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部品装着におけるラインバランシング問題の

ための発見的解法 

--- 装着順序が所与の場合 --- 

 

戸崎博重†  太田秀典†  中森眞理雄† 
 
基板に部品を装着する工程は，複数の装着機を連結したラインで行われることが
多い．このラインの性能は，最も時間を要する機械で決るので，処理時間が均等
になるように部品を装着機に割り当てることが必須である．しかし，各装着機に
おける装着時間を見積ることは極めて難しい．筆者らは，各装着機に部品が割り
当てられ，それらの装着順序も決定済みである場合に，装着時間を見積る新しい
方法を考案した．その方法と旧来の方法に基づく装着時間を計算機実験によって
求め，比較した結果を報告する． 

 

A Heuristic Line Balancing Algorithm 
Accounting for Component Mounting Order 

 

Hiroshige Tozaki†, Hidenori Ohta† and Mario Nakamori† 
 
A printed circuit board production line is composed of several component-mounting 
machines arranged in series that mount components onto each board.  Since the 
performance of the line is determined by the most time consuming machine, the line 
balancing problem occurs that makes the mounting time by machines as equal as 
possible.  Conventional line balancing procedures use time estimates based on the total 
number of components to be mounted under each machine.  The actual mounting time, 
however, is often quite different from such estimates, and a substantial discrepancy 
arises between the actual production time and the estimated one of the line.  In the 
present paper, a new estimation method of mounting time is proposed based on the 
calculation of the length of mounting paths, and also a heuristic algorithm of the line 
balancing problem is proposed.  The proposed algorithm is shown by computer 
experiments to provide better results than conventional procedures.  

 
 

1. Introduction  

The present paper addresses the problem of allocating components in a component mounting 
line composed of machines.  The target problem of allocating components in a component 
mounting line is to assign multiple components to each machine such that the production 
efficiency is the maximum.  Both this problem and that of determining the component 
mounting order in each machine have influence to each other.  As a result, even if each is 
optimized independently, the results will not necessarily result in overall optimization when 
combined.  The allocation of components to each machine, however, has been optimized 
without taking the issue of component mounting order into consideration.  Furthermore, 
estimation of the mounting time has been based on the component numbers of the components 
to be allocated by each machine [2], and no procedure accounting for the mounting path in 
each machine has been considered.  Estimation methods based on the number of components 
show large discrepancies with actual production time.  In the present paper we propose a 
heuristic algorithm that allocates components while it calculates the mounting paths in each 
machine.   

2. Formulation of the Problem  

Each component mounting machine contains a head equipped with multiple vacuum nozzles 
that pick components and mount them on the board.  The action of a machine is as follows: 
Using its vacuum nozzles, the head first picks up multiple components that have been 
positioned on the supply feeder, transports them to the location on the board where one of the 
components is to be mounted, mounts one component, then moves to the location where a 
second component is needed and mounts that component and so on, repeating until all of the 
components it picked up have been mounted, after which the head returns to the supply feeder 
to pick up another batch of components.  The sequence of actions from the pick-up to the 
return of the head to the supply tray is called a turn.   
 The present paper addresses the component allocation problem while at the same time 
taking into consideration the mounting paths of each machine.  A line is assessed based on 
the time spent per single board by the bottleneck machine. This time is strongly affected by 
the travel distance of the head, which is defined as the Chebyshev distance because head is 
driven by motors that operate independently in the x and y directions. Therefore, our 
algorithm calculates the head travel distance for each machine considering both component 
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allocation and component mounting order, evaluating the component allocation by the 
maximum head travel distance.   
 Since this paper focuses on component allocation and component mounting order, the 
problem of component pick-up is only briefly addressed; all components are assumed to be 
picked up at an identical point on the supply feeder; the distances between nozzles are also 
neglected by assuming that the head makes no extra motions to pick up components.  For the 
sake of simplicity, it is also assumed that all the components could be picked up by any nozzle, 
and that there is no upper limit on the number of component types that could be placed on the 
supply feeder. 
 The above problem is formulated as an integer programming problem as follows: 
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 Formula (1) is the objective function and states that the maximum value of the total 
head travel distance of each machine calculated in (2) should be minimized. Constraint (3) 
limits the maximum number of components that can be mounted in one turn.  Constraint (4) 
defines the Chebyshev distance between two component insertion points.  Constraint (5) 

expresses the number of components mounted on a single board.   

3. Conventional Procedures  

In conventional procedures, once the components have been allocated to machines in a 
balanced manner according to the number of components, the mounting order of the 
components in each machine is determined and the head path is created.  This procedure is 
easily adaptable to simulated annealing as follows: we use the allocation obtained from the 
above conventional method as the initial solution; in order to improve temporary solution, we 
exchange the components allocated to the bottleneck machine with those allocated to other 
machines or pass the components allocated to the bottleneck machine to another machine.  
We call this method “extended conventional procedure.”  Figure 1 shows a flow diagram for 
the extended conventional procedure. 

start
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Creation of paths
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・2-opt neighborhood local search
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Figure 1   Extended conventional procedure 
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4. Proposed Algorithm  

In the present paper we propose a hybrid genetic algorithm, which is a combined version of a 
genetic algorithm with local search technique.  Figure 2 shows a flow diagram of the 
proposed algorithm. 
 Incorporating local search technique into the genetic algorithm strengthens weak points 
of genetic algorithm and provides a more precise solution.  In the algorithm proposed here, 
local search is used for initial solution generation, mutation and offspring solution 
improvement.  

4.1 Expression of solutions  
In the proposed algorithm, all machines are assumed to mount their components in 
the same number of turns.  When the number of turns increases, the head must 
move between the supply tray and the board more frequently, so it is desirable that 
the number of turns for each machine be reduced as much as possible.  The 
minimum number of turns necessary for a single machine is obtained by (6).  Note 
that, depending on the number of machines and components available for mounting, 
there will be turns during which no components are picked up by some of the 
nozzles. 
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 The components are assigned individual numbers, and the solution is expressed by a 
row of these component numbers aligned as shown in Fig. 3.  If the arranged components are 
separated into blocks based on a fixed number of components starting from the first, this will 
correspond with their allocation to the machines and paths.  Furthermore, the sequence of 
component numbers within a turn will reflect the mounting order.  Figure 3 shows an 
example involving two machines and six nozzles, where each machine carries out two turns of 
component mounting.  Unused nozzles are flagged with the letter “e” in place of the 
component number.  Figure 4 shows the component allocation corresponding to the solution 
shown in Figure 3 and the paths of the head.   

4.2 Fitness of solution  
The evaluation value is the head travel distance of the bottleneck machine.  Accordingly, 
when we select parents and individuals during crossover based on the score, we are not 
considering any machines other than the one that has become the bottleneck.  However, the 
path lengths in the other machines might have a significant influence on the solution 
generated by crossover and mutation.  Therefore, in this paper, in addition to the 

interconnect length in the machine that is identified as the bottleneck, we calculate the fitness 
value of the solution while incorporating the total interconnect length for all machine heads.  
The fitness value of each individual is the inverse of the square of the sum of the head travel 
distance of the bottleneck machine and the head travel distances of all the other machines.  
Equation (7) shows how to calculate the total path length L and Equation (8) shows how to 
calculate the fitness value f, where S is the size of the area.    
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Figure 2   Proposed algorithm  
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Figure 3   Expression of the solution 

 

Figure 4   Component allocation corresponding to Fig 3 
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4.3 Generation of the initial solution   

Our genetic algorithm requires initial solutions as many as the pre-determined number of 
individuals.  Each of the initial solutions is generated using the following two steps: 
 (1) A sequence is created at random.  
 (2) Sequences are improved by 2-opt and 2-swap neighborhood local search.   

4.4 Crossover   
Crossover is performed in the proposed algorithm in the order from (1) to (3) below, to obtain 
a child: 

 (1) A partial sequence of random length is selected from parent 1. 
 (2) A sequence is formed by removing all of the elements included in the partial 

sequence selected in step (1) from parent 2.  
 (3) The partial sequence selected in step (1) from parent 1 is inserted into the sequence 

created in step (2) from parent 2.  The insertion location is the same location at 
which the selected sequence had previously existed in parent 1.   

Figure 5 shows an example of crossover.  For two parent individuals, crossovers are 
performed that are randomly selected at a probability proportional to their fitness values.  
The above steps (1)-(3) are executed for parents 1 and parent 2 as well as for parent 2 and 
parent 1, so we have two children from one couple.   

Parent 1

Child

2 11 3 7 4 6 15 e5 5 1 8 1416 10e4 13 e3 9 e2 12 e1

1 2 3 8 4 6 e3 13 1411 e45 e1 7 9 e2 12 10

1 2 3 6 7 8 10 11 12 15 e5 1613 144 5 e1 9 e2 e3 e4

15 e5 16

Parent 2

Parent 1

Child

2 11 3 7 4 6 15 e5 5 1 8 1416 10e4 13 e3 9 e2 12 e1

1 2 3 8 4 6 e3 13 1411 e45 e1 7 9 e2 12 10

1 2 3 6 7 8 10 11 12 15 e5 1613 144 5 e1 9 e2 e3 e4

15 e5 16

Parent 2

 

Figure 5  Crossover 

 
4.5 Mutation   

Two types of mutations are proposed here, partial sequence exchange and path exchange. The 
parent individuals used to generate the mutation are selected at random from all the 
individuals.   
(1) Mutation by partial sequence exchange 
In mutation by partial sequence exchange, two partial sequences are selected at random from 
each selected individual and exchanged.  The length of the partial sequence is changed at 
random within a specified range.   
(2) Mutation by partial sequence exchange 
In mutation by path exchange, two partial sequences corresponding to paths are selected at 
random from each selected individual and exchanged.    

4.6 Natural selection   
30% of the present generation are selected by the elite strategy as individuals left to the next 
generation.  Some of the remaining 70% unselected by the elite strategy are decided by 
roulette wheel selection to be individuals left to the next generation.  In roulette wheel 
selection, individuals are chosen at a probability proportional to fitness.   

5. Computer Experiment  

We made a comparative experiment on a computer to evaluate the performance of the 
proposed procedure.  The computer environment is an Intel Core2 Duo 3.00 GHz CPU with 
1.96 GB of memory.  The programming language used was C++. 
 The supposed line contained six machines, each with a head equipped with 12 nozzles.  
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The starting point for insertion was at a location 350 mm in the y direction from the center of 
gravity of the board.  Nine sets of data were prepared for entry, which randomly specified the 
coordinates of the mounting locations on a board 100 mm wide by 100 mm deep in size. 
 The proposed algorithm used 25 individuals and the ending condition was the 3000th 
generation.  The values for other parameters were specified appropriately based on a 
preliminary experiment.  Figure 8 shows the relation between the scores for the proposed 
procedure and the extended conventional procedure as well as the calculation time and shows 
that the proposed procedure quickly obtains better solutions than the extended conventional 
one.   

 

Figure 8   Evaluation value and time  

Table 1 presents the evaluation values for the proposed procedure, the conventional procedure, 
and the extended conventional procedure obtained after a sufficient length of time, for each 
data set entered.  The proposed procedure obtained the best evaluation values in all of the 
nine data sets of various types.  The extended conventional procedure showed a mean 
improvement over the conventional procedure of 13.9%, while the proposed procedure 
showed a mean improvement over the conventional procedure of 14.6%.  

6. Conclusions   

In this paper we proposed a procedure for allocating components to machines on a printed 
circuit board production line by actually creating component mounting paths, rather than by 
creating rough estimates using only the number of components to be mounted.  Computer 
experiment shows that the proposed procedure provides good solutions than the conventional 
procedure or an extended version of the conventional procedure.  Issues to be addressed in 

the future include incorporating limitations specific to printed circuit board production lines, 
such as number of component types and component heights.   

Table 1 Comparison of conventional procedure, extended conventional procedure 
 and our algorithm 

 
Conventional 

procedure 

Extended 
conventional 

procedure 
Our algorithm 

Number of 

mounting 

points 

Search 

time 

(sec) 

Evaluatio

n value 

Search 

time (sec)

Evaluation 

value 

Search 

time 

  (sec)

Evaluation 

value 

1 100 0.005 1694.93 837.08 1420.66 495.92 1414.69  

2 100  - 1674.24 840.00 1405.06 525.12 1404.95  

3 100 - 1675.75 829.32 1441.25 520.31 1423.67  

4 200 0.005 2594.38 3896.77 2232.47 3632.48 2197.78  

5 200 0.016 2594.04 3922.46 2225.78 3648.23 2194.31  

6 200 - 2585.95 3880.22 2210.18 3869.80 2181.23  

7 400 0.130 5048.42 42167.83 4381.65 34179.47 4357.23  

8 400 0.125 5041.57 39346.17 4381.29 31826.50 4360.36  

9 400 0.130 5052.73 38433.20 4373.88 31012.80 4342.90  
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