
Journal of Information Processing Vol. 19 378–388 (July 2011)

Regular Paper

Feasibility Study of Security Virtual Appliances

for Personal Computing

Ahmad Bazzi†1 and Yoshikuni Onozato†1

Computers connected to the Internet are a target for a myriad of complicated
attacks. Companies can use sophisticated security systems to protect their com-
puters; however, average users usually rely on built-in or personal firewalls to
protect their computers while avoiding the more complicated and expensive
alternatives. In this paper we study the feasibility —from the network perfor-
mance point of view— of a VM configured as an integrated security appliance
for personal computers. After discussing the main causes of network perfor-
mance degradation, we use netperf on the host computer to find the network
performance overhead when using a virtual appliance. We are mainly concerned
with the bandwidth and the latency that would limit a network link. We com-
pared the bandwidth and latency of this integrated security virtual appliance
with current market products and in both cases, the performance of the virtual
appliance was excellent compared with hardware counterparts. This security
virtual appliance for example allows more than an 80 Mbps data transfer rate
for individual users, while security appliances generally allow only 150 Mbps
for small office users. In brief, our tests show that the network performance
of a security virtual appliance is on par with the current security appliances
available in the market; therefore, this solution is quite feasible.

1. Introduction

The Internet has become an essential medium for communication and collabo-
ration. Yet, computers connected to the Internet continue to face major security
threats that range from viruses, Trojans and worms to malicious hackers try-
ing to break into them. Such attacks continue to increase in both scale and
sophistication as well as the defense mechanisms for dealing with them.

In order to provide protection against these diverse threats, companies continue
to invest huge amounts of money in information security systems and appliances.
The average user, on the other hand, cannot afford such sophisticated expensive

†1 Graduate School of Engineering, Gunma University

solutions, so many of them rely only on the default firewall shipped with their
operating system (OS). The efficiency and customizability of these firewalls can
vary greatly depending on the vendor and the OS version. Our objective is to pro-
vide the average user with an inexpensive, efficient and reliable security solution
regardless of the security of his OS, while ensuring high network performance.

In past years, multi-core CPUs have become the standard not only for desktop
processors but also for processors used in most laptop series. This situation has
created abundant processing power that we can use for running a virtualization
program for instance without slowing the host OS. Therefore we look once again
to using computer virtualization technology to create a virtual machine (VM)
with a preconfigured security function.

The use of a VM as a security virtual appliance (SVA) has become more com-
mon in the past years, in particular for companies with virtualized servers and
for companies using Platform as a Service (PaaS) in cloud computing. For ex-
ample, VMware Virtual Appliance Marketplace 1) is dedicated to providing an
extensive list of VA images with a diversity of applications such as Enterprise
Resource Planning (ERP) and Customer Relationship Management (CRM), IT
administration, and security. In fact the market has become so specific that vir-
tualizing the demilitarized zone (DMZ) that is logically and physically isolated
from internal and external networks has lead Cisco to release a dedicated virtual
switch 2).

Considering the drawbacks of a software firewall program, there are several
advantages that we can find in a SVA:
Isolation between host OS and guest OS The guest OS is logically iso-

lated from the host OS. The guest OS is running a different operating
system, consequently it is completely secure against the vulnerabilities of
the host OS. Reference 3) tries to take advantage of the isolation between
the guest OSs themselves. In our approach however we try to take advantage
of the isolation between the host OS and the guest OS, similar to Ref. 4).

Fail-close Design In our implementation, the network interfaces are config-
ured in a way to ensure that no packet can reach the host OS without passing
through the guest OS.

Integrated Security Appliance In the guest VM, we have the chance to in-

378 c© 2011 Information Processing Society of Japan

379 Feasibility Study of Security Virtual Appliances

stall an OS with a complete security solution, in contrast with being limited
to installing one piece of software for protection. Moreover, because it is a
complete OS, it can be easily equipped with new security functions by adding
additional security software.

There is a small number of research publications about using a SVA on personal
computers. Prevelakis’s work 4) is an excellent example, where he discusses the
technical challenges that he encountered and solved while running an OpenBSD
firewall VM on a MS Windows 2000 laptop. Unfortunately the SVA was limited
to the firewall function and provided no easy interface that the average user
can access. The author did not study network performance of such a SVA but
was mainly concerned with technical aspects of the proposed and implemented
solution.

Since the publication of Ref. 4), many things have changed; in particular, the
average speeds of the available Internet subscription plans nowadays are increas-
ingly higher than the average speeds in 2005. Consequently, a personal firewall is
now expected to process higher bandwidth. From the CPU manufacturer’s side,
computers with multi-core CPUs have become the standard not only for desktops
but also for laptops. Moreover, AMD has added hardware-assisted virtualization
to their newer processors using AMD Virtualization (AMD-V) 5) while Intel is
equipping its new processors with Intel Virtualization Technology (Intel VT) 6).

In this paper, we are mainly concerned with investigating the network perfor-
mance —bandwidth and latency— of SVAs on a PC. We are interested in virtu-
alizing and testing a complete security appliance that incorporates an Intrusion
Detection System (IDS), anti-virus, etc. We also focus on the firewall function
where the entire appliance can be configured and managed through a graphical
user interface (GUI). This is in comparison with Ref. 4) which only considers
a basic command-line-based firewall with no study of the network performance
aspects.

This paper is organized as follows: In Section 2 we briefly mention the motiva-
tion behind this paper and how virtualization can be used to add to the client’s
security. We discuss why the network performance might be affected and is worth
benchmarking in more detail in Section 3. In Section 4 we present our test envi-
ronment providing technical specifications of servers and clients along with the

SVA that we setup. The network performance tests are presented next, where
Section 5 deals with the bandwidth tests while Section 6 deals with the latency
tests. We offer our conclusions in Section 7.

2. Background and Previous Works

Most recent operating systems are shipped with a built-in firewall to help defend
the systems from malicious packets. These firewalls are usually the main defense
mechanism against network attacks that they would face in any non-secured
network. In one example, a successful attack on a MS Windows XP can stop the
firewall service and render the computer system completely exposed 7).

There are a number of reasons why such attacks are possible. In addition to
the OS’s vulnerabilities, these firewalls are installed and run as a service on the
same OS they are protecting. A successful attack against the host system can
therefore stop the firewall service. Moreover when the firewall service fails, the
system goes into a fail-open state allowing all network traffic to pass.

One way to tackle this situation would be by isolating the firewall from the host
OS and ensuring that the system will become inaccessible in case of a firewall fail-
ure. This can be achieved by using a hardware security appliance; however, this
is relatively expensive and quite inconvenient for mobile users. We can achieve a
certain level of isolation through virtualization technology. We refer the reader to
Ref. 8) for an overview of virtualization, to Ref. 9) for current virtualization tech-
nologies, and to Ref. 10) for the network virtualization concepts. We recommend
Ref. 11) for an in-depth technical overview.

Here, Ref. 3) covers virtual data center with multiple hypervisors forming a
cluster together, and each hypervisor hosting several VMs. These VMs can be
transferred from one hypervisor to another using “live migration”. Moreover,
these VMs should be protected by separate security appliances. The authors
highlight the trend to virtualize the network security functions using SVAs. Their
aim is to provide a distributed and scalable security function for the network flow
and for the guests hosted in a virtual datacenter. Most importantly, the network
performance tests they carried out show that these SVAs provide a performance
level comparable to that of physical appliances while providing additional bene-
fits.

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

380 Feasibility Study of Security Virtual Appliances

Fig. 1 Packet path: The solid line shows the network packet path when using passing through
a SVA, while the dashed line shows the network packet path when no firewall VA is
being used.

In contrast, we are interested in providing additional security to the average
user. Instead of studying the network performance of SVAs for guests running
on hypervisors, we are concerned with the performance of SVAs running on and
protecting common operating systems such as MS Windows 7.

A SVA can be built from free open source software (FOSS) 12) to minimize
the cost and can be saved on the computer like any other file. This makes it
suitable for the average user as it adds to his system security without causing
prohibitive inconvenience. This approach will create a certain level of isolation
between the firewall and the host OS. Moreover, steps can be taken to ensure
that the host OS will become unreachable in case of a firewall failure as discussed
later in Section 4.1.

The SVA will run on the virtual hardware created by the virtualization software
running on the host computer as described in Ref. 4). The network packets sent
or received by the host have to pass through this VA. In Fig. 1, the dashed
arrow indicates the usual path of the network packets. These packets first have
to pass through the OS driver and then through the physical NIC to reach the
network. However, when a SVA is used, the host OS will use a private IP on a
virtual NIC that is only shared with the VM. Consequently, the packets leaving
the host OS have to first go through the host-only virtual NIC to be processed
by the SVA. Then the VA will deliver them again through another virtual NIC

bridged to the physical network as indicated by the solid arrows. We will discuss
this in more detail in Section 3. As one might expect, this will affect the network
performance, so it is worth studying network performance degradation due to
the SVA to check the feasibility of this approach.

3. Performance Overhead

There are many publications regarding the network performance of a VM. In
Ref. 13), different network performance tests were run from a VM to show how
close the network performance of VMs is to the physical ones.

The tests that we carry out in this paper are different. On one hand we are
using common personal computers, while on the other we are testing the network
performance of the physical host machine when all its network traffic passes
through the VA running on this same host. In other words, the VA is not the
final destination but just part of the path that the network packets have to travel
through when leaving or entering the host.

In Ref. 14), the authors study the performance overhead in the Xen hypervisor.
They state that the computational overhead of the hypervisor and the driver
domain cause a reduced network throughput. Although in this paper we are
concerned with network performance when using desktop virtualization software
(instead of a hypervisor replacing the OS), a similar statement can be made as
to the overhead caused by the virtualization software.

The discussion in Ref. 15) relates more to our experiments as they are study-
ing the performance of a VM running on desktop virtualization software. Refer-
ence 15) explains the technical details that lead to the latency incurred when a
packet is sent from or to the VM. We can see from their work that the perfor-
mance overhead causes include the world switch (from virtual to physical and vice
versa), the additional IRQs that need to be raised, and the CPU virtualization
overhead.

The network packet would normally pass through the network card to be han-
dled by the OS kernel which would deliver it to the related application. However
observing Fig. 1, we can see that when using a virtual firewall, the network packet
will be received by the network card and then delivered to the host kernel which
in turn will deliver it to VirtualBox —as the target application— and then from

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

381 Feasibility Study of Security Virtual Appliances

VirtualBox it will go to the firewall guest OS. Inside the guest OS, it will be
processed according to the implemented firewall rules. If it is allowed to pass, it
will go through the Virtual Box host-only interface to be delivered to the correct
application that is waiting for this packet.

The use of virtualization leads to performance overhead due to several reasons.
These include:
(1) Privilege level switching 15)

(2) Trapping certain privileged instructions 9),16) (part of the CPU virtualiza-
tion overhead)

(3) Mapping memory pages 9)

Other reasons that would affect performance for the case of a FW VA include:
(1) The FW uses up CPU time whenever it processes a packet according to

firewall rules.
(2) The FW uses up CPU time when it performs the NAT function.
(3) There will be several additional necessary interrupts to send and receive

any packet 15).
3.1 Protection Rings; Privilege Level Switching
Current CPUs have 4 protection rings, i.e., 4 privilege levels, as shown in

Section 4.3.5 in Ref. 17). For normal OS functions, the OS usually switches
between privilege level 0 and privilege level 3; the kernel would run in privilege
level 0 and user applications in privilege level 3. Most virtualization software
will use privilege level 1 to run the guest OS 16). Eventually the host OS switches
between the host kernel running in privilege level 0 and the guest OS running in
privilege level 1 and the user programs running in privilege level 3 as shown in
Fig. 2. This means additional privilege level switching needs to take place and
this in turn consumes additional CPU cycles 15).

3.2 Trapping Certain Privileged Instructions
As already mentioned, the guest OS cannot run in level 0 but instead runs in

level 1. However, the guest OS will run normally and even try to execute CPU
instructions that require a level 0 privilege. The virtualization software has to
implement some technique to replace the guest OS privileged instructions with
suitable ones. For example, Oracle “VirtualBox contains a Code Scanning and
Analysis Manager (CSAM), which disassembles guest code, and the Patch Man-

Fig. 2 CPU Protection Rings and Virtualization: The host OS runs in privilege level 0, while
the applications run in privilege level 3. A virtualized guest OS usually runs in privilege
level 1.

ager (PATM), which can replace it at runtime code scanning and patching 16).”
3.3 Virtual to Physical Memory Mapping
When the guest OS accesses its memory, it will actually be accessing virtual

memory pages mapped to physical ones 9). The real-time mapping between the
physical and virtual memory space is another cause of virtualization overhead.

3.4 System Interrupts
A VM hosted using desktop virtualization software will require additional sys-

tem interrupts to access the network 15). Running the VM as a firewall with 2
NICs necessitates additional interrupts as the packet is first delivered to the VA,
then it has to leave the VA to be delivered to the host OS.

We will use Fig. 3 to shed more light on the additional necessary steps. Let’s
consider the action of receiving a network packet as an example. First the network
packet reaches the physical NIC, which will lead to an interrupt. The CPU might
be executing a certain program in privilege level 3 but it has to call the required
function to handle this interrupt; this usually means switching to privilege level
0 to process the packet and deliver it to the OS.

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

382 Feasibility Study of Security Virtual Appliances

Fig. 3 Receiving a packet: The left side shows receiving a packet in usual cases and the right
side shows receiving a packet when using a firewall VA. There are additional interrupts
and processing overhead.

When using a firewall VA, instead of delivering it directly to the OS, “Virtu-
alBox Bridged Networking Driver” will be invoked because the physical NIC is
bridged to the virtual NIC2 as discussed in Fig. 1. Now the packet will trigger
another interrupt as it needs to be processed by the guest OS. However the in-
terrupt will this time be on the virtual CPU. In VirtualBox, the guest OS is run
in privilege level 1. Inside the guest OS, the packet will be processed by the fire-
wall. It might be filtered out depending on the imposed firewall rules. Moreover,
we have enabled a NAT functionality, so the packet will be resent accordingly.
There might be certain programs that will be triggered by the incoming packet
and need to run in privilege level 3. After the guest OS finishes processing the
packet, it needs to pass it to the host OS. This will issue an interrupt to use
virtual NIC1. This will lead to another interrupt on the host OS as it has an
incoming packet. Running in level 0, the host will handle the received packet as
now it is addressed to its final destination.

Obviously this leads to an overhead on every single packet that is sent or
received. We wanted to answer the question of, what level of network performance
we can expect when using a virtual firewall. In order to answer this question, we
created a set of network configurations similar to those that we would encounter
in real network communications.

We wanted to know how such a system configuration would perform with real
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) traf-
fic. Using netperf, we can use the bulk data transfer tests to study the bandwidth;
netperf allows us to configure the socket and message sizes. Moreover, we used
the Request/Response tests to study the latency; netperf allows us to set the
send and receive packet sizes. Every test was run with two configurations: one
with a direct connection to the server and another with a VM configured as a
firewall.

4. The Network Test Environment

We begin by describing the implementation before introducing the network
performance results. The network setup of the experiment is shown in Fig. 4,
where a PC connects through a VA to a server that runs on physical hardware.

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

383 Feasibility Study of Security Virtual Appliances

Fig. 4 The network setup for the experiment.

4.1 The Firewall Virtual Appliance
In Ref. 4), Prevelakis uses OpenBSD to create a minimal firewall to protect

a MS Windows 2000 laptop. Conceptually, our setup is similar to the virtual
firewall in Ref. 4) but with certain technical differences. First, we used Virtual-
Box 18) as our desktop virtualization software. VirtualBox is virtualization FOSS
and it is quite rich in features. Moreover, being FOSS, there are no restrictions on
publishing performance tests which makes it ideal for our purposes. Second, we
used SmoothWall Express 19) to create the virtual firewall. SmoothWall Express
is an open source firewall project based on GNU/Linux that started in 2000.
It incorporates all the features expected in a modern firewall available in some
of the expensive alternatives, such as a GUI interface with network utilization
graphs, anti-virus and IDS and therefore is a suitable choice for creating the vir-
tual firewall to use in our tests. In brief, instead of using a minimal firewall as
Ref. 4), we used a complete firewall with a GUI, logging and additional security
functions that range from IDS to anti-virus.

Using VirtualBox, we created a VM with SmoothWall Express firewall and
configured it with 2 virtual network interface cards (NICs); the first virtual NIC
is configured as “Host-only” and is completely isolated from the physical network,
while the second NIC is configured as “Bridged” and therefore has to be attached
to a physical NIC. On the MS Windows host OS, the different drivers/items
used by the physical NIC can be turned off except for the “VirtualBox Bridged
Networking Driver” which is the only item necessary for the VM to communicate
with the physical network. The firewall is configured to use network address
translation (NAT) in order to provide network access to the protected host.

The specifications of the firewall VA are as follows:
OS SmoothWall Express 3.0 SP1
CPU 1 core of the host machine
Memory 256 MB RAM
Disk 2 GB
NIC1 PCnet-FAST III (Am79C973)
NIC2 PCnet-FAST III (Am79C973)

4.2 Client/Desktop Configuration
We wanted to create a setup that is similar to what we would find on current

average computers. The two desktops have identical hardware:
OS MS Windows XP SP3 32-bit edition

and MS Windows 7 64-bit edition
CPU AMD Athlon64 X2 Dual Core 2.90 GHz (5600+)
Memory 2 GB
Disk Seagate Barracuda 7,200 rpm 500 GB
NIC Artheros L1 Gigabit Ethernet Driver

4.3 Server Configuration
The server was configured as follows:

OS (GNU/Linux) Ubuntu 9.10 Server 64-bit edition
CPU AMD Athlon64 X2 Dual Core 2.90 GHz (5600+)
Memory 4 GB RAM
Disk Seagate Barracuda 7,200 rpm 1 TB
NIC Intel Gigabit Ethernet Driver

4.4 Benchmark Tool
We used netperf 20) to carry out the bandwidth and latency tests. We ran each

test for 10 minutes. Moreover each test was repeated at least 5 times in order to
ensure consistent results with a 99% ± 0.5% confidence level.

5. Bandwidth Tests

Using netperf, we carried out several bulk transfer tests on the MS Windows
XP host and the MS Windows 7 host for both the TCP and UDP protocols. We
set the socket buffer size to 56 KB on both the host and server and measured
bulk transfer with a 4 KB message size. Then we set the socket buffer size to

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

384 Feasibility Study of Security Virtual Appliances

Table 1 Results of the bulk transfer over TCP (with the TCP STREAM) option on the MS
Windows hosts.

Socket size (KB) 56 32 32
Message size (KB) 4 4 1

MS Windows XP direct connection (106 bits/sec) 94.38 94.38 94.38
MS Windows XP through VA (106 bits/sec) 84.79 83.76 83.72
Degradation percentage 10.16% 11.25% 11.29%

MS Windows 7 direct connection (106 bits/sec) 94.37 94.38 94.38
MS Windows 7 through VA (106 bits/sec) 91.20 91.03 91.01
Degradation percentage 3.36% 3.55% 3.57%

Fig. 5 Results of the bulk transfer over TCP (with the TCP STREAM) option on the MS
Windows hosts.

32 KB on both the host and server, and checked the bulk transfer rate with a
message size of 4 KB then 1 KB. The bulk transfer results on the TCP protocol
for Windows XP host and Windows 7 host are shown in Table 1 and shown as a
graph in Fig. 5. The results using the UDP protocol are shown in Table 2 and

Table 2 Results of the bulk transfer over UDP (with the UDP STREAM) option on the MS
Windows hosts.

Socket size (KB) 56 32 32
Message size (KB) 4 4 1

MS Windows XP direct connection (106 bits/sec) 95.99 95.99 94.18
MS Windows XP through VA (106 bits/sec) 94.14 94.22 91.56
Degradation percentage 1.93% 1.84% 2.78%

MS Windows 7 direct connection (106 bits/sec) 95.97 95.95 94.17
MS Windows 7 through VA (106 bits/sec) 92.05 92.05 93.66
Degradation percentage 4.08% 4.06% 0.54%

Fig. 6 Results of the bulk transfer over UDP (with the UDP STREAM) option on the MS
Windows hosts.

shown as a graph in Fig. 6.
TCP is used quite often because of its reliable transmission mechanisms; most

of the users’ programs utilize the TCP protocol. If the computer is connected
directly to the server using a 100 Mbps Ethernet connection, the maximum band-

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

385 Feasibility Study of Security Virtual Appliances

width was measured as 94.38 Mbps (where 1 Mbps is equal to 1 × 106 bits/sec)
as shown in Table 1. The performance dropped to approximately 91 Mbps in the
case of MS Windows 7 and dropped to approximately 84 Mbps for XP due to
the SVA configured as described earlier. Hence, the total performance degrada-
tion was less than 4% for MS Windows 7 and less than 12% for XP. Although
11.29% degradation might sound large, 84 Mbps is still way beyond the needs of
the average user.

Actually a computer user rarely utilizes a 100 Mbps link to its full capacity;
an average user’s Internet utilization usually does not exceed 2 Mbps, and might
reach 10 Mbps or 20 Mbps during heavy downloads for short periods of time.
The reason for this is that bandwidth-demanding Internet applications such as
online streaming radio stations usually transmit at a bitrate between 64 kbps and
256 kbps. Similarly for streaming video websites, the bitrate is up to 200 kbps for
normal quality videos (screen resolution of 320× 240 resolution), up to 900 kbps
for high quality videos (screen resolution of 480 × 360 resolution), and finally
around 2 Mbps for high definition (HD) quality videos.

On the other hand, even if the Internet Service Provider (ISP) subscription
is 100 Mbps broadband speed or 1 Gbps for example, the download speed might
reach 10 Mbps or 20 Mbps data transfer speed in best cases as it is usually capped
by the remote download server. It can be noticed that the usual bottleneck on
the Internet nowadays tends to be the remote servers and not the high-speed
Internet subscription plan. Hence, even for the most bandwidth-demanding In-
ternet applications, the necessary bandwidth is less than one fourth of what a
SVA can process.

Finally, let’s consider two products in the market from Juniper Networks and
from Cisco. The Juniper IDP75 is an intrusion detection and prevention appli-
ance for small and mid-size businesses and supports a maximum throughput of
150 Mbps data transfer speed 21). The Cisco ASA 5505 is described as a “full-
featured security appliance for small business, branch office,...” and it supports
up to 150 Mbps data transfer speed 22). Both of these security appliances are for
small business, i.e., for several simultaneous users, and they support 150 Mbps as
maximum. Hence, a SVA that supports above 80 Mbps data transfer speed for a
single user is considered quite fast by current business standards.

Besides many of the DNS requests, UDP is used in many media streaming
protocols that do not need to guarantee the delivery of all the packets. Because
it is connectionless and requires less overhead than TCP, we can see that it
generally allowed higher bulk transfer rates as shown in Table 2. Moreover, we
can see that the degradation in performance didn’t go beyond 4.08% in the case
of MS Windows 7, while it reached 2.78% in XP’s case.

Similarly, we can see that the most bandwidth-demanding applications nowa-
days don’t reach even one fourth of the bandwidth that a complete SVA can
process.

6. Latency Tests

We used netperf’s “Request/Response” in order to study the effect of the fire-
wall VA on the network latency. This test is “a synchronous, one transaction at
a time, request/response test,” where “a transaction is defined as the completed
exchange of a request and a response 23).” The output of this test indicates the
average number of transactions that took place during one second.

To study the latency when using TCP, we used TCP RR, which stands for TCP
Request/Response. TCP RR works by establishing a TCP connection at the
beginning then exchanging packets of preset sizes for the test duration and finally
breaking the TCP connection. This is similar to the mechanism of downloading
or uploading a single file over HTTP or FTP protocols for example. The TCP RR
test allows us to control the sizes of the request packet and the response packet.
We set the request-response sizes to 1–1 (one byte request, one byte response),
32–256, 32–512, and 32–1024. The numerical results of our tests for Windows
XP and Windows 7 hosts are shown in Table 3 and shown as a graph in Fig. 7.
The maximum degradation in performance was at the 1–1 case: in XP’s case, it
dropped from 4879 to 2248 which is around 54%.

The question that we pose now is whether a rate of 1590 transactions/second
(the lowest we recorded) is acceptable. To answer this question, we setup a
test machine to represent a heavy user. We ran multiple messaging and chatting
programs, opened more than one webmail account simultaneously, connected to a
streaming radio station, setup several downloads in the background, continuously
browsed websites, etc. We noticed that none of these tasks reached even 20

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

386 Feasibility Study of Security Virtual Appliances

Table 3 Results of the TCP Request/Response (TCP RR) test with varying request and
response packet sizes on the MS Windows hosts.

Request size (byte) 1 32 32 32
Response size (byte) 1 256 512 1024

MS Windows XP direct connection (trans./sec.) 4879 2449 2448 2447
MS Windows XP through VA (trans./sec.) 2248 2154 1605 1590
Degradation percentage 53.92% 12.05% 34.44% 35.02%

MS Windows 7 direct connection (trans./sec.) 4884 2457 2448 2447
MS Windows 7 through VA (trans./sec.) 2436 2156 1851 1713
Degradation percentage 50.12% 12.25% 24.39% 30.00%

Fig. 7 Results of the TCP Request/Response (TCP RR) test with varying request and
response packet sizes on the MS Windows hosts.

transactions per second. Eventually, we can clearly see that this is negligible
when compared to the possible number of transactions/second that the system
can maintain.

Finally, we compare again the SVA performance with the Cisco ASA 5505.

Table 4 Results of the UDP Request/Response (UDP RR) test with varying request and
response packet sizes on the MS Windows hosts.

Request size (byte) 1 32 32 32 516
Response size (byte) 1 256 512 1024 4

Windows XP direct connection (trans./sec.) 4883 2452 2446 2448 2449
Windows XP through VA (trans./sec.) 2253 2244 2120 1774 2128
Degradation percentage 53.86% 8.48% 13.33% 27.53% 13.11%

Windows 7 direct connection (trans./sec.) 4884 4869 2449 2448 2450
Windows 7 through VA (trans./sec.) 2444 2408 2217 1822 2220
Degradation percentage 49.96% 50.54% 9.47% 25.57% 9.39%

Fig. 8 Results of the UDP Request/Response (UDP RR) test with varying request and
response packet sizes on the MS Windows hosts.

According to Ref. 24), the ASA 5505, which is intended for a small business, can
support up to 4000 new connections/second. Consequently, the performance of
the SVA can support more than 2000 connections/second for a single user and
this is quite high according to the current industry standards.

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

387 Feasibility Study of Security Virtual Appliances

In order to study the latency in UDP communications, we used UDP RR short
for UDP Request/Response. Again, this test exchanges UDP packets of preset
sizes during the test duration. Since UDP is connectionless, there is no need to
establish a connection and later break it as in the TCP case. One real scenario
that uses UDP and resembles this test is a file transfer over TFTP. As with the
TCP RR test, we test the 1–1 (one byte request, one byte response) case, 32–256,
32–512, 32–1024, and we add one extra test with 516–4 to simulate a TFTP file
upload. The numerical results are shown in Table 4 and shown as a graph in
Fig. 8. As with the bulk transfer tests, the request/response tests scored higher
in the case of UDP since it is connection-free and simpler to implement.

7. Conclusion

The increase in computer performance and development of multi-core proces-
sors for personal computers in recent years allow new applications including SVA
that were not possible up until now. To study their impact on network perfor-
mance, we configured an integrated SVA using SmoothWall. This SmoothWall
is an all-inclusive firewall distribution that includes an IDS, anti-virus, and a
Virtual Private Network (VPN) server among other security and administration
functions. In other words, the SmoothWall VA contained all the expected func-
tions from current commercial integrated security appliances including traffic
monitoring and logging.

We tested the network performance of this SVA on MS Windows XP and 7 to
study the virtualization overhead. The test results show that using a SVA, the
network performance of the host machine is excellent compared to the current
products in the market. For instance, this SVA allows 80 Mbps data transfer
speed for a single user, while small hardware appliances usually allow up to
150 Mbps data transfer speed for a small office. One integrated security appli-
ance can support up to 4000 new connections/second for the users of a small
office combined. Our tests show that this SVA can support more than 2000 con-
nections/second for a single user. Hence, we can clearly see that the performance
level of this SVA was quite on par with physical hardware which makes this a
solid solution.

Acknowledgments We would like to thank Professor Ushio Yamamoto for

his insightful suggestions and for referring us to the work of Prevelakis 4).
This research was supported in part by the Grant-in-Aid for Scientific Research

(C)22510139 from the Japan Society for the Promotion of Science (JSPS).

References

1) VMware Inc.: VMware Virtual Appliance Marketplace: Virtual Applications for
the Cloud (Online), available: http://www.vmware.com/appliances/

2) Cisco and VMware Inc.: DMZ Virtualization Using VMware vSphere 4 and the
Cisco Nexus 1000V Virtual Switch (2009).

3) Basak, D., Toshniwal, R., Maskalik, S. and Sequeira, A.: Virtualizing networking
and security in the cloud, ACM SIGOPS Operating Systems Review, Vol.44, No.4,
pp.86–94 (2010).

4) Prevelakis, V.: The Virtual Firewall, ;login: The USENIX Magazine, Vol.30, No.6,
pp.27–34 (2005).

5) Advanced Micro Devices Inc.: AMD-V Nested Paging (2008).
6) Neiger, G., Santoni, A., Leung, F., Rodgers, D. and Uhlig, R.: Intel virtualization

technology: Hardware support for efficient processor virtualization, Intel Technology
Journal, Vol.10, No.3, pp.167–177 (2006).

7) Reguly, T.: Microsoft ICS DoS FAQ, 2006 (Online), available: http://blog.ncircle.
com/archives/2006/10/microsoft ics dos faq.html

8) VMware Inc.: Virtualization Overview (2006).
9) VMware Inc.: Understanding Full Virtualization, Paravirtualization, and Hard-

ware Assist (2007).
10) VMware Inc.: VMware Virtual Networking Concepts, pp.1–11 (2007).
11) Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I. and Warfield, A.: Xen and the art of virtualization, Proc. 19th ACM
Symposium on Operating Systems Principles, ACM, pp.164–177 (2003).

12) Miller, K.W., Voas, J. and Costello, T.: Free and Open Source Software, IT Pro-
fessional, Vol.12, No.6, pp.14–16 (2010).

13) VMware Inc.: Networking Performance, pp.1–9 (2008).
14) Menon, A., Santos, J.R., Turner, Y., Janakiraman, G. and Zwaenepoel, W.: Di-

agnosing performance overheads in the Xen virtual machine environment, VEE’05,
ACM (2005).

15) Sugerman, J., Venkitachalam, G. and Lim, B.: Virtualizing I/O devices on VMware
workstation’s hosted virtual machine monitor, USENIX Annual Technical Confer-
ence, pp.1–14 (2001).

16) Oracle Corporation: Oracle VM VirtualBox User Manual, ch.10, pp.152–161
(2011).

17) Intel: Intel Architecture Software Developer’s Manual Volume 1, Vol.1, No.243190
(1999).

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

388 Feasibility Study of Security Virtual Appliances

18) Oracle Corporation: Oracle VirtualBox (Online), available:
http://www.virtualbox.org/

19) Manning, L.: SmoothWall Express: Express Open Source Firewall Project (On-
line), available: http://www.smoothwall.org/

20) Jones, R.: Netperf (Online), available: http://www.netperf.org/netperf/
21) Juniper Networks: IDP Series Intrusion Detection and Prevention Appliances

(IDP75, IDP250, IDP800, IDP8200), pp.1–6 (2009).
22) Cisco: Cisco ASA 5500 Series Adaptive Security Appliances, pp.1–22 (2010).
23) Jones, R.: Care and Feeding of Netperf, Hewlett Packard Company (2007).
24) Cisco: Cisco ASA 5500 Series Adaptive Security Appliances Model Comparison,

2010 (Online), available: http://www.cisco.com/en/US/products/ps6120/prod
models comparison.html#mid-range

(Received October 31, 2010)
(Accepted April 8, 2011)
(Released July 6, 2011)

Ahmad Bazzi received his Diploma in Computer and Telecom-
munications Engineering from the Lebanese University, Beirut in
2003. In 2011, he received his Master’s degree in Computer En-
gineering from Gunma University, Japan, where he is currently
pursuing his Ph.D.

Yoshikuni Onozato received his D.E. degree in Electrical and
Communication Engineering from Tohoku University, Sendai in
1981. Since April 1992, he has been with Gunma University where
he is currently a Professor. His research interests lie in the areas
related to computer communications. He is a member of IPSJ.

Journal of Information Processing Vol. 19 378–388 (July 2011) c© 2011 Information Processing Society of Japan

