
情報処理学会研究報告
IPSJ SIG Technical Report

UMLパッケージ図に対するグラフ文法とその応用

後 藤 隆 彰†1 西 野 哲 朗†2 土 田 賢 省†3

図式表現は，その視認性の良さからソフトウェア設計や開発においてよく利用され
ている．一方，近年 UML(Unified Modeling Language)が提案され，これまでに多
くのシステムの分析や設計，実装に用いられている．
これら図式表現をコンピュータ上で自動的に処理するためには，まずプログラム図

の構文を定義する必要がある．また，プログラム図などの 2 次元データを対象とし
て構文解析を行うためには，各要素間の関係が記述される必要がある．本研究では，
UML のパッケージ図の生成を，グラフ文法に基づいて実現し，図式の自動処理を行
うための枠組みを提案する．

An Attribute Graph Grammar for UML Package
Diagrams and its Applications

Takaaki Goto,†1 Tetsuro Nishino†2

and Kensei Tsuchida†3

Graphical representations are often used in software design and development
because of their expressiveness. Unified Modeling Language (UML) for mod-
eling in software development was proposed recently, and in 2005 it was stan-
dardized as the ISO/IEC 19501 standard.
In order to automate processing of these graphical representations using com-

puters, a syntax for program diagrams must first be defined. We propose a
framework for specifying these diagrams using a graph grammar, and for pro-
cessing these diagrams automatically.

†1 電気通信大学 産学官連携センター
Center for Industrial and Governmental Relations, The University of Electro-Communications

†2 電気通信大学 情報理工学研究科
Graduate School of Informatics and Engineering, The University of Electro-Communications

†3 東洋大学 総合情報学部
Faculty of Information Science and Arts, Toyo University

1. Introduction

Graphical representations are often used in software design and development because

of their expressiveness. Various graphical program description languages have been

reported, including Hierarchical flowchart language (Hichart), Problem Analysis Dia-

grams (PAD), Hierarchical and Compact description charts (HCP), and Structured Pro-

gramming Diagrams (SPD), and many Computer Aided Software Engineering (CASE)

tools have been developed based on these languages1)–3).

On the other hand, the Unified Modeling Language (UML) for modeling in software

development was proposed recently compared with above graphical program descrip-

tion languages, and in 2005 it was standardized as the ISO/IEC 19501 standard. UML

has already been used in the analysis, design and implementation of many systems. It

makes use of various types of diagrams, such as class and sequence diagrams, for design-

ing processes in system development, from upstream process to downstream process.

In order to automate processing of these graphical representations using computers,

a syntax for program diagrams must first be defined. Then, in order to analyze the

syntax of two-dimensional objects such as program diagrams, the relationships between

each of the elements must also be described. Graph grammars are one possible effective

means for implementing these methods. Graph grammars provide a formal method

that enables rigorous definition of mechanisms for generating and analyzing graphs.

Research on graph grammars has been done by Rozenberg4) and others. Research

has also been done on UML5) and graph grammars and graph transformations with

respect to UML6)–8).

However these researches do not deal with syntax formalization for visual representa-

tion. And also graph grammars for package diagram are not proposed yet in previous

researches. Therefore we provide a graph grammar for package diagram of UML to

propose theoretical fundamentals of UML.

With regard to Web documents, XML and SVG have been proposed as standard

document and graphical formats for the Web. Scalable Vector Graphics (SVG)9) is

a W3C Recommendation and a language for describing two-dimensional graphics and

graphical applications in XML. SVG can display graphical objects on any readily avail-

c⃝ 2011 Information Processing Society of Japan1

Vol.2011-MPS-84 No.1
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

able Web browser. With these formats, users can share document including graphical

objects on the Web. We reported on automatic generation of SVG files and incorpo-

rated the generation method into a graphical editor for Hichart by using attribute graph

grammars.

The goal of this research is to generate UML package diagrams based on a graph

grammar. We propose a framework for specifying these diagrams using a graph gram-

mar, and for processing these diagrams automatically.

2. Preliminary

2.1 Graph Grammars

Definition 1. (4)) An edNCE graph grammar is a six-tuple GG = (Σ,∆,Γ,Ω, P, S),

where Σ is the alphabet of node labels, ∆ ⊆ Σ is the alphabet of terminal node labels,

Γ is the alphabet of edge labels, Ω ⊆ Γ is the alphabet of final edge labels, P is the

finite set of productions, and S ∈ Σ −∆ is the initial nonterminal. A production is of

the form X → (D,C) where X is a nonterminal node label, D is a graph over Σ and

Γ, and C ⊆ Σ × Γ × Γ × VD × {in, out} is the connection relation which is a set of

connection instructions. A pair (D,C) is a graph with embedding over Σ and Γ. 2

An example of a production is shown in Figure 1. In the Figure, a box is a nonter-

minal node and a filled circle is a terminal node. X, Y , and b mean node labels and v0,

v1, and v2 mean node IDs. Nodes with same node label can appear in a graph, while

nodes with same node ID will never appeared in a graph. The production of Figure 1

indicates that after the removal of a nonterminal node with label X, embed the graph

consists of terminal node with label b and the nonterminal node with label Y . Each

production has connection instructions. The connection instruction of this production

is (a, α/β, v1, in), however this connection instruction is not described in the notation

of Figure 1.

In Figure 2, the production of Figure 1 and its connection instruction are drawn si-

multaneously. The large box of Figure 2 indicates the left-hand side, and two nodes

with label b and Y are right-hand side of the production of Figure 1.

An example of application of the production is shown in Figure 3. In Figure 3

H = (VH , EH , λH) is a graph with VH = {n1, n2}, EH = {(n1, α, n2)}, λH(n1) = a,

X

v0

Y
b γ

v1
v2

Fig.1 An example of a production

X

Y
bβ γα

a

v0

v1
v2

Fig.2 An example of a production with the

connection relation

and λH(n2) = X. The production copy p′ of p is as follows: p′ : X → (D′, C′) where

X = λH(n2), D′ = (VD′ , ED′ , λD′) such that VD′ = {n3, n4}, ED′ = {(n3, γ, n4)},
λD′(n3) = b, λD′(n4) = Y and C′ = {(a, α/β, n3, in)}.

a a b
Y

α β γ
X

H H'

n1 n2
n1 n3 n4

n2, p'

Fig.3 An example of applying a production rule

In Figure 3, H indicates the host graph and H ′ is the resulting graph. At first, we

remove the node X and edges that connect with node X from host graph H. Next

we embed the daughter graph, including node b and node Y. Then we establish edges

between the nodes of daughter graph and the nodes that were connected to the node

X using the connection instructions on the production p′. Therefore the edge label α is

rewritten to β by the production p′.

Definition 2. (10),11)) An Attribute edNCE Graph Grammar is a six-tuple AGG =

⟨GG,Att, F ⟩, where
1. GG = (Σ,∆,Γ,Ω, P, S) is called an underlying graph grammar of AGG. Each

production p in P is denoted by X → (D,C).

2. Each node symbol Y ∈ Σ of GG has two disjoint finite sets Inh(Y) and Syn(Y)

of inherited and synthesized attributes, respectively. The set of all attributes of symbol

X is defined as Att(X) = Inh(X) ∪ Syn(X). Att =
∪

X∈Σ
Att(X) is called the set of

attributes of AGG. We assume that Inh(S) = ∅. An attribute a of X is denoted by

a(X), and the set of possible values of a is denoted by V (a).

c⃝ 2011 Information Processing Society of Japan2

Vol.2011-MPS-84 No.1
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

3. Associated with each production p = X0 → (D,C) ∈ P is a set Fp of semantic

rules which define all the attributes in Syn(X0)
∪

X∈Lab(D)
Inh(X). A semantic rule

defining an attribute a0(Xi0) has the form a0(Xi0) := f(a1(Xi1), · · ·, am(Xim)). Here

f is a mapping from V (a1(Xi1))×· · ·×V (am(Xim)) into V (a0(Xi0)). In this situation,

we say that a0(Xi0) depends on aj(Xij) for j, 0 ≤ j ≤ m in p. The set F =
∪

p∈P
Fp

is called the set of semantic rules of G. 2

Attribute values are calculated by evaluating attributes according to semantic rules

on the derivation tree.

2.2 UML

Unified Modeling Language (UML) is a notation for modeling object oriented sys-

tem development using diagrams. UML can be divided into structural diagrams and

behavioral diagrams. Structural diagrams are used to describe the structure of what is

being modeled and include class, object, and package diagrams, and so on. Behavioral

diagrams are used to describe the behavior of what is being modeled and include such

as use-case, activity, and state-machine diagrams.

Structure diagrams include class diagrams, which describe the static relationships

between classes, and package diagrams, which group classes and describe relationships

between packages and package nesting relationships.

+

Package1

+

+

Package2 Package3

Class1 Class2 Class3

Fig.4 An example of a package diagram

Figure 4 shows an example of a package diagram. The box with rectangle at the up-

per left indicates a package. The box with three compartments is a class. Each of three

parts indicates its class name, its attribute, and its methods from top to the bottom. A

plus with circle is used to represent which components the package contains. Package

1 contains Package 2 and Package3, and Package 3 contains Class2 and Class 3.

3. Graph Grammar for UML Package Diagrams

In this section we describe our Graph Grammar for Package Diagrams (GGPD), for

UML package diagrams.

3.1 Grammar Overview

Definition 3. 　The Graph Grammar for Package Diagrams (GGPD), for UML pack-

age diagrams, is a six-tuple GGPD = (ΣPD, ∆PD, ΓPD, ΩPD, PPD, SPD). Here, ΣPD

= { S, A, T, L, R, M, rop, sp, lep, rip, mip, lec, mic, ric } is a finite set of node labels,

∆PD = { rop, sp, lep, rip, mip, lec, mic, ric } is a finite set of terminal node labels,

ΓPD = { ∗ }, ΩPD = { ∗ }, PPD = { P1, ..., P17 } is a finite set of production rules,

and SPD = { S }, is the initial non-terminal. 2

The GGPD generates package hierarchy diagrams. It is a context-free grammar and

there are 17 production rules. An example of GGPD production rule is shown in Figure

5.

T

lep

L

0

1

2

Fig.5 An Example of a production rule of GGPD

In the figure, the production rule can be applied to a node labeled L, which is a non-

terminal node, to generate a terminal node with the label lep, representing a package,

and a non-terminal node labeled T .

c⃝ 2011 Information Processing Society of Japan3

Vol.2011-MPS-84 No.1
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

A node with capitalized label indicates a nonterminal node, and a node with un-

capitalized label indicates a terminal node. Our grammar generates directed graphs.

However obtained graphs are drawn without arrows by assumption that the direction

of each edge from top down.

3.2 Example of Derivation

⇒

⇒

G1:

G2:

G3:

G0:
S

1

P1

S

A

A

2

P3

A

T

+

rop

T

+

rop

3

4

P6

T

L R

+

rop

3

5

L R

6

1, P1'

2, P3'

4, P6'

G4:

⇒
P8

rop

L

+

rop

3

7
6

lep
R

G5:

⇒
P12

rip

R

8

+

rop

3

7

lep rip

5, P8'

6, P12'

Fig.6 An example of a GGPD derivation

Figure 6 shows an example of a GGPD derivation. In this example, G0 is a graph

with the node labeled S. The node ID is 1 (lower right of the node).

Then the production rule P1 is applied to a non-terminal node labeled S with node

ID 1, which is the initial non-terminal node. That is, remove a mother node with label

S and node ID 1, then embed a daughter graph in the P1. In this case the daughter

graph is the node with label A. This produces the non-terminal node labeled A with

node ID 2, to which the P3 production rule is applied. That is, graph G1 consists of

node with node ID 2 is obtained.

After application of the production P3, the terminal node labeled rop and a non-

terminal node labeled T are generated. We apply productions to obtain a graph that

correspond to UML package diagrams.

We can obtain a derivation tree from derivation sequence of production. Figure 7

shows the derivation tree corresponding to Figure 6. In the Figure 7, the labels show

the name of production rules.

The sequence of production rules applied can be expressed in terms of a production

rule derivation tree.

P1

P3

P6

P8 P12

Fig.7 A derivation tree corresponding to the

tree in Figure 6

rop

lep rip

ric

+

lecsc

+ +

Fig.8 An example of package diagram resulting

from derivation

Another example of a package diagram resulting from applying the production rules

is shown in Figure 8.

3.3 Generation of SVG document for package diagrams

We introduce attribute SSV G which contains SVG source codes, as its value and rep-

resentation corresponding to the package diagram. We have a plan to generate diagrams

with animation. SVG can display on browser such as IE with SVG plugin.

SVG source codes are generated by evaluating SSV G. Evaluation of attributes is per-

formed in the bottom-up manner on derivation trees. Figure 9 illustrates the flow of

c⃝ 2011 Information Processing Society of Japan4

Vol.2011-MPS-84 No.1
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

generating SVG files.

attribute evaluation

derivation tree

with SVG

derivation tree

attributes

for SVG

output: SVG
file

Fig.9 Flow of generating SVG files

Figure 10 gives examples of semantic rules with the attribute SSV G.

SSVG(1)=<rect x="x(1)" y="y(1)" width="w(1)" height="h(1)"

 fill="white" fill-opacity="1" stroke="black" />...

SSVG(0)=SSVG(1)SSVG(2)

Fig.10 An examples of semantic rules with the attribute SSV G

3.4 Folding / UnFolding

When drawing package diagrams for large-scale systems, the scale of diagrams can

become large, and this can make diagrams difficult to comprehend visually. This makes

it necessary to process diagrams to summarize and hide information. Thus, we perform

information-hiding by expressing diagrams in sentential form.

Figure 11 shows an example of a package diagram and its derivation tree before

folding, and Figure 12 shows the package diagram and derivation tree after folding.

4. UML Package Diagram Editor

In this section, we explain our prototype UML package diagram editor based on

the grammar described in Section 3. The editor is a syntax-directed editor and was

developed in Java.

On the editor, when a non-terminal node displayed on the editor screen is selected ,

P14 P10

rop

lep

sc

rip

lec ric

P1

P3

P6

P9

P7 P13

P6

P14

mip

lec ric

P10

P11

P16

+

+ ++

P6

Fig.11 A package diagram and its derivation

tree before folding

rop

lep

sc

rip

lec ric

+

++

P14 P10

P1

P3

P6

P9

P7 P13

P6

P10

P11

P16

P6

M

Fig.12 A package diagram and its derivation

tree after folding

a screen displaying the production rules that can be applied to the non-terminal node

is displayed. Figure 13, 14, and 15 show a screen shot when the non-terminal node

with node ID of 2 and labeled A in the package diagram editor screen is clicked (Figure

13), and the applicable production rules are displayed (Figure 14). After choosing a

production rule, the production rule is applied to the non-terminal node (Figure 15).

Fig.13 A nonterminal node on

the editor

Fig.14 The production rule dis-

play screen of the pack-

age diagram editor

Fig.15 An example of applying

production rule on the

editor

The applied production rules can also be displayed as a derivation tree, as shown in

Figure 16.

When users execute an editor command, SVG files can be automatically generated by

evaluating SVG attributes. The evaluation is executed by traversing on the derivation

tree. Figure 17 is an example of the display of a package diagram in SVG.

c⃝ 2011 Information Processing Society of Japan5

Vol.2011-MPS-84 No.1
2011/7/18

情報処理学会研究報告
IPSJ SIG Technical Report

Fig.16 The derivation tree display screen of the

package diagram editor

Fig.17 An example of the display of a package

diagram in SVG

5. Conclusion

In this paper, we have defined a graph grammar for generating the hierarchical struc-

ture of UML package diagrams. We have also created a syntax-directed diagram editor

for the defined grammar. A future issue for study is to implement syntactic analysis.

The editor developed here is able to generate diagrams according to the grammar and

complying with the syntax through human intervention, but it is not able to deter-

mine, from an arbitrary input, whether a diagram conforms or not. By implementing

syntactic analysis, automatic processing of arbitrary input diagrams will be possible.

Application of this technology to automatic generation of software documentation is an

another possibility.

References

1) Harada, K.: Structure Editor, Kyoritsu Shuppan (1987). (in Japanese).

2) Yoshihiro Adachi, Youzou Miyadera, Kimio Sugita, Kensei Tsuchida and Takeo

Yaku: A Visual Programming Environment Based on Graph Grammars and Tidy

Graph Drawing, Proceedings of The 20th International Conference on Software En-

gineering (ICSE ’98), Vol.2, pp.74–79 (1998).

3) T. Goto, K. Ruise, T. Yaku and K. Tsuchida: Visual Software Development En-

vironment Based on Graph Grammars, IEICE Transactions on Information and

Systems, Vol.92, No.3, pp.401–412 (2009).

4) Rozenberg, G.: Handbook of Graph Grammar and Computing by Graph Transfor-

mation Volume 1, World Scientific Publishing (1997).

5) Kotulski, L. and Dymek, D.: On the Modeling Timing Behavior of the System

with UML(VR), Computational Science ICCS 2008, Lecture Notes in Computer

Science, Vol.5101, pp.386–395 (2008).

6) Hermann, F., Ehrig, H. and Taentzer, G.: A Typed Attributed Graph Grammar

with Inheritance for the Abstract Syntax of UML Class and Sequence Diagrams,

Electron. Notes Theor. Comput. Sci., Vol.211, pp.261–269 (2008).

7) Kong, Jun and Zhang, Kang and Dong, Jing and Xu, Dianxiang: Specifying behav-

ioral semantics of UML diagrams through graph transformations, J. Syst. Softw.,

Vol.82, pp.292–306 (2009).

8) Petriu, D. and Shen, H.: Applying the UML Performance Profile: Graph Grammar-

Based Derivation of LQN Models from UML Specifications, Computer Performance

Evaluation: Modelling Techniques and Tools, Lecture Notes in Computer Science,

Vol.2324, pp.183–204 (2002).

9) W3C Web Site. Scalable Vector Graphics (SVG): http://www.w3.org/TR/SVG/.

10) T. Nishino: Attribute Graph Grammars with Applications to Hichart Program

Chart Editors, Advances in Software Science and Technology, Vol. 1, pp. 89–104

(1989).

11) T. Arita, K. Sugita, K. Tsuchida, and T. Yaku: Syntactic Tabular Form Process-

ing by Precedence Attribute Graph Grammars, Proc. IASTED Applied Informatics

2001, pp.637–642 (2001).

c⃝ 2011 Information Processing Society of Japan6

Vol.2011-MPS-84 No.1
2011/7/18

