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Classification of Idiopathic Interstitial Pneumonia CT Images
using Convolutional-net with Sparse Feature Extractors

TAIJU INAGAKI ,†1 HAYARU SHOUNO†1 and SHOJI KIDO†2

We propose a computer aided diagnosis (CAD) system for classification of idiopathic
interstitial pneumonias (IIPs). High resolution computed tomography (HRCT) images are
considered as effective for diagnosis of IIPs. Our proposed CAD system is based on the
convolutional-net that is bio-plausible neural network model inspired from the visual system
such like human. The convolutional-net extract local features and integrate them in the pro-
cess of hierarchical neural network system. For natural image recognition by convolutional-
net, Gabor feature extraction is known to give a good performance , however, the HRCT
images may have different properties from those of natural images. Thus, we introduce a
learning type feature extraction called “sparse coding” into the convolutional-net, and eval-
uate performance for classification of IIPs.

1. Introduction

In the field of medical image diagnosis using high resolution computed tomography
(HRCT) is effective for classifying of idiopathic interstitial pneumonias (IIPs). Using
the HRCT image, we may observe the site of IIPs is diffused in the lung, however, de-
termining the border of the disease site is difficult work, and the IIPs on HRCT images
shows a lot of varieties in patterns. Thus, the quality of diagnosis is influenced by the
ability of diagnostician, and improving the quality is desired for proper treatment. The
second opinion system, which means plural diagnosticians opinions are taken into con-
sideration for diagnosis, is an answer for the problem. However, this system makes the
diagnosticians diagnose over twice patients, that is the second opinion system might be
burden for diagnosticians. Moreover, because of the large number of variations in image
pattern of IIPs, a lot of cost may require to educate for a skilled diagnostician. Hence, the
diagnosis aid system using computer is desired for objective diagnosis in these decades.
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Fig. 1 Typical CT images of diffuse lung diseases: The top row shows each overview, and bottom shows
magnified part (ROI) of each lesion. From (a) to (g) represents “Consolidation”, “GGO”, “Honey-
comb”, “Crazy-Paving”, “Nodular” “Emphysema”, and “Normal” image respectively.

The computer aimed diagnosis (CAD) system is designed to provide a second opinion
using computer analysis from the obtained images, and we can consider many types
of CAD systems. In this study, we try to construct a computer diagnosis aid using
convolutional-net, which is a kind of artificial neural network inspired from the visual
system of human1)2)3)4). Roughly speaking, the mechanism of the convolutional-net con-
sists of two components: one is the local feature extraction, and the other is integration
of the extracted features with non-linear modulation. The feature extractor components
called S-cells, which comes from simple cell in the visual area of brain, respond to the
similarity between the input and the preferred feature of the cell. The integration compo-
nents called C-cells, which comes from complex cell in the brain, integrate the extracted
feature by spatial pooling of the S-cell outputs. We assume each type cell arranged in
the 2-dimensional lattice called cell-plane and cell in the identical cell-plane have same
properties. By this assumption, cell in an identical plane could share the weight of the
connection. The mathematical notation of the weight sum sharing for the input can be
described as a convolution, so that this type of network is called “convolutional-net”. To
determine the preferred feature of S-cells, we introduce a learning rule called “sparse
coding”5). The sparse-coding assumes any input as a weighted sum of linear bases, and
the bases are determined to satisfy that as much as the weights for bases should take 0
value for whole input data with compensation for the overcomplete bases. Olshausen
& Field show that applying the sparse coding to the small part called image patch of
natural scene, they obtained Gabor feature like preferred bases, which is usually used
to denote the property of the simple cell5). We apply the sparse-coding bases into the
feature extractor weight of the convolutional-net.
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For IIPs classification, several approach are proposed, and, in recent years, a “texton”
base system are focused in classification of lung diseases6). A texton means the clustered
features from the collection of small patch of images, and texton base system use the
collection of similarities between an input and each texton as a feature vector. Thus, our
approach can be regarded as an extension of this texton base approach.

In this study, we developed a prototype CAD system for classifying IIPs. Our CAD
system take a segmented image which is taken from the HRCT image of lungs, and clas-
sify the input image into following named classes, that is, consolidation, ground-grass
opacity (GGO), honeycomb, crazy-paving, nodular, emphysema and normal classes.
The lesion of this disease is spread in lung, and has a lot of image patterns even in the
same class. Fig.1 shows a typical image example of each disease HRCT image. The
left shows an overview of the axial HRCT images of lungs including lesion, and the
right shows segmented images of typical examples of lesion from the left image col-
lections. The consolidation and GGO patterns are often appeared with the cryptogenic
organizing pneumonia diseases (COPD). The GGO pattern is also often appeared in the
non-specific interstitial pneumonia (NSIP). The crazy-paving pattern have reticular pat-
tern with partial GGO patterns, which appeared in also NSIP. The honeycomb pattern
has more rough mesh structure rather than that of the crazy-paving, and it appeared in
idiopathic pulmonary fibrosis (IPF) or usual interstitial pneumonia (UIP).

2. Method

In this section, we explain about more detailed convolutional-net formulation and
learning method of sparse coding using in our CAD system.

2.1 Structure of Convolutional- net
The convolutional-net mainly consists of two types of cells. One is called “S-cell”

which is used for feature extractor. The S-cell have local connection window called
receptive field, and the local connection weight dictate preference of the S-cell, so that
the local connection weight is sometimes called preferred vector. When an input is
appeared to the receptive field, the S-cell calculates a similarity between the input and
the preferred vector for responding. The other type of cell is called “C-cell” which is
used for reduction of local input pattern deformation, such that shift, rotation, and so
on. The C-cell calculates spatial pooling of the S-cell that have same preferred vector in
the local area. This spatial pooling calculation is sometimes called “blurring” or “sub-
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Fig. 2 Schematic diagram of our CAD system using convolutional-net. In the convolutional-net part, each
rectangle shows cell plane which includes same type of cells arranged in the 2D array.

sampling”1)3). These calculation manners are originally proposed by Hubel & Wiesel7).
We treat each type of cell as arranged in 2-dimensional lattice called “cell plane”. The

cell in a cell plane has same preferred vector except the receptive field position, which is
just differ as the position of the cell in the cell plane. Introducing the cell plane structure,
we can treat the connection between the cell planes as the convolution. Thus, we call
this type of network as “convolutional-net”. In the center part of the Fig.2 shows a
schematic diagram of the convolutional-net. Each rectangle in the part shows cell plane
that includes same type of cells, and whole cells have only local connections.

As in mathematical form, we denote the response of the S-cell at the location x in the
k-th cell plane as us(x, k), and denote it as a convolution form:

us(x, k) = ϕ

[ ∑
ν φk(ν)I(x + ν)√∑

ν φk(ν)2
√∑

ν I(x + ν)2
− θk

]
, (1)

where ϕ[·] means the half-wave rectified function:

ϕ[s] =

{
s if s > 0
0 else

, (2)

θk means threshold value for the cell in the k-th cell plane, and φk(ν) means the con-
nection weight for the relative location to x. Introducing a vector notation for index of
receptive field ν, that is φk as φk(ν), Ix as I(x + ν), we can denote eq.(1) as:

us(x, k) = ϕ

[
φk · Ix

‖φk‖ ‖Ix‖
− θ

]
(3)

where dot operator in the numerator means the inner product of vectors, so that the first
term in the function ϕ[·] means the similarity in the meaning of direction cosine. Thus,
we can interpret the eq.(1) as two step calculation, that is the first step is calculation
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of similarity between local input Ix and the preferred vector φk, and the second is
modulate the similarity by the threshold and half-wave rectification.

The C-cell function also denote as a convolution for the spatial pooling in the S-cell
plane:

uc(x, k) = ψ

∑
ξ

ρ(ξ)us(x + ξ, k)

 , (4)

where ξ indicates the connection location relative to the x, ρ(ξ) means the connection
weight, and ψ[·] means the modulation function. In this study, to keep the network struc-
ture simple, we adopt following conditions. We assume connection between uc(x, k)
have whole spatial pooling for us(x, k) which means uc(x, k) denote as a single unit
uc(k) and it have full connection to the whole units in the previous plane us(x, k).
Moreover, we also assume whole connection weight as homogeneous, that is ρ(ξ) = 1,
and modulation function ψ[·] as linear modulation function ψ[u] = u. Hence, we can
denote the C-cell for the k-th feature described in eq.(4) as:

uc(k) =
∑

ξ

us(ξ, k). (5)

Now, we can consider the output of the convolutional-net uc(k) for the input I(x) as
a kind of the conversion from the input to a feature vector, so that we should classify
the feature vector into the class category. In order to classify uc(k), we introduce a
support vector machine (SVM), which is developed in the field of machine learning, for
classification in the next stage8).

2.2 Learning of Preferred Feature by Sparse Coding
For applying a convolutional-net into the natural image understanding, Gabor filters is

usually adopted in the feature extractor connection φk. The Gabor filter is suitable for
extraction of line or edge segment in the image, and those feature components are con-
sidered important in the field of natural scene understanding3)1). However, it is doubtful
that line or edge components in the segmented image of the IIPs is effective to the clas-
sification. Thus, we introduce learning base algorithm called sparse coding to determine
the feature extraction vector set {φk}. The sparse coding is proposed by Olshausen &
Field to explain the property of the simple cell in the brain9). Denoting part of input
image patch pattern set as {Ip}, which have same size to the feature extraction vector
φk, for training the feature extraction vectors where p is the pattern index. The idea of
the sparse coding stands on the following points. One is the image patch Ip should be

expressed by a linear combination of the feature extraction vector {φk}:
Ip ∼

∑
k

ap
kφk. (6)

And the other point is the almost all the coefficients ap
k should be zero, that is only few

feature extraction vectors support the image patch Ip, and we call under this condition
as “sparse” state.

Then, we can introduce an objective function for the sparse coding as following:
J [{φk}, {a

p
k}] =

∑
p

‖Ip −
∑

k

ap
kφk‖2 + λS({ap

k}), (7)

S({ap
k}) =

∑
p,k

log(1 + (ap
k)2). (8)

In the eq.(7), the first term means a data fitting term and the second means a constraint
for sparseness, and the parameter λ controls the balance between these two terms. Mini-
mizing the objective function for the {φk} and {ap

k}, we can obtain the feature extracting
vector set {φk} in the eq.(1).

3. Experiment

3.1 Materials
In order to evaluate our CAD system, we prepare 360 images, in which the number of

each class are following: Consolidation:38, GGO:76, Honeycomb:49, Crazy-paving:37,
Emphysema:54, Nodular:48, and Normal:58 cases. In usual, the HRCT image consists
of 512×512 pixels. However, the whole image includes not only interest anatomy lung,
but also another anatomies. Hence, in our system, we assume an input image is a part of
HRCT image called “region of interest (ROI)” , which is segmented by a diagnostician.
The size of ROI is configured as 32 × 32 pixels. Each ROI is segmented under the
direction of a physician, and diagnosed by 3 physicians.

The acquisition parameters of those HRCT images are as follows: Toshiba “Aquilion
16” is used for imaging device, each slice image consists of 512 x 512 pixels, and pixel
size corresponds to 0.546 ∼ 0.826 mm, slice thickness are 1 mm. The number of
patients is 69 males and 42 females with age 66.3± 13.4. The number of normal donor
is 4 males and 2 females with age 44.3±10.3. The origin of these image data is provided
Tokushima University Hospital.

On the consolidation image, we cannot recognize the vessels since lesion have too
much high CT values such like water. GGO represents the light distributed lesion, and
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Table 1 Classification ability by SCN with 20 × 20 feature extraction: Total correct ratio is 78.6%
Classification result with SCN

Cons. GGO Honey. Crazy. Emphy. Nodul. Norm. ratio
Consolidation 36 2 0 0 0 0 0 94.7%

GGO 0 59 2 2 0 13 0 77.6%
Honeycomb 0 3 44 2 0 0 0 89.8%

Crazy-Paving 0 3 0 28 1 5 0 75.7%
Emphysema 0 3 0 0 44 7 0 81.5%

Nodular 0 9 0 0 20 15 4 31.3%
Normal 0 0 0 0 1 0 57 98.3%

we can recognize vessels in contrast. Honeycomb appears geometrical patterns caused
by the partial destruction of alveoli. Crazy-paving represents mixture state GGO and
honeycomb. These 4 cases are IIPs class. Emphysema represents distributed low CT
values area caused by the destruction of alveoli. Nodular represents small (< 5mm)
nodule patterns. These 2 cases are not IIPs class, but another lung disease class. Normal
class represents images collection from healthy donor.

3.2 Pre-processing for Input
Before carrying out the sparse coding, we adopt “sphering”, which is sometimes called

pre-whitening, by principal component analysis (PCA). The purpose of the sphering is
to normalize the signal represented by each pixel, and to eliminate the effect of cross
correlation to other pixels. When we denote the {Y p} as the data set of raw pixel data
of ROIs, the sphering process can be denoted as following:

Λ =
〈
Y Y T〉

p
, (9)

Ip = Λ− 1
2 Y p, (10)

where 〈·〉p means the average over patterns indexed by p, and Λ− 1
2 can be obtained

by eigenvalue decomposing using PCA. As the result of sphering, the cross-correlation
matrix of pre-processed input, which denote as

〈
IIT〉

p
, becomes a unit matrix, that is

any pair of Ip have no cross correlation.
3.3 Evaluation method
In order to evaluate the ability of our CAD system, we apply leave one out cross-

validation (LOOCV) method10)11). Applying this method, we left an input pattern for
evaluation, and use another patterns to train the CAD system. Alternating the evaluation
pattern, we evaluate the CAD system classification result on each occasion.

Table 2 Classification ability by GCN method with feature vector size 12× 12: Total correct ratio is 58.1%
Classification result with GCN

Cons. GGO Honey. Crazy. Emphy. Nodul. Norm. ratio
Consolidation 36 2 0 0 0 0 0 94.7%

GGO 0 57 5 3 6 1 4 75.0%
Honeycomb 1 5 36 3 1 3 0 73.5%

Crazy-Paving 1 13 7 16 0 0 0 43.2%
Emphysema 0 22 2 0 12 4 14 22.2%

Nodular 0 13 6 4 11 10 4 20.8%
Normal 0 4 0 0 10 2 42 72.4%

Table 3 Classification ability by SCN method with feature vector size 12 × 12: Total correct ratio is 74.2%
Classification result with SCN

Cons. GGO Honey. Crazy. Emphy. Nodul. Norm. ratio
Consolidation 37 1 0 0 0 0 0 97.4%

GGO 0 56 1 6 6 7 0 73.7%
Honeycomb 0 2 44 3 0 0 0 89.8%

Crazy-Paving 0 10 10 16 0 0 1 43.2%
Emphysema 0 2 0 0 40 6 6 74.1%

Nodular 0 14 0 0 14 19 1 39.6%
Normal 0 0 0 0 3 0 55 94.8%

We fixed the number of feature vectors {φk} as 450 to satisfy overcomplete condition,
and evaluated the effect of the vector length as {12×12, 16×16, 20×20}. The balance
parameter λ in eq.(7) is set as 1.0 that is decided experimentally. For Minimization of
the cost function (7), we apply a method proposed by Olshausen & Field, that is a kind of
gradient decent along the parameters {ap

k} and {φk} alternately5). Following equations
are update rules:

φ new
k ← φk + η

∂J

∂φk

(11)

ap new
k ← ap

k + η
∂J

∂ap
k

(12)

where η is learning rate, that is fixed 0.0001 in this study. Eqs.(11) and (12) are applied
alternately in the simulation.

After training the feature extract vector set {φk}, we can apply convolutional-net
calculation shown in eqs.(3) and (5) where threshold parameter θk = 0.0 for any k.
As the result of convolutional-net calculation, we obtain a vector description, whose
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element is composed by uc(k), for each pattern Ip. Hence, we classify the vector to the
IIPs’ category, and we use the SVM as the classifier that is provided by OpenCV with
default parameters12).

Moreover, in order to compare the ability of our CAD with the conventional
convolutional-net, we prepare Gabor function based system, that is {φk} as Gabor based
system.In the following, we abbreviate sparse coding convolutional-net as SCN, and Ga-
bor filter base convolutional-net as GCN.

4. Results

Figure 3 shows the several examples of feature extract vectors of φk. Since the HRCT
ROI images are not sort of natural images, the obtained bases φk are not similar to the
Gabor filters that can be obtained by the sparse coding with natural scene processing5).
This difference makes classification performance as following.

Table 1 shows the detail classification result by a confusion matrix. The Table 1 is a
result of a SCN in which the length of feature vector φk is 20× 20 network. This is the

Fig. 3 Several examples of feature extract vector φk obtained by sparse coding.

best result in our evaluation. Each row shows the input class, and each column shows the
classification class. Thus diagonal line shown in bold numbers represents the number of
correct classifications. For example, in the consolidation patterns, 37 cases are classified
as consolidation correctly, 1 case is classified as GGO. The total correct ratio is shown
in the last column. From the Table 1, we can see the correction ratio of all the classes
except nodular class are over 75%. Especially, seeing the normal class column of the
Table 1, a type II error called false negative, that is the failure probability of finding
diseases, is nothing except nodular class. The nodular class is not category of IIPs, and
its HRCT image does not have specific texture feature, but have only local sphere like
patterns. Hence, the whitening pre-process, which is for normalization and elimination
of cross correlation, may reduce this local feature, so that whitening may makes low
classification ratio as the result. Anyway, improving of nodular class performance is a
future work.

Table2 shows the result of classification performance by the GCN which is a modified
model proposed by Kuwahara et al.13). Kuwahara et al. have applied Gabor filter for
feature extraction, and AdaBoost for classification. We substitute this AdaBoost part for
a SVM in order to compare with SCN. The scale of feature extractor φk is 12× 12 that
is the best one in the examined Gabor feature scales. Table 3 shows the GCN result of
the same feature extractor scale. Comparing the Table 2 with the Table3, we can see the
classification performance of the GCN have similar tendency to the SCN, however, total
performance of the SCN is clearly improved from the GCN. Especially, we can see the
performance for the emphysema and the crazy-paving classes are dominantly improved.
Roughly speaking, the crazy-paving class is a intermediate image between GGO and
Honeycomb, and we can estimate that Gabor based filters, which is used in the GCN for
line or edge component extraction, are not sufficient for feature extraction.

Comparing Tables 1 and 2, which are different scale of φk, the performance of the
large size φk is improved for the crazy-paving class. This result comes from the reducing
of the miss classification to the honeycomb class, so that we can estimate large size φk

is suitable for the extracting honeycomb structure.

5. Conclusion

In this study, we evaluated the sparse coding base convolutional-net for the multi-class
IIP classification. Comparing the correction performance with the simple GCN that is a
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modified of the previous model, we can obtain an improvement result. Especially, type
II error frequency of GCN is larger than that of the SCN. From the clinical point of view,
we can conclude the several training method for the feature-extracting vector set {φk}
is effective. Gangeh et al. also pointed out the similar tendency in their “texton” based
model6). We consider the total performance of the classification rate is not so much bad,
however, we should improve the performance of our SCN for the practical CAD system.

In the future works, in order to improve our SCN performance, we should find a
tuning method or principle. In this work, we show the preliminary result for the feature
extractor size effect. We can estimate the larger one is suitable for finding the structure
such like crazy-paving and honeycomb, so that we should find optimal size of the feature
extractor φk. One solution is that multi-scale feature extractor such like Lowe model
may be effective for this problem14).
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