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Software managed memory system for many-core

architectures

Masahiro SANO†1 and Kenji KISE†2

We propose an efficient software managed memory system for many-core
architectures. The system has an advantage that there is no or a little additional
hardware cost. In our proposal, by using management cores, it is possible to
make the memory system more flexible and achieve high performance without
any special hardware. A hardware support with TLB is also considered in order
to achieve the further performance. In order to evaluate the performance of our
proposal, we implement original system named C5. We show the effectiveness of
the C5 through performance measurements with SPLASH-2 benchmark suite.

1. Introduction

A many-core processor tends to integrate a large number of cores in its single
chip. In the many-core chip, it is difficult to maintain the cache coherence with
only hardware. Therefore not shared memory but distributed memory architec-
tures are used in many-core processors in general.

The conventional shared memory parallel programming is easier than dis-
tributed shared memory programming. We have many legacy codes of shared
memory programming. For these reasons, there is a strong demand to use the
conventional parallel programming in distributed shared memory architectures.

In order to meet this demand, there is a method called software distributed
shared memory(S-DSM). S-DSM has been studied and explored mainly in cluster
computers for a few decades1). This method of S-DSM provides a globally shared
virtual memory that all nodes in the distributed memory architecture can access.

The method of S-DSM used in cluster computers is not simply adapted to
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many-core architectures because of differences between hardware organizations.
Therefore we propose an efficient S-DSM or software managed memory system
(SMMS) for many-core architectures.

The three policies of our system are described below. (1) It minimizes the
additional hardware implementation cost. (2) It supports the easy parallel pro-
gramming. (3) It resolves the bottleneck of main memory access.

The rest of this paper is organized as follows. In Section 2 we state the back-
ground of this study. Our proposal is described in Section 3. In Section 4 we
evaluate our proposal. Finally, conclusions are given in Section 5.

2. Background and Related Works

In cluster computers the size of a local memory (the main memory of the
computer) is large enough to keep shared data of S-DSM systems. Therefore it
is implemented with only single-level memory hierarchy.

On the other hand, in many-core architectures the size of an on-chip local
memory is severely restricted. And an off-chip main memory is needed to keep
all shared data. In this way S-DSM in many-core architectures will be a system
of two-level hierarchy comprised of local memory and main memory.

From the differences of hardware structures between single-level and two-level
hierarchy, the following two problems occur. (1) The method of S-DSM used
in cluster computers is not simply adapted to many-core architectures. (2) The
main memory performance becomes a bottleneck because the number of memory
controllers is smaller than the number of nodes in many-core architectures.

We describe the related works briefly. DSMCBE2) for Cell Broadband Engine
is a study realizing S-DSM in multi-core processors. DSMCBE maintains the
coherency of entry consistency by software. Although it achieves good perfor-
mance, the uniqueness of entry consistency makes the programming difficult. It
has still a disadvantage that programmers should optimize the size of shared data
to fit the local memory.

Rigel3) and Intel SCC4) are studies that maintain the cache coherence with
software in shared memory architectures. Both studies need to use low-grained
memory operations to maintain the cache coherence and the programming for
these architectures is difficult.
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Fig. 1 System architecture of C5 software managed memory system model

Our target many-core architecture has tiled-nodes of same hardware structures.
As one of the tiled-node architectures, we use M-Core5). Its single node has
a simple processor element, a small node memory, a communication controller
to communicate with other nodes, and a route that transfers packets from/to
adjacent nodes. The details of M-Core are described in the paper5).

3. The C5 Software Managed Memory System Model

In this section, we propose the software managed memory system (SMMS)
model for many-core architectures named C5 based on the following three policies.
( 1 ) It minimizes the additional hardware implementation cost.
( 2 ) It supports the easy parallel programming.
( 3 ) It resolves the bottleneck of main memory access.

Especially, the easy parallel programming is the key for programming of many-
core architectures. In our S-DSM model, programmers need not to manage copies
and communication of shared data. Furthermore, our model enables the simple
porting of existing parallel programs written with P-threads.

3.1 The C5 SMMS Architecture
The system architecture of C5 is shown in Fig. 1. The system is comprised of

three kinds of elements. There are a main memory, some management cores and
many worker cores.

All cores are used as either worker core or management core. Note that we
assume the homogeneous many-core processor, and the hardware configurations
of worker core and management core are identical. The worker core executes an

application program. The management core manages shared data by software.
Using the sophisticated management of shared data on management cores, we
solve two problems described in section 2. There is no additional hardware cost
to implement our model because shared data management is implemented by
software (it is a merit of S-DSM system).

Let’s consider the first problem in section 2. (1) From the differences of hard-
ware structures between single-level and two-level hierarchy, the method of S-
DSM used in cluster computers is not simply adapted to many-core architectures.

In order to manage the shared data in our system, the management cores
keep track of all shared data. The worker cores obtain shared data through
management cores. By this way, this problem is resolved without additional
hardware.

Let’s consider the second problem. (2) The main memory performance be-
comes a bottleneck because the number of memory controllers is smaller than
the number of nodes in many-core architectures.

All shared data is obtained through management cores. In order to reduce the
number of accesses to main memory, the management cores work as L2 software
cache and provide worker cores with the latest shared data.

3.1.1 Main Memory
The main memory is the memory all cores access globally. It keeps only the

shared data. The shared data is read/written by management cores.
3.1.2 Worker Core and Management Core
The worker core executes an actual application program. It has all local data

in order to execute the application and software cache (L1 Software-Cache) to
store a part of shared data in the local memory.

The management core executes a system program to manage shared data. It
does not execute an application program. In the system program, the manage-
ment core waits requests from worker cores and provides services to them. The
local memory of management core has (a) local data to execute the system pro-
gram, (b) information of L1 cache entries (directory) and (c) software cache (L2
software-cache) to store a part of shared data.

If there is only a single management core, as the number of worker cores
increases the number of accesses to the management core increases. Then it
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prolongs the average response time for service. As a result, it diminishes the
performance gain of parallel processing.

To use multiple management cores makes it possible to scatter the requests
of worker cores. This distributed policy of management cores achieves good
performance of parallel processing by eliminating the access concentration.

3.2 Software Cache and Synchronization Management
The cache operations to maintain cache coherence in both worker cores and

management cores are implemented by software.
The directory based protocol is used to maintain the cache coherence. The

write-invalidate policy is used as write propagation scheme.
As a consistency model, release consistency6) is used. We select a multiple

reader and a single writer protocol. In this protocol, multiple writes by some
worker cores to shared data which belongs to same cache line at same time are
unacceptable.

In general, release consistency provides easy programming and enough scala-
bility compared with other consistency models. The release consistency enables
the programmers to reuse of existing parallel programs written with P-threads.

3.2.1 Shared Memory Access
In order to access to the shared memory in a worker core, we provide a special
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Fig. 3 Behavior of cache line replacement

system function. In this function, the shared memory space is translated to the
local memory space.

Fig. 2 shows the translation mechanism on worker core. A shared memory
address is translated into a local memory address of accessed software cache line.
By accessing the cache tag and valid bit, the function detects the cache hit or
miss.

If the valid cache line exists in L1 software-cache, the worker core successfully
loads from or stores to the translated address.

If the valid cache line does not exist in L1 software-cache, in order to obtain the
line the worker core sends a request of cache line replacement to a management
core. The worker core waits until the requested line is obtained.

The worker core loads from or stores to the translated address as soon as
possible when the response which represents the requested process has been done
from the management core is obtained.

3.2.2 Cache Line Replacement
The cache line replacement occurs if there is no valid L1 software-cache line in

the local memory when a worker core accesses to shared memory space.
Each cache line is allocated to the one of management cores in address inter-

leaved way. So, the management core to which a worker core sends the request
depends on the shared memory address of the access miss.
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Fig. 3 shows a behavior of cache line replacement. This is handled through (1)
to (10) processes in order. (1) The worker core sends a request to a management
core that is in charge of the shared memory address of the access miss. (2)
The management core sends an acknowledgment back. (3) The worker core
which receives the acknowledgment writes back the victim cache line to the main
memory. (4) The management core confirms the requested cache line exists in
the L2 software-cache. (5) The management core writes back a victim cache line
to the main memory if needed. (6) The management core gets the requested
cache line from the main memory. (7) The main memory sends the line to the
management core. (8) The management core invalidates the corresponding cache
line on other worker cores because the cache line is updated. (9) The management
core waits the acknowledgment that represents the write back has done from the
worker core. (10) The management core replaces the cache line of the worker
core by data transfer and sends an acknowledgment after the replacement. When
the data is available on the worker core, it continues to execute the application
program.

Note that if the worker core does not write back, the processes of (2), (3) and
(9) are skipped. If the management core does not write back, the process (5) is
skipped.

3.2.3 Lock Primitive
The lock primitive for parallel programming is managed by the specific single

management core. When a worker core acquires a lock, the worker core sends a
request with a corresponding lock variable to the management core. The man-
agement core confirms whether the lock has already been acquired or not.

If the lock has not been acquired and it is available, the management core sends
a response that indicates the lock has been acquired to the worker core.

If the lock is not available, the management core stores the request. The worker
core does not continue the rest of application processes until the lock is acquired.

3.2.4 Unlock Primitive
A worker core writes back dirty cache lines when it releases a lock to the

management core. At the time, the worker core sends an unlock request to all
management cores which are in charge of the dirty cache lines.

Note that in order to release the lock after all cache lines are write back, the
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Fig. 4 Behavior of unlock primitive operation

lock release request to the management core that controls locks is sent at the
end.

Fig. 4 shows a behavior of unlock operation. (1) The worker core makes a
list of dirty cache lines in the L1-software cache. (2) The worker core sends an
unlock request to the management core. (3) The management core sends an
acknowledgment back to the worker core. (4) The worker core sends the dirty
line list. (5) The management core writes back the cache lines on the dirty line
list. (6) The management core gets the cache lines on the dirty line list from the
worker core. (7) The worker core sends the dirty cache lines to the management
core. (8) The management core invalidates other worker cores which have the
cache lines on the dirty list. (9) The management core sends an acknowledgment
to the worker core which sends the unlock request. (10) The management core
sends a response of a lock request to next worker core waiting for the lock.

Note that the process (10) is done only on the management core which controls
locks.

3.2.5 Barrier Primitive
Like the lock management, the barrier primitive for parallel programming is

managed by the specific single management core.
A worker core sends a barrier request to the management core that manages
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barriers. The management core sends a response that represents the barrier has
been done to all worker cores as soon as the management core received barrier
requests from all worker cores.

Each worker core continues the application program when it receives the re-
sponse. In our model, the shared data is not updated in the barrier primitive.
The barrier is just used to synchronize the control flows.

3.3 Hardware Support for Fast Shared Memory Access
In the architecture discussed in the previous section, shared memory access is

handled by only software. Therefore the latency of the shared memory access is
large even if the access hits in L1 cache. The measured average L1 hit latency is
about 35 cycles.

In order to speed up the shared memory access, we propose the architecture
using TLB(Translation Look-aside Buffer). The following two processes are han-
dled by hardware using TLB. (1)A cache line hit/miss detection. (2)A translation
from shared memory address to local memory address. With these hardware sup-
ports, the access latency of L1 cache hit becomes 1 cycle. Note that the most
processor has TLB and these hardware supports require few additional hardware.

With the hardware support with TLB, shared memory space is accessed by
not a special function but load/store instruction. We defined that the target
address space depends on most significant bit(MSB) of the address accessed by
load/store.

The MSB of 0 represents the access to local memory space. The local memory
address is not translated by TLB and is simply loaded/stored.

The MSB of 1 represents the access to shared memory space. On TLB hit, the
shared memory address is translated to local memory address where the valid
cache line stays by TLB. On TLB miss, an exception occurs and arranges the
contents of TLB.

In our target MIPS architecture, the three types of TLB exceptions described
as below occur and are handled by software.
TLB Refill Exception There is no valid entry in TLB. The valid entry is

loaded from a page table.
TLB Invalid Exception The corresponding entry is invalid. Replace the

cache line.

TLB Modified Exception The corresponding entry is write-protected. The
entry is updated to writable.

Each entry of the page table has following three items. (1)A local memory
address of a cache line in the local memory. (2)A shared memory address of the
cache line. (3)Flags such as a validity of the cache line. The size of the page
table is small ?1 enough to save in the local memory of each worker core.

When we use the hardware support with TLB, a problem occurs. It is hard to
satisfy the constraint of release consistency that is all writes are reflected to other
cores on unlock operation. Invalidations from management cores invalidate only
entries of the page table. The invalidations of page table entries do not reflect
TLB entries immediately. Worker cores evaluate the validity of the cache entry
by information in the TLB entry. It is impossible to obtain the latest data unless
the immediate TLB entry update.

In order to resolve the problem, we adopt the lazy release consistency that
is a more relaxed consistency model than release consistency. The lazy release
consistency imposes a constraint that all writes are reflected to other cores on
lock operation. A worker core updates own all TLB entries on lock operation.
The updates to TLB entries reflects the invalidations to the page table on unlock
operation. In this way, the constraint of the lazy release consistency is met.

4. Evaluation of the C5 Software Managed Memory System

In order to evaluate our proposal, we implement a software managed memory
system named C5, and evaluate its performance with SimMc that is a software
simulator of M-Core architecture.

The simulation parameters for the evaluation are described below. The size of
each local memory is 512KB. One of the nodes is treated as main memory. The
main memory does not execute any programs. The size of the main memory is
infinite and the access latency is 200 cycles. The capacity of software cache in
each management core and worker core is 128KB. The software cache is direct-
mapped cache. The cache line size is 1024B and the number of the cache entries
is 128. The number of TLB entries is 128 and the replacement algorithm is fully

?1 The number of entries of TLB is equal to the number of L2 cache entries.
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Fig. 5 Relative performance normalized to Ideal in Water. Ideal indicates a result on an ideal
environment that has a perfect memory system. M and W represent the number of
management cores and worker cores respectively.
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Fig. 6 Relative performance in LU

associative for the simplicity. Although the large associativity is adopted, it is
enough if the associativity of TLB is same to the associativity of software cache.

The modified version7) of SPLASH-2 Benchmarks Suite8) is used to evaluate the
C5 system. Water-Nsquared in kernels and LU and FFT in applications are used
as benchmarks. Problem size of each benchmark is that Water is n=1728, LU is
n=1024 and FFT is m=20. Each benchmark is modified to reduce thrashing. In
an ideal environment(Ideal) that the local memory size is infinite, results of each
benchmark with one core are used as a target for comparison. This environment
assumes all memory access is performed in 1 cycle.

Relative performances of Water, LU and FFT to Ideal are shown in Fig. 5, 6
and 7 respectively. In the figures, M and W represent the number of management
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Fig. 8 Ratio of execution time focusing serial execution in Water

cores and worker cores respectively. Note that results of LU are shown up to 64
worker cores because the problem size is small.

4.1 Water
Performances with/without hardware support are speed-up at a good rate up

to 32 worker cores in Fig. 5. The number of management cores highly affects
the performances on 64 worker cores. The performances on 128 worker cores are
lower than the performances on 64 worker cores.

Fig. 8 shows ratios of each process in normalized execution time with hardware
support. INTERF and POTENG are processes that compute force and potential
respectively and have enough parallelism. Lock is a process of lock operations in
Water. The etc in the figure is processes except these processes. In the figure, the
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Fig. 9 Ratio of execution time focusing communication in FFT

more the number of worker cores increases, the more the ratio of Lock increases.
This is because the Lock is not performed in parallel. Compared with Fig. 5,
performances become down as the ratio of the lock increases. Consequently,
Lock process is a major cause of performance bottlenecks in Water.

4.2 LU
Performances with hardware support are speed-up at a good rate up to 64

worker cores in Fig. 6. On the other hand, without hardware support, speed-up
rate is small because the performance of 1 worker core is much lower than the
performance of Ideal.

SPLASH-2 points out that there is load imbalance in LU and the performance
is only 36 times speed-up in 64 nodes in a perfect memory system. In C5 system,
the performance is 32 times speed-up in 64 worker cores. Therefore the poor
parallelism of the algorithm is a major cause of performance bottlenecks in LU.

The performance differences between with/without hardware support result in
the differences of the latency of shared memory access. The number of accesses
to shared memory covers a large portion of all instructions in LU. Therefore the
difference of access latency affects the performance severely.

4.3 FFT
Performances with and without hardware support have the least speed-up of

other benchmarks in Fig. 7. The performance with hardware support is only 9
times speed-up at a maximum. The performance without hardware support is
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Fig. 10 Software L1 and L2 cache hit ratio with hardware support

only 20 times speed-up at a maximum.
Fig. 9 shows ratios of each process in normalized execution time with hardware

support. Transpose, FFT1DOnce and TwiddleOnce are the three functions that
have longest execution time in FFT. The etc in the figure is processes except
these processes. The more the number of worker cores increases, the more ratios
of Transpose increase. This is because the Transpose is not performed in parallel.

All worker cores start to copy heavy amount of shared data at the same time
in Transpose, so the massive number of cache misses occurs. Management cores
are unable to handle the cache misses without keeping the requests waiting. As
a result, it is thought that performance enhancement by increasing the number
of worker cores is not gained.

4.4 Cache Performance
Fig. 10 shows cache hit ratios of each benchmark with hardware support. L1

cache hit ratios are over 99% in all patterns. On the other hand, L2 cache
hit ratios tend to rise as the number of management cores increases. This is
because the total size of L2 cache capacity increases by increasing the number
of management cores. In LU, L2 hit ratios rise as the number of worker cores
increases by prefetching even in the same number of management cores.
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5. Conclusions

In this paper, we proposed an efficient software managed memory model for
many-core architectures with management cores that manage shared data. The
three policies of our system are described below. (1)It minimizes the additional
implementation hardware cost. (2)It supports the easy parallel programming.
(3)It resolves the bottleneck of main memory access.

We assume two kinds of architectures in our proposal. The first architecture is
distributed memory architectures that translate shared memory address to local
memory address by software. The second architecture is distributed memory
architectures in which each core has TLB for hardware support in order to speed
up shared memory access not assuming special hardware.

C5 is a original software managed memory system our proposal model was
adapted to. We showed the effectiveness of the C5 through performance mea-
surements with SPLASH-2 benchmark suite and found following three things.
• The use of multiple management cores is the key to achieve good speedup

with many worker cores.
• Hardware support by TLB is much better than no hardware support.
• In some benchmarks, the system without hardware support achieved suffi-

cient performance.
As our future works, we evaluate our proposal with more realistic simulation

model of main memory and consider additional hardware support with more
appropriate balancing between software and hardware.
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