
A Framework for Genetic Algorithms

in Parallel Environments

Tomoyuki HIROYASU,†1 Ryosuke YAMANAKA,†2

Masato YOSHIMI†3 and Mitsunori MIKI†3

In this research, we developed a framework to execute genetic algorithms
(GA) in various parallel environments. GA researchers can prepare implemen-
tations of GA operators and fitness functions using this framework. We have
prepared several types of communication library in various parallel environ-
ments. Combining GA implementations and our libraries, GA researchers can
benefit from parallel processing without requiring deep knowledge of different
parallel architectures. In the proposed framework, the GA model is restricted
to a micro-grained model. In this paper, parallel libraries for a Windows clus-
ter environment, multi-core CPU environment, and GPGPU environment are
described. A simple GA was implemented with the proposed framework. Com-
putational performance is also discussed through numerical examples.

1. Introduction

Recently, several types of parallel architecture have come into wide use. For

example, calculation with multi-core CPU which more than four cores is not

unusual. General purposed GPU becomes also easy to use. In Japan, some of the

supercomputing centers are open for researchers to use high-end computational

resources. We can use the Earth Simulators and will be able to use the next-

generation Keisoku supercomputer. However, these parallel architectures have

the different configurations. Thus, even when we wish to use the same algorithms,

it is necessary to prepare different implementation codes suitable for different

parallel architectures. This places a heavy burden on algorithm researchers,

because in-depth knowledge of the different parallel architectures is required to

run their implementation codes efficiently on parallel machines.

GA is a type of optimization algorithm with multipoint search1). GA may find

the optimum point even when the landscape of the objective function has multiple

†1 Department of Life and Medical Sciences, Doshisha University
†2 Graduate School of Engineering, Doshisha University
†3 Department of Science and Engineering, Doshisha University

peaks. However, GA requires much iteration to find the optimum. This results

in high calculation cost. As GA is a multipoint search algorithm, it implicitly

has several types of parallelism2)3)4)5). Thus, several types of research regarding

parallelization of GAs are existed. Ono et al6), introduced the GA model and

implementation parallel models of GA should be clarified. As there is parallelism

in the GA itself, parallel GA can be performed even on a single process. We

call this the logical parallel model. On the other hand, because GA has multiple

search points, a single model can be implemented on parallel computers. In this

case, an implementation parallel model should be prepared.

In most GA research, these logical and implementation parallel models are not

distinguished clearly and are often the same7)8)9). When the logical model is

closely related to the implementation model, GA users should have deep knowl-

edge of the parallel architectures on which their parallel GAs are running. At the

same time, as the logical model and implementation model are closely related,

different parallel codes are required for different parallel machines. Therefore,

it would be of great benefit if GA users were not required to have such deep

knowledge of novel parallel architectures to run their GAs in parallel.

Here, we propose a parallel environment framework for GA that adopts the

micro-grained model as an implementation model. GA researchers prepare the

implementations of GA operators and fitness functions using the proposed frame-

work. We are preparing parallel communication libraries for this framework. Us-

ing GA implementations and these libraries, GA users can derive efficient parallel

GA codes without requiring specific knowledge regarding to parallel architectures.

Thus, the proposed framework improves the productivity of GA users.

We constructed a system for Windows cluster with Windows Communication

Foundation (WCF) in C# with multithreading in C language for three types of

parallel environment, i.e., cluster, multi-core CPU, and GPU. In addition, we

verified the system through the preliminary experiments.

2. Genetic Algorithm

2.1 Overview

The GA is an optimization algorithm that mimics natural evolution with va-

rietion and adaptation to the environment. In evolution processes in nature, an

IPSJ SIG Technical Report

1 ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.6
2011/7/18



S
ta
rt

In
it
ia
li
z
a
ti
o
n

E
v
a
lu
a
ti
o
n

S
e
le
c
ti
o
n

C
ro
s
s
o
v
e
r

M
u
ta
ti
o
n

E
v
a
lu
a
ti
o
n

T
e
rm
in
a
te

C
h
e
c
k

E
n
dYes

No

Fig. 1 Flowchart of GA.

individual that is better adapted to the environment among a group of individu-

als forming a certain generation survives at a higher rate, and leaves offspring to

the next generation. In the GA concept, the computer finds an individual that

is better adapted to the environment, or a solution that yields an optimum value

to an evaluation function, by modeling the mechanism of biological evolution.

Fig. 1 shows a typical flowchart of GA.

The GA applies genetic operations, crossover and mutation, to each individual

in the population to produce new individuals. These individuals are evaluated

and the GA selects superior individuals for the next generation. The GA searches

for a solution by repeating this series of operations until the termination condition

is met. The evaluation time is the same as the number of populations. GAs

have good performance in parallel environments because they have data-level

parallelism.

2.2 Parallel Model of GA

The GA is able to parallelized because it searches multiple points and repeats

sampling. Parallel models of GA can be divided into coarse-grained and micro-

grained models

2.2.1 Coarse-grained model

The coarse-grained model is generally called a distributed population model.

This model splits the population into multiple subpopulations, which are then

searched. Therefore, several individuals in several subpopulations are moved

into other subpopulations. This operation is called the migration. Fig. 2 shows

the flow of the coarse-grained model. This model uses computational resources

effectively, because it connects to computational nodes only during migration.

In addition, this model changes performance of the search compared to a serial

node 1 node 2 node N

GA GA GA

migration

GA GA GA

migration

migra!on

interval

Fig. 2 Coarse-grained model.

Master

Slave

Individual

Individual

Individual

EvaluationEvaluationEvaluation

Genetic Operation

Slave Slave

Fig. 3 Micro-grained model.

algorithm.

2.2.2 Micro-grained model

Evaluations account for a large share of total execution time in complex of

objective problems. The micro-grained model is based on the general concept of

parallelization. This model is a master-slave model. A master processor executes

other genetic operations besides evaluation.

Evaluations are executed by slave processors. A master processor sends in-

dividuals that should be evaluated. Slave processors evaluate these individual,

and return them to the master processor. Fig. 3 shows the flow of micro-grained

model. This model shows inferior parallelization performance compared to the

coarse-grained model, because it must have many connections and the master

processor uses a CPU. In addition, this model does not alter the search perfor-

mance compared to a serial algorithm.

3. Proposed Framework

3.1 Background

In conventional parallel GA research, the proposed GAs are often fully con-

nected to the particular parallel environment. In these cases, the proposed GAs

cannot be used in the different parallel environments. Advanced programming

techniques are required to use computational resources with GPGPU and many

cores. As new architectures appear, more GA users will be required to make

implementations for them. This represents a burden on GA users. The coarse-

IPSJ SIG Technical Report

2 ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.6
2011/7/18



grained model has important differences from the micro-grained model. The

coarse-grained model has few connections and can use parallel environments.

However, when this model is adopted, the designed GA and the search perfor-

mance are changed. The micro-grained model, on the other hand, does not alter

the search performance are changed. At present, users adopt the coarse-grained

model to make effective use of parallel environments. Therefore, GA development

is limited.

3.2 Requirements

To overcome the disadvantages discussed in the previous section, a framework

is proposed with the following requirements:

• Systematization of parallel models

• Adoption of micro-grained model

• Standardized interface

These requirements are described in more detail below.

3.2.1 Systematization of Parallel Models

There are two aims of parallelization in GA. The first is to parallelize algorithms

for improved search performance. The second is to parallelize the implementation

to reduce computational time. We must declare two parallelization that parallel

implementation does not confine algorithms of GA. We define them as a logical

model and an implementation model. Fig. 4 shows a GA that adopts the island

model as a logical model and serial model as an implementation model. Fig. 5

shows a GA that adopts the island model as both the logical model and as the

implementation model. The logical model searches in parallel; however, it can

also be implemented in serial. In addition, the logical model is confined by the

limits of implementation model.

3.2.2 Adoption of Micro-grained Model

It is necessary for GA users to use an arbitrary algorithm with which any and

all GAs can benefit from parallel processing. The micro-grained model is adopted

as the implementation model. Therefore, the GA can be implemented without

changing the logical model.

3.2.3 Standardized Interface

To reduce the burden on GA users, it is necessary that they should be able to

use any and all parallel environments with a common interface.

Genetic 

Operation

Genetic 

Operation

EvaluationEvaluation

1

2

3

4

migration

Individual
node

Fig. 4 Island model with serial
implementation.

Genetic 

Operation

Genetic 

Operation

EvaluationEvaluation

1

2

1

2

migration

node nodeIndividual

Fig. 5 Island model with parallel
implementation.

3.3 Overview of Proposed Framework

The purpose of the proposed framework is to allow GA users to perform par-

allel processing with the micro-grained model as an implementation model of

GA, without programming techniques for parallel processing. Fig. 6 shows an

overview of the framework. The framework introduces the concept of the GA

Pool as the interface. GA users throw individuals into the GA Pool. Thus, they

are able to get evaluated individuals from the GA Pool. The GA Pool evalu-

ates thrown individuals with parallel environments. The framework supplies an

implementation for use of parallel environments. GA users can construct an arbi-

trary logical model and implement GA operations besides evaluation part. They

implement the evaluation part with the prepared template. This template has

arguments and return value of the function of the evaluation. This template hides

implementation of a particular connection and scheduling for the task of evalua-

tion from the GA user. Thus, GA users can construct GAs adapted to parallel

environments without requiring knowledge regarding connections and scheduling

jobs.

3.4 GA Pool

The GA Pool is composed of two queues as shown in Fig. 7. These queues

are the throw queue, which puts thrown individuals, and the get queue, which

IPSJ SIG Technical Report

3 ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.6
2011/7/18



GA User

GA PoolThrow

Get

Parallel

Environment

Evaluation

Evaluation

Evaluation
Individual

GA User implements Framework implements

Genetic

Operation

Fig. 6 Concept of the framework.

GA

Pool
Throw

Get

Parallel

Environment

Individual

Background

Thread

Pack Individuals

Unpack Individuals

Throw Queue

Get Queue

Fig. 7 Constitution and function of GA Pool.

puts evaluated individuals. When individuals are put, a thread that monitors

the throw queue sends individuals to computational resources and calculates the

evaluation. The thread executes connections adapted to the architecture of the

computational resources in the parallel environment. When the thread puts

evaluated individuals into the get queue, it unpacks them one by one.

4. Evaluation
4.1 Confirmation of Parallelism with Framework

This section confirms the parallelism of GAs constructed with the proposed

framework in a cluster environment.

4.1.1 Computational Environments

A Windows cluster running Windows HPC Server was used as a distributed

memory environment. The communication infrastructure was Windows Com-

munication Foundation (WCF)10) with C#, and we used a novel parallel model

different from MPI. This parallel model is based on Service Oriented Architecture

(SOA)11)12)13). Only function implementation is located on the computational

nodes as slaves. The client machine acting as a master calls the function to con-

trol jobs interactively. WCF does not share sources between master and slave

processors. Therefore, it has the good expandability. In addition, WCF adapted

the micro-grained model such that the slaves execute evaluation only, because

slave processors have only the function evaluation. The Windows cluster is able

to view a core as a computational resource. This section discusses confirmation

of the parallelism of GAs constructed with the proposed framework with 16 cores

on 2 machines, as shown in Table 1. Table 2 shows the parameters of the GA

used in this section.

4.1.2 Results

Fig. 8 shows the relation between the number of computational nodes and

execution time. Fig. 9 shows pseudo-code of a simple GA constructed with the

proposed framework. Lines 4, 8, 11, and 20 in Fig. 9 are descriptions for using the

framework. GA users add only four descriptions and can reduce the execution

time by increasing the calculation resources as shown in Fig. 8.

4.2 Verification of connection performance with along to data size

This section evaluates the connection performance of a cluster, multi-core CPU,

and GPU. We verify the influences of data volume and number of connections

on execution time with changing numbers of individuals in a connection. There

are several parameters in algorithms and parallel libraries, and these parameters

should be tuned optimally to achieve high parallel efficiency. In a distributed

memory environment, communication overheads are large. In a shared memory

environment, it is necessary to consider the limits of memory based on the pro-

cessor architecture. Here, we use a system that controls data volume and number

of connections when the master processor communicates with the slave proces-

sors. In particular, the system controls the number of individuals in a connection

as shown in Fig. 7. During the simulation, the best data volume and number of

Table 1 Architecture of a node on
the Windows cluster.

OS Windows HPC
Server 2008

Memory 8 GB
CPU AMD Opteron 2536

2.3 Hz(Quad) × 2

Table 2 Parameters of GA.

Parameter Value
Population Size 64
Gene Length 41

Max Generation 32

Optimization Problem HRE14)

Logical Model Simple GA1)

IPSJ SIG Technical Report

4 ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.6
2011/7/18



100

200

300

400

500

600

700

800

1 2 4 8 16

T
o

ta
l t

im
e

 [
m

in
u
te

]

Number of nodes

Fig. 8 Relation between number of computa-
tional nodes and execution time.

1: // initialization of population

2: InitPopulation();

3: // initialization of framework

4: Initialize(POPULATION_SIZE, MAX_GENERATION);

5: for (int i = 1; i <= MAX_GENERATION; i++) {

6: for (int j = 0; j < POPULATION_SIZE; j++)

7: // throw individuals to GA Pool

8: Throw(individual);

9: for (int j = 0; j < POPULATION_SIZE; j++)

10: // get individuals from GA Pool

11: individual = Get();

12: // selection

13: population = selection(population);

14: // crossover

15: crossover(population);

16: // mutation

17: mutation(population);

18: }

19: // Finalization of framework

20: Finalize();

Fig. 9 SimpleGA constructed with the
proposed framework

connections can be determined dynamically.

4.2.1 Environments

The cluster environment is the same as the system used in section 4.1. A

multi-core CPU and GPU are used as shared memory environments. We used

C language on multi-core CPU and CUDA with NVIDIA on GPU. In shared

memory environments, multiple threads in relation to the number of cores are

generated for parallel processing. GA users need not send a program of the

evaluation module to computational resources. We use computational resources

to compare each environment. One node is used for a Windows cluster and one

thread is used for multi-core CPU and GPU.

Tables 3 and 4 show the specifications of multi-core CPU and GPU.

Table 5 shows the parameters of the GA used in this evaluation. A total

512 data (4000 bytes each) are sent to the computational resources, because

the population size is 512 and the data volume of an individual is 4000 bytes.

Power-of-two data are sent, and we record the execution time.

4.2.2 Results

Figures 10, 11, and 12 describe the relation between data volume in a connec-

tion and execution time in each parallel environment. The values in these graphs

are the medians of 100 independent trials. As show in each figure, the data vol-

Table 3 Architecture of node with
multi-core CPU.

OS Debian 5.0.8
Memory 16 GB
CPU AMD Opteron 2423

2.0 GHz(Six-Core) × 2

Table 4 Architecture of node with GPU.

OS CentOS
Memory 16 GB
CPU AMD Opteron

2356 2.3 GHz(Quad) × 2
GPU Memory 512 MB

GPU NVIDIA GeForceGTX250
1.84 GHz(128-Core)

0

50000

100000

150000

200000

250000

1 2 4 8 16 32 64 128 256 512

T
im

e
 [
m

s
e

c
]

Data volume in one connection [bytes]
×4000

Fig. 10 Relation between data volume in
one connection and execute time
on Windows cluster.

　
0

10

20

30

40

50

1 2 4 8 16 32 64 128 256 512

T
im

e
 [
m

s
e

c
]

Data volume in one connection [bytes]
×4000

Fig. 11 Relation between data volume in
one connection and execute time
on multi-core CPU.

704

706

708

710

712

714

716

718

1 2 4 8 16 32 64 128 256 512

T
im

e
 [
m

s
e

c
]

Data volume in one connection [bytes]
×4000

Fig. 12 Relation between data volume in one connection and execute time on GPU.

ume was confirmed to affect the execution time. In addition, we confirmed that

the optimal data volume that reduces the running time to the greatest extent is

different for each architecture. The optimal values are 64 × 4000 bytes for the

cluster, 8 × 4000 bytes for the multi-core CPU, and 16 × 4000 bytes for the GPU

is.

5. Discussion
As shown in Figures 10, 11 and 12, it was confirmed that the minimum execu-

tion time according to data volume was different between the cluster, multi-core

IPSJ SIG Technical Report

5 ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.6
2011/7/18



Table 5 Parameters of GA.

Population Size 512
Gene Length 1000

Data Type of a Gene int (4 bytes)

Table 6 Differences
between max and min times.

Environment Difference [msec]
Cluster 107170

Multi-core CPU 23.1068
GPU 3.52358

CPU, and GPU environments. Table 6 shows the differences between the max

and min values of execution time in each environment. As shown in this ta-

ble, the difference is smallest in GPU and the largest in cluster. This suggests

that tuning has a greater effect in distributed memory environments. However,

the tuning affects are also different even for shared memory environments. This

evaluation used only homogeneous parallel environments. However, these results

show that changing data volume has a greater influence in heterogeneous parallel

environments.

6. Conclusions and Future Work
In this paper, we proposed a framework for GAs in parallel environments. GA

researchers can prepare implementations of GA operators and fitness functions

using this framework. We have prepared several types of communication library

for use in various parallel environments. Combining the GA implementations and

our libraries, GA researchers can benefit from parallel processing without requir-

ing deep knowledge regarding parallel architectures. In the proposed framework,

the GA model is restricted to a micro-grained model. In this paper, parallel

libraries for Windows cluster environment, multi-core CPU environment, and

GPGPU environment were prepared.

For the Windows cluster, parallel communication libraries were prepared with

WCF and C#. Using the libraries and the framework, GA researchers can im-

plement the parallel processing part with only four descriptions．In addition,

we verified data volumes and number of connections on the Windows cluster,

multi-core CPU, and GPU with a system that changes the number of individuals

in a connection. The results indicated that the best number of individuals in a

connection differs according to the architecture.

In future work, a mechanism to find the best number of individuals and to

tune it dynamically will be implemented in the libraries. In addition, we will

also attempt to prepare other parallel libraries for other parallel architectures.

References

1) Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley (1989).

2) Starkweather, T., Whitley, D. and Mathimas, K.: Optimization using Distributed
Genetic Algorithms, Parallel Problem Solving form Nature (1991).

3) Mühlenbein, H.: Parallel Genetic Algorithms, Population Genetics and Combina-
torial Optimization, Parallelism, Learning, Evolution, Lecture Notes in Computer
Science, Vol.565, Springer Berlin / Heidelberg, pp.398–406 (1991).

4) Theodore, C.: The Distributed Genetic Algorithm Revisited, Proc.6th Interna-
tional Conf. Genetic Algorithms, pp.114–121 (1995).

5) Miki, M., Hiroyasu, T., Kaneko, M. and Hatanaka, K.: A Parallel Genetic Algo-
rithm with Distributed Environment Scheme, IEEE International Conference on
Systems, Man, and Cybernetics, Vol.1, pp.695–700 (1999).

6) Ono, I., Mizuguchi, N., Nakashima, N., Ono, N., Nakada, H., Matsuoka, S.,
Sekiguchi, S. and Tate, S.: Gridifying A Genetic Algorithm for NMR Three-
Dimensional Protein Structure Determination by Using Ninf-1 and Ninf-G, IPSJ
Journal, Vol.46, No.12, pp.369–406 (2005). (in Japanese).

7) Lim, D., Ong, Y.S., Jin, Y., Sendhoff, B. and Lee, B.S.: Efficient Hierarchical
Parallel Genetic Algorithms using Grid computing, Future Generation Computer
Systems, Vol.23, No.4, pp.658–670 (2007).

8) Li, J.M., Wang, X.J., He, R.S. and Chi, Z.X.: An Efficient Fine-grained Parallel
Genetic Algorithm Based on GPU-Accelerated, Network and Parallel Computing
Workshops, 2007. NPC Workshops. IFIP International Conference on, pp.855–862
(online), DOI:10.1109/NPC.2007.108 (2007).

9) Thompson, A.M. and Dunlap, I.B.: Optimization of analytic density functionals by
parallel genetic algorithm, Chemical Physics Letters, Vol.463, No.1–3, pp.278–282
(2008).

10) Windows Communication Foundation:
http://msdn.microsoft.com/en-us/library/dd456779.aspx.

11) Papazoglou, M. and Georgakopoulos, D.: Service-Oriented Computing, Commu-
nications of the ACM, Vol.46, No.10, pp.25–28 (2003).

12) Zhang, W. and Cheng, G.: A Service-Oriented Distributed Framework-WCF, Web
Information Systems and Mining, International Conference on, Vol.0, pp.302–305
(2009).

13) Riad, A.M., Hassen, A.E. and Hassen, Q.F.: Design of SOA-based Grid Computing
with Enterprise Service Bus, International Journal on Advances in Information
Sciences and Service Sciences, Vol.2, No.1, pp.71–82 (2010).

14) Kosugi, Y., Oyama, A., Fuji, K. and Kanazaki, M.: Conceptual Design Optimiza-
tion of Hybrid Rocket Engine, Proceedings of Space Transportation Symposium
(2009).

IPSJ SIG Technical Report

6 ⓒ 2011 Information Processing Society of Japan

Vol.2011-MPS-84 No.6
2011/7/18


