
情報処理学会研究報告
IPSJ SIG Technical Report

 1

部品装着におけるラインバランシング問題の

ための発見的解法

--- 装着順序が所与の場合 ---

戸崎博重† 太田秀典† 中森眞理雄†

基板に部品を装着する工程は，複数の装着機を連結したラインで行われることが
多い．このラインの性能は，最も時間を要する機械で決るので，処理時間が均等
になるように部品を装着機に割り当てることが必須である．しかし，各装着機に
おける装着時間を見積ることは極めて難しい．筆者らは，各装着機に部品が割り
当てられ，それらの装着順序も決定済みである場合に，装着時間を見積る新しい
方法を考案した．その方法と旧来の方法に基づく装着時間を計算機実験によって
求め，比較した結果を報告する．

A Heuristic Line Balancing Algorithm
Accounting for Component Mounting Order

Hiroshige Tozaki†, Hidenori Ohta† and Mario Nakamori†

A printed circuit board production line is composed of several component-mounting
machines arranged in series that mount components onto each board. Since the
performance of the line is determined by the most time consuming machine, the line
balancing problem occurs that makes the mounting time by machines as equal as
possible. Conventional line balancing procedures use time estimates based on the total
number of components to be mounted under each machine. The actual mounting time,
however, is often quite different from such estimates, and a substantial discrepancy
arises between the actual production time and the estimated one of the line. In the
present paper, a new estimation method of mounting time is proposed based on the
calculation of the length of mounting paths, and also a heuristic algorithm of the line
balancing problem is proposed. The proposed algorithm is shown by computer
experiments to provide better results than conventional procedures.

1. Introduction

The present paper addresses the problem of allocating components in a component mounting
line composed of machines. The target problem of allocating components in a component
mounting line is to assign multiple components to each machine such that the production
efficiency is the maximum. Both this problem and that of determining the component
mounting order in each machine have influence to each other. As a result, even if each is
optimized independently, the results will not necessarily result in overall optimization when
combined. The allocation of components to each machine, however, has been optimized
without taking the issue of component mounting order into consideration. Furthermore,
estimation of the mounting time has been based on the component numbers of the components
to be allocated by each machine [2], and no procedure accounting for the mounting path in
each machine has been considered. Estimation methods based on the number of components
show large discrepancies with actual production time. In the present paper we propose a
heuristic algorithm that allocates components while it calculates the mounting paths in each
machine.

2. Formulation of the Problem

Each component mounting machine contains a head equipped with multiple vacuum nozzles
that pick components and mount them on the board. The action of a machine is as follows:
Using its vacuum nozzles, the head first picks up multiple components that have been
positioned on the supply feeder, transports them to the location on the board where one of the
components is to be mounted, mounts one component, then moves to the location where a
second component is needed and mounts that component and so on, repeating until all of the
components it picked up have been mounted, after which the head returns to the supply feeder
to pick up another batch of components. The sequence of actions from the pick-up to the
return of the head to the supply tray is called a turn.
 The present paper addresses the component allocation problem while at the same time
taking into consideration the mounting paths of each machine. A line is assessed based on
the time spent per single board by the bottleneck machine. This time is strongly affected by
the travel distance of the head, which is defined as the Chebyshev distance because head is
driven by motors that operate independently in the x and y directions. Therefore, our
algorithm calculates the head travel distance for each machine considering both component

 † 東京農工大学
 Tokyo University of Agriculture and Technology

ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.13
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

 2

allocation and component mounting order, evaluating the component allocation by the
maximum head travel distance.
 Since this paper focuses on component allocation and component mounting order, the
problem of component pick-up is only briefly addressed; all components are assumed to be
picked up at an identical point on the supply feeder; the distances between nozzles are also
neglected by assuming that the head makes no extra motions to pick up components. For the
sake of simplicity, it is also assumed that all the components could be picked up by any nozzle,
and that there is no upper limit on the number of component types that could be placed on the
supply feeder.
 The above problem is formulated as an integer programming problem as follows:

() ()

() ()() () ()

()
() () ()

()

()
()

mounted be tocomponents ofnumber total:
component of coordinate:
component of coordinate:

nozzles ofnumber :

machine ofpathin included components ofnumber total:
feedersupply theof scoordinate:0

path mounting on the compoonentth of scoordinate:

machinein paths mountingcomponent ofnumber :
line production thecomosing machines ofnumber total:

machine of distance traveltotal:
function objective:

5

4,max,

3

2)(,)1(,0

 subject to

1,,1maxminimize

1 1

1 1

M
ayy
axx

N

jrm
c

iic

jm
jsize

jT
z

mM

yyxxbat

Nm

icictmcctT

jsizejTz

a

a

jr

j

j

jsize

j

m

r
jr

abab

jr

m

r

m

i
jrj

j

j

j jr

∑∑

∑ ∑

= =

= =

=

−−=

≤








−+=

== K

 Formula (1) is the objective function and states that the maximum value of the total
head travel distance of each machine calculated in (2) should be minimized. Constraint (3)
limits the maximum number of components that can be mounted in one turn. Constraint (4)
defines the Chebyshev distance between two component insertion points. Constraint (5)

expresses the number of components mounted on a single board.

3. Conventional Procedures

In conventional procedures, once the components have been allocated to machines in a
balanced manner according to the number of components, the mounting order of the
components in each machine is determined and the head path is created. This procedure is
easily adaptable to simulated annealing as follows: we use the allocation obtained from the
above conventional method as the initial solution; in order to improve temporary solution, we
exchange the components allocated to the bottleneck machine with those allocated to other
machines or pass the components allocated to the bottleneck machine to another machine.
We call this method “extended conventional procedure.” Figure 1 shows a flow diagram for
the extended conventional procedure.

start

Allocation of components to machines

Creation of paths
・nearest neighborhood method
・2-opt neighborhood local search

2-swap neighborhood local search among paths

Simulated annealing
・Exchange of components
・Pass of components

end

Conventional procedure

Extended part

start

Allocation of components to machines

Creation of paths
・nearest neighborhood method
・2-opt neighborhood local search

2-swap neighborhood local search among paths

Simulated annealing
・Exchange of components
・Pass of components

end

Conventional procedure

Extended part

Figure 1 Extended conventional procedure

ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.13
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

 3

4. Proposed Algorithm

In the present paper we propose a hybrid genetic algorithm, which is a combined version of a
genetic algorithm with local search technique. Figure 2 shows a flow diagram of the
proposed algorithm.
 Incorporating local search technique into the genetic algorithm strengthens weak points
of genetic algorithm and provides a more precise solution. In the algorithm proposed here,
local search is used for initial solution generation, mutation and offspring solution
improvement.

4.1 Expression of solutions
In the proposed algorithm, all machines are assumed to mount their components in
the same number of turns. When the number of turns increases, the head must
move between the supply tray and the board more frequently, so it is desirable that
the number of turns for each machine be reduced as much as possible. The
minimum number of turns necessary for a single machine is obtained by (6). Note
that, depending on the number of machines and components available for mounting,
there will be turns during which no components are picked up by some of the
nozzles.

()6







×

=
jsizeN

Mmj

 The components are assigned individual numbers, and the solution is expressed by a
row of these component numbers aligned as shown in Fig. 3. If the arranged components are
separated into blocks based on a fixed number of components starting from the first, this will
correspond with their allocation to the machines and paths. Furthermore, the sequence of
component numbers within a turn will reflect the mounting order. Figure 3 shows an
example involving two machines and six nozzles, where each machine carries out two turns of
component mounting. Unused nozzles are flagged with the letter “e” in place of the
component number. Figure 4 shows the component allocation corresponding to the solution
shown in Figure 3 and the paths of the head.

4.2 Fitness of solution
The evaluation value is the head travel distance of the bottleneck machine. Accordingly,
when we select parents and individuals during crossover based on the score, we are not
considering any machines other than the one that has become the bottleneck. However, the
path lengths in the other machines might have a significant influence on the solution
generated by crossover and mutation. Therefore, in this paper, in addition to the

interconnect length in the machine that is identified as the bottleneck, we calculate the fitness
value of the solution while incorporating the total interconnect length for all machine heads.
The fitness value of each individual is the inverse of the square of the sum of the head travel
distance of the bottleneck machine and the head travel distances of all the other machines.
Equation (7) shows how to calculate the total path length L and Equation (8) shows how to
calculate the fitness value f, where S is the size of the area.

start

Creation of sequence at random

Improvement of paths
・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Crossover

Mutation
・Partial sequence exchange

・Path exchange

Improvement of paths
・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Natural selection
・Elite strategy

・Roulette wheel selection

termination condition

end

Generation of initial solution

No

Yes

start

Creation of sequence at random

Improvement of paths
・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Crossover

Mutation
・Partial sequence exchange

・Path exchange

Improvement of paths
・2-opt neighborhood local search in a path

・2-swap neighborhood local search among paths

Natural selection
・Elite strategy

・Roulette wheel selection

termination condition

end

Generation of initial solution

No

Yes

Figure 2 Proposed algorithm

ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.13
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

 4

1 e1 2 4 5 6 8 9 10 e6 14 e712 13 e8 e9 153 e2 e3 7 e4 e5 11

Path 1 Path 2 Path 3 Path 4

Machine 1 Machine 2

1 e1 2 4 5 6 8 9 10 e6 14 e712 13 e8 e9 153 e2 e3 7 e4 e5 11

Path 1 Path 2 Path 3 Path 4

Machine 1 Machine 2

Figure 3 Expression of the solution

Figure 4 Component allocation corresponding to Fig 3

()

()81

7

2

1

S
Lz

f

TL
jsize

j
j

×







+
=

=∑
=

4.3 Generation of the initial solution

Our genetic algorithm requires initial solutions as many as the pre-determined number of
individuals. Each of the initial solutions is generated using the following two steps:
 (1) A sequence is created at random.
 (2) Sequences are improved by 2-opt and 2-swap neighborhood local search.

4.4 Crossover
Crossover is performed in the proposed algorithm in the order from (1) to (3) below, to obtain
a child:

 (1) A partial sequence of random length is selected from parent 1.
 (2) A sequence is formed by removing all of the elements included in the partial

sequence selected in step (1) from parent 2.
 (3) The partial sequence selected in step (1) from parent 1 is inserted into the sequence

created in step (2) from parent 2. The insertion location is the same location at
which the selected sequence had previously existed in parent 1.

Figure 5 shows an example of crossover. For two parent individuals, crossovers are
performed that are randomly selected at a probability proportional to their fitness values.
The above steps (1)-(3) are executed for parents 1 and parent 2 as well as for parent 2 and
parent 1, so we have two children from one couple.

Parent 1

Child

2 11 3 7 4 6 15 e5 5 1 8 1416 10e4 13 e3 9 e2 12 e1

1 2 3 8 4 6 e3 13 1411 e45 e1 7 9 e2 12 10

1 2 3 6 7 8 10 11 12 15 e5 1613 144 5 e1 9 e2 e3 e4

15 e5 16

Parent 2

Parent 1

Child

2 11 3 7 4 6 15 e5 5 1 8 1416 10e4 13 e3 9 e2 12 e1

1 2 3 8 4 6 e3 13 1411 e45 e1 7 9 e2 12 10

1 2 3 6 7 8 10 11 12 15 e5 1613 144 5 e1 9 e2 e3 e4

15 e5 16

Parent 2

Figure 5 Crossover

4.5 Mutation

Two types of mutations are proposed here, partial sequence exchange and path exchange. The
parent individuals used to generate the mutation are selected at random from all the
individuals.
(1) Mutation by partial sequence exchange
In mutation by partial sequence exchange, two partial sequences are selected at random from
each selected individual and exchanged. The length of the partial sequence is changed at
random within a specified range.
(2) Mutation by partial sequence exchange
In mutation by path exchange, two partial sequences corresponding to paths are selected at
random from each selected individual and exchanged.

4.6 Natural selection
30% of the present generation are selected by the elite strategy as individuals left to the next
generation. Some of the remaining 70% unselected by the elite strategy are decided by
roulette wheel selection to be individuals left to the next generation. In roulette wheel
selection, individuals are chosen at a probability proportional to fitness.

5. Computer Experiment

We made a comparative experiment on a computer to evaluate the performance of the
proposed procedure. The computer environment is an Intel Core2 Duo 3.00 GHz CPU with
1.96 GB of memory. The programming language used was C++.
 The supposed line contained six machines, each with a head equipped with 12 nozzles.

ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.13
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

 5

The starting point for insertion was at a location 350 mm in the y direction from the center of
gravity of the board. Nine sets of data were prepared for entry, which randomly specified the
coordinates of the mounting locations on a board 100 mm wide by 100 mm deep in size.
 The proposed algorithm used 25 individuals and the ending condition was the 3000th
generation. The values for other parameters were specified appropriately based on a
preliminary experiment. Figure 8 shows the relation between the scores for the proposed
procedure and the extended conventional procedure as well as the calculation time and shows
that the proposed procedure quickly obtains better solutions than the extended conventional
one.

Figure 8 Evaluation value and time

Table 1 presents the evaluation values for the proposed procedure, the conventional procedure,
and the extended conventional procedure obtained after a sufficient length of time, for each
data set entered. The proposed procedure obtained the best evaluation values in all of the
nine data sets of various types. The extended conventional procedure showed a mean
improvement over the conventional procedure of 13.9%, while the proposed procedure
showed a mean improvement over the conventional procedure of 14.6%.

6. Conclusions

In this paper we proposed a procedure for allocating components to machines on a printed
circuit board production line by actually creating component mounting paths, rather than by
creating rough estimates using only the number of components to be mounted. Computer
experiment shows that the proposed procedure provides good solutions than the conventional
procedure or an extended version of the conventional procedure. Issues to be addressed in

the future include incorporating limitations specific to printed circuit board production lines,
such as number of component types and component heights.

Table 1 Comparison of conventional procedure, extended conventional procedure
 and our algorithm

Conventional

procedure

Extended
conventional

procedure
Our algorithm

Number of

mounting

points

Search

time

(sec)

Evaluatio

n value

Search

time (sec)

Evaluation

value

Search

time

 (sec)

Evaluation

value

1 100 0.005 1694.93 837.08 1420.66 495.92 1414.69

2 100 - 1674.24 840.00 1405.06 525.12 1404.95

3 100 - 1675.75 829.32 1441.25 520.31 1423.67

4 200 0.005 2594.38 3896.77 2232.47 3632.48 2197.78

5 200 0.016 2594.04 3922.46 2225.78 3648.23 2194.31

6 200 - 2585.95 3880.22 2210.18 3869.80 2181.23

7 400 0.130 5048.42 42167.83 4381.65 34179.47 4357.23

8 400 0.125 5041.57 39346.17 4381.29 31826.50 4360.36

9 400 0.130 5052.73 38433.20 4373.88 31012.80 4342.90

7. References

[1] Masri Ayob, Graham Kendall. A survey of surface mount device placement machine
optimisation: Machine classification. European Journal of Operational Research 186 (2008) ,
893–914
[2] Osman Kulak, Ihsan Onur Yilmaz. Hans-Otto Günther, A GA-based solution approach
for balancing printed circuit board assembly lines. OR Spectrum 30 (2008), 469–491
[3] Sun, D.S., Lee, T.E., Kim, K.H.: Component Allocation and Feeder Arrangement for a
Dual-Gantry Multi-Head Surface Mounting Placement Tool. International Journal of
Production Economics, Vol.95, pp.245?264 (2005).
[4] Yamada, T., Miyashiro, R., and Nakamori, M.: An Algorithm of Feeder Arrangement and
Pick up Sequencing of Component Placement Machine on Printed Circuit Board, Proc.
International Conference on Parallel and Distributed Processing Techniques and Applications,
pp.403-409 (2005).

ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.13
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

 6

[5] Ahmadi, R. H. and Mamer, J. W.: Routing Heuristics for Automated Pick and Place
Machines, European Journal of Operational Research, Vol. 117, pp. 533?552 (1999).
[6] Burke, E. K., Cowling, P. I. and Keuthen, R.: New Models and Heuristics for Component
Placement in Printed Circuit Board Assembly, International Conference on Information
Intelligence and Systems, pp. 133?140 (1999).
[7] Burke, E. K., Cowling, P. I. and Keuthen, R.: Effective Heuristic and Metaheuristic
Approaches to Optimize Component Placement in Printed Circuit Board Assembly,
Evolutionary Computation 2000 Proceedings of the 2000 Congress, pp. 301?308 (2000).
[8] Burke, E. K., Cowling, P. I. and Keuthen, R.: The Printed Circuit Board Assembly
Problem : Heuristic Approaches for Multi-Headed Placement Machinery, Proceedings of the
International Conference on Arti?cial Intelligence ICAI’2001 , pp. 1456?1462 (2001).
[9] Hackman, S. T., Magazine, M. J. and Wee, T. S.: Fast, Effective Algorithms for Simple
Assembly Line Balancing Problems, Operations Research, Vol. 37, pp. 916?924 (1989).

ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.13
2011/7/18

