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Speaker Adaptation for Dialogue Act Classification

Johan Rohdin†1 and Koichi Shinoda†1

In this paper we investigate MAP adaptation to speakers for dialog act clas-
sification systems based on conditional random fields. MAP adaptation is done
by assuming a Gaussian prior of the model-weights with mean equal to the
weights of a baseline model. We did experiments on the ICSI meeting corpus
and found that speaker adaptation gives significant improvements of the dialog
act classification accuracy.

1. Introduction

A dialog act (DA) describes the purpose or role of an utterance and is impor-

tant for language understanding. Typical examples of DA classes are Statement

or Backchannel. Applications of automatic DA recognition systems are meeting

summarization1) as well as constraining speech recognition hypothesis of spon-

taneous speech2). Such applications require both segmentation and classification

of a word-stream into dialog acts. Recent studies3)4) suggests that doing seg-

mentation and classification jointly (i.e., DA recognition) is preferably to doing

it sequentially. If the word transcrpition is not known, the DA segmentation and

classifiaction process should ideally be integrated with the speech recognition

system. In this study, we will use reference transcripts, i.e., not the output of a

speech recognizer, as proper integration of DA recognition and speech recognition

is a difficult topic in its own that yet remains to be solved.

It could be expected that there are some speaker specific patterns in the features

that characterize different dialogue acts. For example, a specific speaker may

often start his/her questions with the phrase I wonder . . . and another with can

I ask . . . . As another example, different speakers may prefer to use different

phrases in order to take the floor (floor-grabbers), such as Um, so or but. Due to
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these speaker specific patterns, a DA system is expected to benefit from speaker

adaptation.

Kolář et al.5) showed that speaker adaptation is useful for the segmentation

task. A natural question is whether it is also useful for classification and/or

joint segmentation and classification. This have not yet been investigated. The

study by Kolář et al.5) considered speaker adaptation of two different systems

for the segmentation task. One system was based on decision trees with various

prosodic features and the other was based on a hidden event language model

(i.e., a system that uses only word features). They found small but statistically

significant improvements by speaker adaptation for both systems, both when

using reference transcripts and when using the 1-best ASR hypotheses. The

improvements were larger for the system that used word features than for the

system that used prosodic features.

In this study we will focus on speaker adaptation in DA classification. Even

though most applications may require both segmentation and classification, we

believe it is also important to investigate to what extent the segmentation and

classification tasks benefits from speaker adapatation individually, in order to

formulate a suitable adaptation scheme for the joint task.

We will use CRF in these experiments and propose using Maximum a poste-

riori (MAP) adaptation7) for custumizing the model to speakers. As far as we

know, Conditional Random Fields (CRF) have so far performed best for joint

DA segmentation and classifiaction4). We will use word features as well as a DA

boundary indicator variable but we will not use any prosodic features.

We are not aware of any studies that consider adaptation methods for DA

sytems based on CRF, but there are some studies of domain and/or speaker adap-

tation of related tasks and models. For example, MAP adaptation for maximum

entropy models (MEMs) was proposed by Chelba et al.7) for domain adaptation

of text capitalization. The extension of that method to CRF is straightforward.

Quite few other methods have been proposed for adaptation of MEMs or CRF

such as the the mega model8), a feature augmentation scheme9) and hierarchi-

cal Bayesian domain adaptation10). These methods were applied for domain

adaptation of various language processing tasks e.g. named entity recognition or

capitalization. MAP as well as a maximum conditional likelihood linear regres-
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sion (MCLLR) technique for speaker adaptation of acoustic models for hidden

conditional random fields (HCRF) has alos been investiagted11).

Section 2 of this paper describes the task of DA classification. In Section 3,

the CRF framework is explained. In Section 4, we explain the experimental

conditions and results. In Section 5 we discuss the method and the results.

Finally, our conclusion and some ideas for future work are given in Section 6.

2. Problem description

2.1 DA classification

In the DA classification task, a sequence of words and a segmentation of these

words into DA segments are given. The task is then to asign a DA label to

each of these segments. This task is simplified from the one of most applications

where neither the transcribed seqeuence of words nor its segmentation into DA

segments are available. In that situation we have to rely on a speech recognizer

to obtain the words, and the segmentation into DA segments must also be found

automatically.

A large variety of features could be considered for the DA classification task.

For example, word N-grams either existing at a specific position or anywhere

in the segment and/or the number of words in the unit. Also prosodic features

(pitch, energy, duration and pauses) are useful14).

Typically, DA sytems also considers transition probabilities between different

DAs. For example, the probability that Question is followed by Statement. For

that purpose, we have the choice to sort the DA segments either by time regardless

of who is the speaker, or to treat every speaker separatly. We will use the second

approach in this study (see discussion in Section 5).

2.2 Data

We used the ICSI (MRDA)15) meeting corpus which consists of naturally oc-

curing meetings, 51 in a training set 11, in a test set and 11 in a development set.

In addition to word transcripts, the corpus is annotated with a detailed set of DA

classes. In order to reduce the number of classes, several different classmaps are

provided. We used the classmap called 01b in the corpus which has six classes:

Statement S, Question Q, Backchannel B, Disruption D, Floor mechanism F,

and Unclassified Z. The corpus also provides the opportunity to choose whether

Table 1 An example of word stream from one speaker, the observed border variable (see
Section 4.1), and the correponding DA label.

Words completely irrelevant yeah for nois- noise cancelling Um

Boundary False True True False False False True True
DA label S S> B> S S S S> F>

to split segments that are prosodically one segment but syntactically two. Since

we focus on word features, we choose to split such segments. In our experiments

we use speaker specific data in the training set to do adaptation for all speakers

in the test set and the development set (see Section 4.1). Two speakers in the

development set were excluded from the experiments since they had no data in

the training set. With this set-up, the training set contains 530k words in 82k

dialog act tagged segments. For the speakers for which adaptation was done, the

number of words in the adaptation data varied from 236 to 106k and the number

dialog act tagged segments from 48 to 14k. Table 1 shows an example from the

corpus.

2.3 Labeling scheme for CRF

Zimmermann4) suggested five coding schemes for using CRF for joint DA seg-

mentation and classification. These coding schemes labels every word instead

attaching one label a whole DA segment. We will use the coding scheme denoted

EI in the paper by Zimmermann. The coding scheme uses two labels for each

DA class: one for the final word of a DA and one for any other words in a DA

segment. For example, label S> corresponds to the final word of Statement and

label S correspond to any words except the final, of Statement. This coding

scheme is a good trade-off between performance and complexity.

Since this approach labels every word instead of the DA units, we cannot use

features such as the number of words in the DA unit. We use this approach

since it easily extends to the joint task and since we are here mostly interested

in seeing the effect of speaker adaptation rather than finding the optimal set of

features.
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3. Conditional Random Fields

3.1 Model description

A linear chain Conditional Random Field (CRF)12) estimates the conditional

probability of a label sequence y = y1, . . . , yt, . . . , yT given the observation (se-

quence) o = o1, . . . , ot, . . . , oT by

Pλ(y|o) =
1

Zo

exp

(

T
∑

t=1

K
∑

k=1

λkfk (yt−1, yt,o, t)

)

, (1)

where the index k indicates a feature. The weights λk are typically estimated by

maximizing the (conditional) likelihood. In many language processing systems

as well as in this study, the feature functions, fk, are binary.

To avoid over-training, a suitable prior probability distribution for the weights

can be assumed. Often a Gaussian distribution with mean zero is used13). Instead

of a (conditional) likelihood for the weights, we then get a (conditional) posterior

probability distribution for the weights to maximize. Its logarithm is given by

l (λ;o) =

J
∑

j=1

log
(

Pλ

(

y(j)|o(j)
))

−

K
∑

k=1

λ2
k

2σ2
, (2)

where the index j indicates the training instances. From Eq. (2) it can be seen

that the Gaussian prior can also be interpreted as L2-regularization of the log

likelihood function.

The hyper-parameter σ is usually estimated by cross-validation. The weights

that maximizes Eq. (2) cannot in general be found analytically but there are

several numerical methods that can precisely estimate the parameters.

3.2 Maximum a posteriori adaptation for CRF

MAP adaptation can be done by using a Gaussian prior with the mean vector

equal to the original (ML-estimated) weight vector instead of zero. This was first

proposed in7) for MEMs. Since the only difference between a linear chain CRF

and a MEM is that the feature functions, fk, of a CRF includes yt−1, the same

MAP adaptation method can be applied to CRF. This gives the log posterior

l (λ;o) =

J
∑

j=1

log
(

Pλ

(

y(j)|o(j)
))

−

K
∑

k=1

(λk − λ∗

k)
2

2σ2
, (3)

where λ∗

k is the weight for feature fk of the original models and λk the weight of

the k-th feature of the adapted model to be estimated. Notice that, according

to Eq. (3), those weights not included in the adaptation data may also change

by MAP adaptation. In this study we use the L-BFGS algorithm which needs

a closed form expression of the gradient of the log posterior. As can be seen in

Eq. (3), changing the mean of the prior changes the gradient in a trivial way.

4. Experiments

4.1 Experimental conditions

In this study we only considered reference conditions, i.e. using the words from

the transcripts of the corpus and not the result of automatic speech recognition.

We trained three different kinds of models. The first model was trained using all

data in the training set. This model is to some extent speaker dependent since

all the speakers in the test set and development set has some data in the training

set. It may therefore serve as an trivial baseline for adaptation. We call this

model the All train model.

We also trained a speaker independent model for each speaker by using all

data in the training set except the data from the specific speaker. Excluding the

training data from all speakers in the test set and development set in order to

make one speaker independent model would have reduced the training set too

much. We refer to these models as SI models.

Finally we used MAP adaptation from the All train model for each speaker in

the development set and test set, using the speakers data in the training set as

adaptation data. Since the adaptation data was already included in the training

data of the All train model, no new features will be introduced by the adaptation

but the feature weights may change. We refer to these models as MAP models.

We used the same word features as Zimmermann4), namely word unigrams,

bigrams and trigrams in the context of ±2 words. We did not use any prosodic

features. Instead of pure label features as in that study, we use label bigram

features in combination with a boundary indicator observation in order to add the
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Table 2 Optimal regularization parameters.

Testset Devset

All train σ2∗
t

= 1/2 σ2∗
d

= 1/2
Adaptation σ2

t
= 1/60 σ2

d
= 1/195

segmentation information. The boundary indicator indicates whether a word is

the final word of a DA segment or not. For example, it indicates Boundary=True

at S> and Boundary=False at S in the training set (see Table 1). This variable

is observed also in the testing phase. Ideally, CRF should learn to follow this

variable and never predict S> at Boundary=False in the testing phase. The

word sequences to be labeled corresponds to one persons speech from one whole

meeting. For the first word in the sequence there is no label bigram and therefore

the boundary indicator will not be taken into account. Therefore the above

method may not always predict boundaries correctly for those words. Such cases

were treated as errors in the evaluation.

We used the toolkit Wapiti16) which we modified little in order to do MAP

adaptation. Wapiti supports many methods to stop the training. We used the

default value of maximum number of line-searches as the only stopping criteria.

4.2 Evaluation metric

As evaluation metric, we use the DA error rate (DER)19). This metric is

intended for the joint task and considers a DA segment to be correctly recognized

only if the surrounding borders are correctly identified, no additional borders are

inserted in the correct segment, and the segment is given the correct label. Since

the segmentation is given in the classification task, the first criteria should not

be violated. As mentioned in the Subsection 2.3, the framework we use may fail

to correctly input DA borders in rare occasions.

4.3 Cross validation

We used both the test set and the development set for the evaluation. The

parameters for the priors were optimized by 2-fold cross validation in the following

way:

( 1 ) Find optimal hyper-parameter for the All train model, σ∗

t and σ∗

d, for the

test set and development set respectively.

( 2 ) Use the weights, λ∗

k, from the model trained with σ∗

t for MAP adaptation

Table 3 Oversall speaker adaptation results.

SI All train MAP

DER (%) 22.6 22.2 22.0

(see Eq. (3)) and find the optimal parameter σt for the test set. Likewise,

use the weights from the model trained with σ∗

d to find σd.

( 3 ) Finally, evaluate the test set using the parameter pair (σ∗

d, σd) and evaluate

the development set using (σ∗

t , σt)

The optimal values for σ2 are given in Table 2. We optimized 1/σ2, which is

the parameter to specify in Wapiti (ρ2), in steps of 1 from 1 to 8 for the All train

models and using the values 5, 10 . . . , 160, 170, . . . , 200, 220, . . . , 400, 450. . . . , 1000

for MAP adaptation. If two of the values gave the same result we used their

average. For training the SI models, we used the same parameter value as for

the All train models.

4.4 Results

The results are shown in Table 3.

The DER decreased from 22.6% for the SI models to 22.2% for the All train

model that was trained with all speakers’ training data. MAP adaptation de-

creased DER further to 22.0%. The improvement of MAP adaptation from the

All train model is statistically significant for p = 0.026 by a two tailed Sign test

that compares the two systems’ predictions of each DA segment.

For further analysis the results for each DA class are shown in Table 4. The

unlabeled, Z, is included here although one could question whether the system

should be allowed to classify a segment as unlabeled.

The overall improvement by MAP adaptation is quite modest. However, look-

ing at the individual DA results, we can see that all DA classes except statements

and the unlabeled class has much larger improvements. Statements showed no

improvement from speaker specific modelling (i.e., All train or MAP) compared

to using speaker independent models. Since more than half of the instances are

statements, the overall improvement is low.

5. Discussion

Since Backchannels and Floorgrabbers have no syntactic meaning, there might
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Table 4 Individual DA results and their frequency in the test and development set.

DA class Z S Q B F D

Frequencey 414 17915 2222 3958 3705 4572
S.I. 75.1 8.2 53.4 30.2 26.1 50.0

DER (%) All Train 76.3 8.2 50.0 29.9 25.4 49.2
MAP 77.5 8.2 49.5 29.7 24.8 48.8

be more room for every individual speaker to choose their own voacbulary com-

pared to statements where the voacbulary must be chosen so that it transfer the

correct message. However, also Questions have some constraints on the choice of

vocabulary but still seems to benefit siginficantly from speaker specific modelling.

The improvements of Disruptions might be because some speaker tend to have

more interupted utterances overall or that a certain kind of utterances are often

interupted for a specific speaker. However, much more analysis is needed before

any conclusions like this can be made. The poor ressults for statements might

also be explained by the fact that the error rate for them is very low compared

to other classes and therefore might be difficult to improve.

For applications it would obviously be desired to increase the improvements of

speaker adaptation, especially considering the efforts needed in order to annotate

adaptation data.

As mentioned in Section 4, the amount of adaptation data varied greatly among

the speakers. It seems natural that adaptation would work better the more

adaptation data available. This issue has not been investigated in this study.

Just comparing the improvements for the individual speakers in this study may

not be sufficient because any differences among them may not only depend on the

amount of adaptation data but also on how their speaking style fits the All train

model.

It should also be remembered that the training data for the All train models

in this study included the adaptation data and therefore cannot be said to be

speaker independent. If the amount of adaptation data become very large, such

All train and MAP adapted models would become more similar. Therefore, when

investigating how much adaptation data is needed, we should compare with the

speaker independent models even though the amount of training data for them

varied among the speakers in this study. We also tried do MAP adaptation from

the speaker independent models which is how MAP adapation is typically done

but we did not obatain any good results in this way. One explanation might

be that we used the regularization that was found optimal when doing MAP

adaptation from the All train models.

As mentioned in Section 2.3 we have the choice to sort the DAs either by time

regardless of who is the speaker or to treat every speaker separately. The first

approach requires that segmentation into DAs or at least into speaker turns are

given as is the case for the classification task. Segmenting into speaker turns is

trivial if there is no ovelapping speech but this is rarely the case in reality. For

example, one speaker could utter a backchannel in the middle of another speakers

statement. Also, for adaptation experiments the first approach will be a bit more

tricky also for the classification task since it does not allow us to use a specific

CRF for every speaker. The problem could be overcome by using speaker ID as

feature. In this study we chose the second approch since, as mentioned, we want

the extension to the joint task to be easy.

6. Conclusion and future work

In this paper we have proposed a MAP adaptation method to speakers for

dialog act classification systems based on CRF. We evaluated the method on the

ICSI meeting corpus and compared to speaker independent models and baseline

model made by including the adaptation data in the training set. We found that

MAP adaptation gives statistically significant improvements from such baseline

model. The overall DA error rate (DER) decreased from 22.6% for the speaker

independent models to 22.2% for the speaker dependent baseline model. MAP

adaptation decreased the DER further to 22.0%. Larger improvements were

observed for four out of six individual DA classes.

The improvements were statistically significant but not so large. It would be

highly desirable that future work lead to larger improvements. There are several

possibilities that can be investigated. As mentioned in Section 5, the amount of

adaption data needed is not yet clear. Use of proper amount of adaptation data

may improve the results in this study.

Some improvements of the adaptation method might also be possible. We used

one value for the hyper-parameter, σ∗, for training the baseline model, and one
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value for the hyper-parameter, σ, for MAP adaptation. Instead, we can choose

different hyper-parameters for different groups of weights both when training the

baseline model and for MAP adaptation. For example, one for all word unigram

features and another for all word bigram features etc.. As mentioned in the

introduction, there are also a few other adaptation schemes that has performed

better than domain MAP adaptation of MEM for various language processing

tasks8),9)10). Also, as can be seen in Table 2, the optimal adaptation parameters

differed significantly for the two sets and a better estimation of the parameters,

e.g. by using more sets in the cross-validation, may improve the results.

In this study we used only word features. Naturally it would be interesting

to investigate speaker adaptation of various prosodic features too. The integra-

tion with a speech recognizer was also not considered. As human-transcribed

speech may not be available in many applications, this is an important area to

investigate.
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