache memory has a limitation of its small size that cache

does not save duplicated data. In paper [8], authors proposed a XML cache replication

management taking ancestor and descendant relationship into account. In many cases, a

parent node contains more than a single child node. When a child node is issued in a

IPSJ SIG Technical Report

2 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

query, its parent nodes are issued together because of spatial tree data structural of XML.

As a result, ancestors are issued more frequently than descendants and they are less

likely to be replaced than descendants in cache memory.

 All above studies focused on cache memory and tried to enhance XPath query

performance. However, these works have some defects. For example, they did not take

the cases when XPath contains some special symbols into account. Generally, an XPath

may contains “*” and/or “//” symbols to express some nodes between ancestors and

descendants. In this case, the nodes are retrieved as well though they are not express

directly in the XPath. Another defect of previous work is that they did not consider

attributes of a node. However, the attribute may contain important and valuable

information of the node. Thus attributes should be cached as well.

3.2 XML Allocation Algorithm

 Earlier, a paper[2] proposed an XML data allocation algorithm. However, we could

not find out well which part of data are accessed frequently because transaction

definition in that work does not work well. In this work, we redefine transaction and

apply Apriori algorithm[9] to make data set.

4. Mining Algorithm

Mining algorithm contains 3 different steps: XPath processing, node mining and

association. XPath process is the step that retrieves multiple nodes even they are not

issued directly. In the mining step, we mine frequent nodes from the result of XPath

process. In association step, infrequent nodes are associated into different class set. The

nodes which are likely to be issued together frequently are contained in the same

association tree. Finally, we allocate the data due to association result. The data with

high access frequency are put into the same disk to offer good retrieve performance.

Similarly, infrequent data which are contained in the same association tree are put into

the same disk in order to get result just from a disk. It means that there is only a single

disk spins up to idle mode. We could save energy by spinning up only a disk than

spinning up several disks for a request. In other to process XPath, we should collect log

from user before this step. The log is a record of data which contain time stamp of an

XPath, XPath ID and XPath. All the steps are shown in figure 3.

4.1 XPath Processing

Xpath processing could be called as XPath expansion step as well because we try to

retrieve multiple nodes which are not issued directly and the XPath may be expanded

after this step. In our study, we consume that the requests to XML files are in format of

XPath. XML data have characteristic of tree structure and we can use XPath to indicate

XML’s ancestor and descendant nodes and their relationship. In this case, XPath may

contain some special symbols, such as “@”, “*” and “//”. Therefore, we should analyze

XPath in the first step. Here, we consider above three special symbols. As example, we

use XML data DTD from benchmark[9] program. (shown in figure 4)

Figure 3: Research outline

Case 1(DTD contains two different nodes with same expression): Some DTD may

contain two different nodes with same expression. For example, we assume that an

XPath query “site//name” is issued. We can find two different nodes with the same

expression “name” in the DTD when we observe the XML file DTD shown in figure 4.

One is a child node of “item”; the other one is a child node of “person”. In this case, we

should consider that both nodes expressed as “name” are issued because system does

not know which node do the user retrieves and returns both result. In fact, both two

XPathes are issued: “site/regions//item/name” and “site/people//name”.

Case 2(with “*” and/or “//” symbol(s)): “*” is a wildcard in the XPath and “//” is

abbreviation of more than a single original nodes that implicitly added to the between

ancestors and descendants or themselves[11]. In this case, of course, the nodes

expressed by “*” and/or “//” are not expressed directly. However, they are issued. For

instance, we use below 3 different XPathes with different filter conditions to search a

node.

XPath1: “site/regions//item[name=”John”]”

XPath 2: “site/regions//item[*=”John”]”

XPath 3: “site/regions//item[//=”John”]”

The first XPath searches an item whose child node “name” matches with “John”. In

IPSJ SIG Technical Report

3 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

this case, the system traverses only the “name”.

The second XPath searches an item whose children match with “John”. In other word,

the system returns all results when it finds any child nodes of “item” matches with

Figure 4: XML File DTD

“John” because “*” is a wildcard. In this case, the system traverses all child nodes:

“name”, “mailbox”, “desc”, “res”. Therefore, the log after XPath processing should

contain all nodes retrieved.

The last XPath searches an item whose descendants or the node itself matches with

“John”. In this case, the system traverses all descendants and itself: “item”,

“description”, “mailbox”, “mail”, “reserve”, “name”. Similarly with above case, the log

after XPath processing should contain all nodes retrieved.

Case 3 (with “@”): “@” is expression of an attribute of a node due to XML

specification[12]. Sometimes, the attribute contain valuable and/or unique information

about a node, such as ID of a node. As a result, there will be an XPath which search a

certain node with its ID information. In this case, we should mine the attribute as well

as node.

4.2 Node Mining

Subsequently, we do node mining in this step. Purpose of the node mining is to

separate the data into two parts: data with high access frequency and data with low

access frequency. We use a minimum hit_count (which we call as minimum support as

well later) to decide where a class is a frequently access one or not. Class means

attribute and element of a node with the same name. In other word, when an instance of

a certain node is issued in a query, we consider that all instances are issued at the same

time, because all the instances should be read to retrieve final result. As a result, the best

way to calculate hit_count is in class unit. However, a node may appear more than once

in different position, in this case, we add a digital number at the end of the node to

distinguish the nodes.

As example, we use 6 different XPath log to explain process of node mining which is

shown in table 1. The XPathes show both original XPath and its result after applying

XPath processing. Node highlighted with red is the node implicitly added and retrieved

in fact.

The node is decided by its hit_count, as a result, we should +1 to the class when its

instance issued once. Table 2 shows statistic result grouped by hit_count.

 If we apply the minimum hit_count as 4, which means that the class whose hit_count

is greater or equal to 4 is sorted as frequent classes; other classes are sorted as

infrequent classes. In the example, we consider the 5 classes (“site”, “regions”, “africa”,

“item”, “name1”) are frequent nodes, else are infrequent nodes. In the previous work[7],

the hit_count for “africa”, “mailbox”, “mail”, “des” and “res” is 0 because they do

analyze XPath before mining step. In other words, the nodes express directly in the

XPath can be mined by previous algorithm[7]. In our algorithm, “africa” and “name1”

are sorted as frequent nodes.

Table 1: XPath Log

Time ID XPath

0s Q0 site/people/person[@id]/name0

8s Q1

site//name

→site/regions/Africa/item/name1

→site/people/person/name0

20s Q2
site//open/bidder/increase

→site/opens/open/bidder/increase

27s Q3
site/regions//item[name=”John”]

→site/regions/africa/item/name1

29s Q4
site/regions//item[*=”John”]

→site/regions/africa/item/name1,mailbox,des,res

35s Q5
site/regions//item[//=”John”]

→site/regions/africa/item/name1,mailbox,mail,des,res

...

1290s site/people/person

IPSJ SIG Technical Report

4 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

0s

13s

26s

39s

Q0 Q1

Q2

Q3 Q4 Q5

1300s
...…

…
…

…
…

Q1201
1287s

...…

Table 2: hit_count Result

hit_count classes

7 site

4 regions,africa,item,name1

3 people, person

2 name0, mailbox, des, res

1 @id, opens, open, bidder, increase, mail

In node mining step, we get two part data: frequent data and infrequent data.

Frequent data are the data whose hit_count is not less than minimum hit_couint;

infrequent data are the rest part of the file.

4.3 Association Algorithm

 Association is process of making data sets which contain classes issued in the same

transaction frequently. Association algorithm is applied to infrequent nodes only. The

purpose of association step is to make data sets which contain the nodes accessed

together frequently that the XPath could retrieve result from only a single disk. It means

that there is only a single disk processing the request. If the disk is in standby mode, it

should spin up disk rotation to active mode. There will happen power consumption in

the process of spin up. Therefore, the best case is when we spin up only a disk to

minimize power consumption.

 The association is done in transaction unit. In our work, we define transaction as a

query set contained in a certain period of time. We define a period of a transaction as 13

seconds; a spin down threshold which is referenced from a specification of a disk from

Hitachi Co., Ltd,.[13]. Then XPath queries issued in the same time slot are contained in

the same transaction. Meanwhile, a transaction is a set of classes which are issued in the

queries in the transaction. However, we calculate the hit_count in query unit because

some class may be issued more than once if the transaction contains several queries.

Figure 5 shows queries in transaction unit. Transaction0 is set of queries issued

between (0~13)s. In our example, Q0 and Q1 are contained in transaction0. Similarly,

we make 1000 transactions from (0~1300)s. Object of association algorithm is the

classes sorted as infrequent part.Table 3 shows infrequent classes order by hit_count

which are sorted as infrequent data in the mining step.

Association process is done by using Apriori Algorithm published in [9] which finds

out frequent item sets. We make an item set until the size of classes in the item set is

Table 3: Infrequent classes

hit_count class(transaction)

3 people,person(T0,T999)

2
name0(T0)

mailbox,res,des(T2)

1

@id(T2)

opens,open,bidder(T1)

mail(T2)

Figure 5: Transaction

equal to the size of disk because a disk has a class set and all the classes contained in a

class set should be stored in the same desk. The size of an item set is big if the size of

class is small; the size of an item set is small if the size of class is big.

5. Data Allocation

 XML data are stored in class unit. A class may have several instances and all these

instances of the class are stored in the same disk. Data are allocated in two steps.

 Step 1: Frequent data are allocated in the first step. They are allocated order by its

hit_count from disk1 to disk X (figure 6). The number of disk in high power

consumption mode is X.

 Step 2: In the step 2, we allocate class sets got with association algorithm. Each class

is corresponds to a certain disk and the classes included in the class set are allocated to

the correspond disk. The class sets for disks from disk(X+1) to diskY have the same

sizes which are equal to a single disk size. The size of frequent data may not always be

times of disk size, in other words, diskX may have free space for infrequent data. As a

result, we should make a data set for diskX whose size is equal to the free space in the

diskX.

 There is a table(Table 4) from which we could get information about in which disk a

certain class is stored. Each class has a unique id to distinguish with others. Therefore,

when the system processes a request, it should first read this table to confirm to which

disk the request should be sent. There should be another table in each disk shows

relationship between parent node and child node to confirm which instance should be

returned to client. If the result are form more than 1 disk, the result from different disks

(T0)

(T2)

(T1)

(T999)

IPSJ SIG Technical Report

5 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

should be combined first then return to client.

Data should be reallocated if the power consumption of disk in high power

consumption mode gets to lower, oppositely, the power consumption in disk in low

power consumption mode gets to higher, or the performance gets worse. This case will

happen when the query patterns are changed. For example, hot search topic is changed

from a field to another field which hardly has relationship. In this case, we should

analyze query patterns again and reallocate data to save power consumption.

6. Simulation and Evaluation

 Finally, we do a simulation to evaluate power consumption in hard disks and

performance. We compare three different approaches: striping method, LRU_AR and

XAPC.

Striping Method: Striping method is the case that data allocated in the disks

randomly without considering query patterns.

LRU_AR: LRU_AR is the approach which analyzes query patterns, but did not take

special symbols into account;

XAPC: XAPC is the approach which is proposed in this paper.

6.1 Simulation and Parameters

Table 6 shows simulation environment and parameters used in the simulation.

Parameters are referenced from the disk specification[13]. We select the DTD from

benchmark program[10] as a simulation file. The DTD contain 100 different classes,

including 6 attributes. We make a query set, which are made up by 96% frequent

queries and 4 % infrequent queries. Frequent query set contain 41 different queries,

which are also from XPathMark Bench program[10]. Among them, 4 XPathes have “//”

expression (9.76%), 2 have “*” symbols (4.88%) and 14 XPathes have retrieve

attributes as well. An infrequent query is made by nodes which contains 2 ~ 11 different

classes and/or attributes chosen from the DTD randomly. Time intervals are generated

by a random algorithm from our simulation system as well which is between 0 to 59

seconds.

Table 6: Environment and Parameters

Environment Parameters

OS: Windows 7 active_power: 15W

Language: Java 1.6 idle_power: 11W

Database: PosttreSQL 8.0 standby_power: 2.5W

queries: 1000 spindown_power: 2.5W

min_supp: 0.100,0.015,0.010,0.005,0.001 spinuup_power: 2.5W

time interval for queries: 0~59s spindown_threshold: 13s

disk number: 4 spinup_time: 14s

 spindown_time: 14s

6.2 Evaluation of Power Consumption

Figure 7 shows evaluation of power consumption. Power consumption of striping

algorithm is greater than other algorithms because all 4 disks are in the high power

consumption mode almost all the time. Power consumption of XAPC is less than of

LRU_AR algorithm when we apply the same minimum support. We can notice that

electric power consumed in idle, standby and spin down mode are almost same in all 3

algorithms. Therefore, the main difference in power consumption is coursed by the

difference in the spin up mode. Thus, we observe how many times the disks are spun up

for each algorithm. Figure 8 shows calculate result for spinning up. Similarly with the

evaluation result of power consumption, striping has maximum times of spinning up

and XAPC has the least times.

6.3 Evaluation of Performance

Above two evaluations focus on how much power consumption we can save.

However, the algorithm is not useful if its response cost is very high. Then, we evaluate

the performance in this step. Here, performance is measured by the rate of QPS(number

of queries per second)/PPS(power consumption per second).Figure 8 shows evaluation

result. We can see that performance gets better when we apply LRU_AR and XAPC

class_id disk_id

0 0

1 X

2 Y

... ...

Figure 6: Data Allocation

class node_id path value

name 1.1.0 site/people/person “John”

name 1.1.1 site/people/person “Max”

Table 4: Disk Information

IPSJ SIG Technical Report

6 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

than use striping. It means that we can cut down power consumption at the same time

offer better performance.

Figure 8: Power Consumption

Figure 9: Spinning Up Count

Figure 10: Performance (QPS/PPS)

7. Conclusion and Future Work

 This study proposed an XML data allocation algorithm for power consumption by

analyzing query patterns in XPath format. We separated the approach into 3 steps: node

mining, association and data allocation. We also did a simulation to evaluate power

consumption and performance.

 In our method, power consumption is minimum when the minimum support is set as

0.005 and offers best performance. Almost half of the data are sorted as frequent part

and 2 disks among 4 are in high power consumption mode when the minimum support

is 0.005. This result means that the power consumption is least when we use the disks in

high power consumption mode effectively.

 In the future, we plan to improve our algorithm continuously and do a real

experiment to evaluate actual result using XML data from Wikipedia, DBLP etc.. Other

work we are planning to do is doing experiment in instance level which means that the

data are allocated in instance unit, which they are allocated in class unit in this wrok.

We allocate data in class unit in this work, however, the evaluation result may different

if we allocate data in instance unit. Thus, we want to compare the result and analyze

difference.

Acknowledgment

This research was supported in part by JSPS Grant-in-Aid for Scientific Research (A)

(#22240005).

References

[1] J.Chase and R. Doyle. “Balance of Power: Energy Management for Server
Clusters”. Proc. 8th HotOS, 2001.S

[2] X.Jiang and H. Yokota.”XML Data Allocation in Hard Disks Based on Query
Patterns”, Proc.DEIM,2012

[3] L. Chen, E.A.Rundensteiner and S. Wang, “XCache – A Semantic Caching
System for XML Queries”, Proc. ACM SIGMOD, 2002.

[4] L.Chen and E.A.Rundensteiner, “ACE-XQ: A CacheE-aware XQuery Answering
System”, Proc. WebDB , pp 31-36, 2002

[5] L.H.Yang, M.L.Lww and W.Hsu, “Efficient Mining of XML Query Patterns for
Caching”, Proc.VLDB, 2003

[6] C.Hua, “Frequent Query Patterns Guided XML Caching and Materialization”,
Proc.WiCom, 2007

IPSJ SIG Technical Report

7 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

[7] L.Chen, S.S.Bhowmick and L.T.Chia, “Mining Positive and Negative Association
Rules from XML Query Patterns for Caching”, Proc.DASFAA, pp736-747, 2005

[8] D.Park and M.Toyama, “XML Cache Management Based On XPath Containment
Relationship”, Proc. ICDE, 2005

[9] Agrawal, R., Imielinski, T. and Swami, A.: “Mining association rules between sets
of items in large database”, SIGMOD Rec., Vol.22, No.2, pp.207-216(1993)

[10] A.Schmidt, F.Waas, M.Kersten, M.J.Carey, I.Manolescu and R.Busse, “XMark: A
Benchmark for XML Data Management”, Proc. VLDB, 2002

[11] http://www.w3.org/TR/xpath20/

[12] http://www.w3.org/TR/xml/

[13] http://www.hitachigst.com/tech/techlib.nsf/techdoc

IPSJ SIG Technical Report

8 ⓒ 2011 Information Processing Society of Japan

Vol.2011-DBS-152 No.5
Vol.2011-IFAT-103 No.5

2011/8/2

