

Verifiable Multi-secret sharing in the applied pi-calculus

Hui Zhao† Mingchu Li† Yizhi Ren‡ Kouichi Sakurai‡

†School of Software, Dalian University of Technology

 Dalian, 116621, P.R.China
‡ Dept. of Informatics, Kyushu University

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract In this paper, we define an abstraction of verifiable multi-secret sharing protocols that is

accessible to a fully mechanized analysis. The abstraction is formalized within the applied pi-calculus

using a novel equational theory that abstractly characterizes the cryptographic semantics of secret

share. We present an encoding from the equational theory into a convergent rewriting system that is

suitable for the automated protocol verifier ProVerif.

1 Introduction

Pi-calculus are now widely considered a

particularly salient approach for formally

analyzing security protocols, dating back to

Abadi’s seminal work on secrecy by typing [1].

One of the central challenges in the analysis of

complex and industrial-size protocols is the

expressiveness of the formalism used in the

formal analysis and its capability to model

complex cryptographic operations. While such

protocols traditionally relied only on the basic

cryptographic operations such as encryption

and digital signatures, modern cryptography

has invented more sophisticated primitives with

unique security features that go far beyond the

traditional understanding of cryptography to

solely offer secrecy and authenticity of a

communication. Secret share constitute a

prominent such primitive.

In 1994, Dawson et al. [4] propose

multi-secret sharing (MSS) schemes. In such

schemes, several secrets can be shared during

one secret sharing process. In 2004, Yang et al.

(YCH) [5] propose a new MSS, which is based

on two-variable one-way function and allows to

reconstruct several secrets parallelly. In 2005,

Shao and Cao (SC) [6] propose an efficient

verifiable multi-secret sharing based on YCH

and feldman’ schemes. In 2006, Zhao et al.

(ZZZ) [7] propose a practical verifiable

multi-secret sharing based on YCH and

Hwang-Chang (HC) schemes [5].

Due to the complexity of verifiable

multi-secret sharing scheme, it is very difficult

to devise the abstraction of secret-sharing proof

which can hold all the security features above.

Our main contributions are as follows: First,

we present an abstraction of verifiable

multi-secret sharing schemes within the applied

pi-calculus [2] using a novel equational theory

that abstractly characterizes the cryptographic

semantics of secret-sharing proofs. On the basis

of that, we transform our abstraction into an

equivalent formalization that is accessible to

ProVerif [3], a well-established tool for the

mechanized analysis of different security

properties.

2 Review of the Pi-calculus

The syntax of the applied pi-calculus [3] is

given as follow. Terms are defined by means of

a signature ,Σ which consists of a set of

function symbols, each with an arity. The set of

terms TΣ is the free algebra built from names,

variables, and function symbols in applied to Σ

arguments. We let u range over names and

variables. Terms are equipped with an

equational theory E, i.e., an equivalence

relation on terms that is closed under

substitution of terms and under application of

term contexts (terms with a hole). We write

E M = N and E M≠ N for an equality and

an inequality, respectively, modulo E.

The grammar of processes (or plain processes)

is defined as follows. The null process 0 does

nothing; nν .P generates a fresh name n and

then behaves as P; if M = N then P else Q

behaves as P if E M = N, and as Q

otherwise; u(x).P receives a message N from the

channel u and then behaves as P{N/x}; (N).P

outputs the message N on the channel u and

then behaves as P; P|Q executes P and Q in

parallel; !P generates an unbounded number of

copies of P.

Extended processes are plain processes

extended with active substitutions. An active

substitution {M/x} is a floating substitution

that may apply to any processes that it comes in

contact with. To control the scope of the active

substitutions, we can restrict the variable x.
intuitively, constrains the scope

of {M/x} to process P. If the variable x is not

restricted, as it is the glasses case in the
process , then the substitution is

exported by the process and the environment

has immediate access to M. As usual, the scope

of names and variables is delimited by
restrictions and by inputs. We write

.(| { / })vx P M x

(| { / })P M x

()fv A and

()fn A to denote the free variables and names in

an extended process A and we write

and to denote the bound variables and

names in an extended process A, respectively.
We let

()bv A
()bn A

() :free A = () ()fv A fn A∪ and () :bound A =

. For sequence and ()bv A ∪ ()bn A

 , we let enote |

, ...,1
 d …

W

 |

 . e always assume that substitutions

are cycle-free, that extended processes conation

at most one substitution for each variable and

that extended processes contain exactly one

substitution for each restricted variable.

A context is a process or an extended process

with a hole. An evaluation context is a context

without private function symbols whose hole is

not under a replication, a conditional, an input,

or an output. A context C[_] closes A if C[A] is

closed. A frame is an extended process built up

from 0 and active substitutions by parallel
composition and restriction. We let φ andψ

range over frames. The domain ()dom φ of a

frameφ is the set of variables thatφ exports, i.e.,

those variables x for which φ contains a

substitution {M/x} not under a restriction on x.

Every extended process A can be mapped to a
frame ()Aφ by replacing every plain process

embedded in A with 0.

Definition 1 (Structural Equivalence)

Structural equivalence (≡) is the smallest relation
on extended processes that satisfies the rules in Table 2
and that is closed underα -renaming, i.e., renaming

of bound names and variables, and under
application of evaluation contexts.

Definition 2 (Internal Reduction) Internal
reduction (→) is the smallest relation on extended
processes that satisfies the rules in Table 3 and that is
closed under structural equivalence and under
application of evaluation contexts.

We write to denote that A can send a

message on

α , i.e., e

evaluation context C[_] that does not bind .

*A→ for som

a

u

kM M

1 , ...

M =

kx xx =
1 1}{ /M x

{ / }k k

{ /M x}

M x

A α⇓
[.]C a M p< >

Definition 3 (Observational Equivalence)

Observational equivalence (≈) is the largest
symmetric relation R between closed extended
processes with the same domain such that ARB implies:

1) if A α⇓ , then B α⇓ ;

2) if *A→ A’, then *B→ B’ and A’R B’ for some B’;
3) [] []C A RC B for all closing evaluation contexts C[_].

3 An Equational Theory of
Secret-sharing

Our equational theory is explained in the

following. Secret-sharing process with thresho-

ld (l, t) is represent as a term ssp(τ , l, t), name

τ is used to identify specified secret-sharing

process, we abuse notation by writing which

represents ssp(τ , l, t); The secret key for secret

share is represent as a term of ,

where , called dealer parameters, denote

sequence M1…Mi of terms; while m, called the

proof’s identity Id, can be used to identify

different secret key in same secret-sharing

process and . The secret share is represe-

nt as a term of form ,

m l≤

where N , called player parameters, denote

sequence N1…Nj of terms; denote sequence
F1…Fk of (i, j)-formulas which constitute a for-

mula over i dealer parameters and j player para-

meters, see below; Hence, is a function

of arity j+k+1 and is a function of arity

i+k+2.

F

The formula F constitutes a constant without

names and variables, which is built upon distin-

guished nullary functions and with i∈Ν.

Definition 4 ((

i, j)-formulas) We call a term an (i,
j)-formula if the term contains neither names nor
variables, and if for every and occurring
therein, we have and . m∈ [1,]i [1,]n j∈

The values and in F constitute placeholders

for the terms Mi and Nj. For instance,

F = ;

denotes a secret share of the term

(sign (),h m SK) which is a signature of m

with in a Secret-sharing scheme with

threshold (3, 2). More precisely, the statement

reads:“The dealer use o

start a Secret-sharing process with threshold (3,

2) according to dealer parameter SK. Then

players use to create

secret share according to player parameter h(m).

Finally, sign(h(m), SK) can be computed from 2

secret shares of the Secret-sharing process”.

Since each player does not own SK, sign(h(m),

SK) is kept the secret to him.

SK

 t

The verification key share for a secret share is

representing as a term of form

and we have m l≤ . Verification of a secret share

with respect to a secret share verification key is

modelled as a function of arity 3 that is

defined by the following equational rule:

SVer

= true .

Combination of secret shares with respect to

(i, j)-formulas is modelled as function

of arity r+k that is defined by the following

equational rules:

,…,

= true iff
1) for1 ,m n r ≤ ≤ and m n≠ ;

2) r≥ t.

,…, = { /α }{ }

iff

1) (,…,)= true;

2) p≤ k.

This rules guarantee in the abstract model

the soundness and correctness of Secret-

sharing protocols with threshold (l, t) that

knowledge of any t-1 or fewer secret shares

leaves secret completely undetermined and
knowledge of any k or more secret shares make
secret easily computable. We shall often omit

arities and write this statement as .

,l tτ

,, , , ,(,)l ti j k M FSSK m τ

M

,, , , ,
, ,)(, (,),

l ti j k i j k
N M F FSS SSK m τ

, ,i j kS S

, ,i j k
SSK

iα iβ

mα nβ

iα jβ

1,1,1 1,1,1 3,2((), (,1, ,),);SS h m SSK SK F Fτ 1 1(,)α

1,1,1 3,2 ,)1, FSK τ

,, ,
, ,(,)

l ti j k

sign

(,SSK

β

M FK m τ

),

SV

, ,, , , , , , , ,, , , ,((,), (, (,),
l t l ti j k i j k i j k i j kM F N M m FSVer SVK m SS SSKτ τ F

)F

, , ,i j k r
SCombin

, , , , 1 ,, , , ,, , ,((()i j k i j k l ti j k rSCVer SS N SSK M i F Fτ ,) , , , ,,((i j k i j kNSS SSK

,, , ,,),)))l trM i FF Fτ

m ni i≠

pF1, , ,((p i j k rSecret SCombin ss ,))rss F /N βM

, , ,i j k r
SCVer ,ss Fr1ss

()om bin M

1,1,1 1,1,1 3,2), ,1, ,),)h m SSK SK F Fτ

SC

(((SS

4 Towards a Mechanized Analysis

of Secret-sharing Knowledge

The equational theory ESS defined in the

previous section is not suitable for existing tools

for mechanized security protocol analysis. The

reason is that the number of possible formulas,

and thus the number of equational rules in ESS,

is infinite. In this section, we specify an

equivalent equational theory in terms of a

convergent rewriting system. This theory turns

out to be suitable for Proverif [3].

4.1 A Finite Specification of
Secret-sharing

The central idea of our equivalent finite

theory is to focus on the secret shares used

within the process specification and to abstract

away from the additional ones that are possibly

generated by the environment. This makes

finite the specification of the equational theory.

Pinning down this conceptually elegant and

appealing idea requires to formally

characterizing the secret share generated and

combined in the process specification. First, we

track the secret share generated or combined in

the process specification by a set TR of triples

of the form (i, j, k,), where is sequence
of k (i, j)-formulas of Secret-sharing scheme.

Second, we record the arity h, g, p, q of the

largest used in the process specification. For

terms M and processes P, we let terms(M)

denote the set of subterms of M and terms(P)

denote the set of terms in P. We can now

formally define the notion of (TR, h, g, p,

q)-validity of terms and processes.

F F

Definition 5 (Term Validity) A term Z is (TR, h,

g, p, q)-valid if and only if the following conditions
hold:
1) For every , ,

, (M, N, F),

and (,M F) terms(Z), we have ∈
, , , (,)i j k r M

a). (i, j, k, F)∈TR ,

b). for every (i, j, k, 'F) ∈TR such that

'F = F , we have ='F F .
2) for every l∈Ν , and occur in Z only inside of

(i, j)-formula of Z.

3) for every (i, j, k, F)∈TR, we have ,
 [0,]g and k ∈ .

4) for every , … ,

∈ terms(Z), we have
a). r q≤ ,

b). for1 ,m n r≤ ≤ and m n≠ .

5) for every ,

,

∈ terms(Z), we have

a).

b). for1 ,m n r ≤ ≤ and m n≠ ;

6) For every (M) ∈ terms(Z), we have .

We check that each secret share generation,

verification and combination is tracked in TR

(condition 1). We also check that for all

Secret-sharing proofs used in the process

specification, the arity of dealer parameters,

player parameters and (i, j)-formulas is less or

equal than h, g and p, respectively (condition 3).

Finally, we check that the arity of and

used in the process specification is

less or equal that q and only different secret

shares in same secret-sharing process can be

combined (condition 4, 5).

We now encode the Secret-sharing proof ge-

nerated by the environment. These proofs are

possibly different from the ones specified in the

process. We include in the signature the

function symbols , , , ,

 , . We then replace every term

, , ,

M,N, F), (M , F) , (M ,) with F

(,M ,M N), (, ,M M N), ,

(M, N), (

M) and (M)

respectively. Since F are uniquely determined by

 , , , , and , , ,
,(, ,)

i j k
M FSSK M N , ,

(, , ,)
i j k

MSVK M N F

, ,i j k
SVer SCVer, ,

)(, ,
i j k

M FSS M F

, , ,i j k r
SCombin

Ess→

lα lβ

[0,]i h∈ j∈
[0,]p

, , , , , , , 1 ,, ,((, (,),)tSCVer S K F Fi j k r i j k i j k lNSS S M i τ

,, , , ,(, (,),),)r l ti j k kN MSS SSK i F F Fτ, ,i j

m ni i≠

((, (NSCombin S S K , , 1 , ,,),),...,i j k i j k l ti j k r S S M i F Fτ

, ,, , , , , ,(, (,),),)r l ti j k i j kN MSS SSK i F F Fτ
, ,, , ,

r q≤

m ni i≠

lSecret l q≤

, , ,
F

i j k rer

, , , ,TR h g p q
SSE

, ,
F
i j k

SSK
, ,
F
i j k

KSV
, ,
F
i j k

SS
, ,
F

i j k
rSVe

, , ,i j k r
FSCVer

, , ,
F
i j k r

bin

, , , , ,()i j k

SCom

M FSSK M N , , , , ,()i j k M FSVK M N , , , ,()i j k M FSS M
, ,i j kSVer

, , ,i j k r
ombin

(

, , ,i j k r
SCVer SC

, ,
F
i j k

SSK
, ,
F
i j k

K
, ,i j k

M MSV)(,FSS

, ,
F

i j kSVer
, , ,
F

i j k rSCVer , , ,
F
i j k rombinSC

, ,
F
i j kSSK

, ,
F
i j kSVK

SCV

, , ,
F
i j k rSCombin

, ,i j k
FSS

, , ,
F
i j k rSCombin

, , ,
F

i j k rSCVer, ,
F

i j krSVe

it can be omitted from the protocol specification.

For finitely modeling the combination of

secret-sharing, we include in the function

 .

Combination of r different secret shares is

modeled by the following equational rules:

(M) = (M , (M)));

,…,

)) = (t = r) ∨
, … ,

));

) = (t = 1);

(, … ,

, true)) = pF { M /α }{ /N β };

The functions are private, hence they

cannot be used by the adversary.

4.2 Compilation into Finite Form

We now define the static compilation of

term and processes. We first review these

notions.

Definition 6 (Term Equality in Frame) Two term
M and N are equal in a frameφ , written (M = N)φ , if

and only ifφ , M Nσ σ≡ , and (()fn M ∪

for some name and substitutionn σ .
The next definition introduces a normal

form of terms. Intuitively, a term is in (TR, h, g,

p, q)-normal form if the subterms generated by

the environment cannot be further simplified.

Definition 7 (Normal Form) A term M is in (TR,
h, g, p, q)-normal form with respect to a frameφ if

and only if the following conditions hold:
1) For every and ∈

terms(M), we have that xφ =m,

 and , , (i, j, k,m∈Ν m l≤ F)∈TR;

2) For every ∈ terms(M), we have that

 , (i, j, k, F)∈TR;
3) For every ∈ terms(M), we have

that ,

 , (i, j, k, F)∈TR;
4) For every ∈ terms(M), we have

that ,

1; 2...; rm = , (i, j, k, F)∈TR and en ≠ fn

iff , e≠ f .

,
, ,)

l t
Fmτ

5) For every ∈ terms(M), we

have that

1; 2...; r

 ,

m = , (i, j, k, F)∈TR and en ≠ fn

iff 1 ,e f r≤ ≤ , e≠ f .

6) For every (x) ∈ terms(Z), we have that

, l k≤ .

For any term there exists an equivalent term

in normal form.

We now characterize the notion of validity

of extended processes. Intuitively, an extended

process is (TR, h, g, p, q)-valid process if it can

be separated into an (TR, h, g, p, q)-valid

process and a frame where free variables,

referring to output messages, are associated to

(TR, h, g, p, q)-valid terms, and bound variables,

referring to input messages, are associated to

erms in (TR, h, g, p, q)-normal form that only

contain free names and free variables.

t

fr
Definition 8 (Extended Process Validity) A

ameφ is (TR, h, g, p, q)-valid if and only if there

exist , ,{ Z / x }, with such that the
following conditions hold:

 ,

1) φ = ;

2) for every ()kx fv φ∈ , we have that kZ is (TR, h, g,

p, q)-valid;
3) for every ()kx bv φ∈ , we have that kZ is in (TR, h,

g, p, q)-normal form with respect to φ and

()kfree Z ∩ ()bound φ =∅ .

An extended process A is (TR, h, g, p, q)-valid if and

only if there exist , , { Z / x }, with ch
that the following conditions hold:

 , su

1) A = . .({ / } |v n v y Z x P)

2) . .{ / }vn v y Z x is (TR, h, g, p, q)-valid.

3) P is(TR, h, g, p, q)-valid.

We now introduce the static compilation of

, , , ,TRh g p q
SSE

, , ,
F
i j k rPCombin

{ }n ∩.vnσ≡

())fn N = ∅

, ,
,(, ,)

i j k
Z FSSK x y , ,

,(, ,)
i j k

Z FSVK x y
Ess → Ess →

,l t
τyφ =

, ,
,(,)

i j k
Z FSS x

,, ,
,(, ,)

l ti j k
M FSSK mτEss →xφ =

, ,
(, ,)

i j k
FSVer x y

, , ,)(,i j k N FE x SS Mss φ→ =

, , , 1 ,,...,()i j k r r FSCVer z z

,, , , , ,, , ,(()
l ti j k i j k m ,)z N M FmE SS SSK nss φ τ→ = F

1 ,e f r≤ ≤

, , ,
F
i j k rSCombin

, , ,
F
i j k rPCombin

, , ,
F

i j k rSCVer
, , , 1 ,,...,()i j k r r FSCombin z z

, , ,(i j k ME y SVKss φ→ =

,, , , ,))
l ti j k m ,, , , ,((i j kz N M F Fm SS SSK nss φ τE → =

lSecret

, , , 1 ,,...,()i j k r r FE x SCombin M Mss φ→ =

n y ⊆y x

. .{ / }v n v y Z x

n y ⊆

))

y x

, , , , , , , 1 ,,((, (,F F F
i j k r i j k i j k l tNSC Ver SS SSK M i τ

, , (,F
i j k NS S

, , ,, ,()F
i j k l tM rSSK i τ

1, , , 1 , , , , ,,((, (,F F F
i j k r i j k i j k l tN MSC V er SS SSK i τ

− , , (,F
i j k NS S))

1, , ,, ,()r
F
i j k l tMSSK i τ

−

,, , ,1 , , , , ,, ,(((l t
F F

i j k i j k
F
i j kN MS C V er S S S S K i τ))

, , ,
F
i j k rPCombin

, , (F
i j kSS, , , , ,,1, ,(((F F

i j k i j k l tN MSS SSK i τpSecret))

), , ,
F

N SSKi j ,
,(,)

l t
M ri τk

, , ,
F
i j k rPCombin

terms at run-time.

Definition 9 (Static Compilation) the (TR, h, g, p,

q)-static compilation is the partial function σ: →

recursively defined as follows:
σ =

σ =

σ =

σ =

σ =

σ =

 =

xσ = x

nσ = n
In the following, for every (TR, h, g, p,

q)-valid process A= , we can

write Aσ to denote .

The next definition introduces the notion of

similarity for frames.

Definition 10 (Frame Similarity) two
frameφ andψ are similar, writtenφ ∼ ψ , if and only if

the following conditions hold:
1) There exist TR, h, g, p and q such thatφ andψ be

two (TR, h, g, p, q)-valid frames;
2) φ = and ψ = ;

3) For every ()ix bv φ∈ , we have i iM N= .

The following theorem finally states that

observational equivalence is preserved under

static compilation and hence asserts the

soundness of the encoding from the infinite

specification into the finite specification.

Theorem 1 (Preservation of Observational

Equivalence) Let A and B be extended process such that

A= , for some

(TR, h, g, p, q)-valid processes P and and

, B =

'P

∼ ' . .{ '/ }vn v y M x . Letσ be the (TR, h, g, p, q)-static

compilation. If Aσ Bσ , then A B.

5 Conclusion

We have designed an abstraction of

Secret-sharing protocols in the applied

pi-calculus. A novel equational theory for terms

characterizes the semantic properties of secret

share. Additionally, we propose an encoding

a finite specification in terms of a

convergent rewriting system that is accessible to

fully mechanized analysis. The encoding is

und and fully automated.

into
SS

T
∑

, , ,TR h g q
SS

T
∑

a

so

[1

pr

veri

)

参考文献

] M.Abadi. Secrecy by typing in security

otocols. Journal of the ACM,

46(5):749–786, 1999.

[2] M. Abadi, B. Blanchet, and C. Fournet.

Just fast keying in the pi calculus. ACM

Transactions on Information and System

Security, 10(3):9, 2007.

[3] B. Blanchet. An efficient cryptographic

protocol verifier based on Prolog rules. In

Proc. 14th IEEE Computer Security

Foundations Workshop (CSFW), pages 82–96.

IEEE Computer Society Press, 2001.

[4] A. J. He, E. Dawson. Multistage secret

sharing based on one-way function,

Electronics Letters, 30(19):1591–1592,

1994.

[5] C. C. Yang, T. Y. Chang, M. S. Hwang. A

(t,n) multi-secret sharing scheme, Applied

Mathematics and Computation, 151: 483–490,

2004.

[6] J. Shao, Z. F. Cao. A new efficient (t,n)

verifiable multi-secret sharing (VMSS)

based on YCH scheme. Applied Mathematics

and Computation, 168(1): 135–140, 2005.

[7] J. Zhao, J. Zhang, R. Zhao, A practical

fiable multi-secret sharing scheme,

Computer Standards and Interfaces 29 (1):

138–141, 2007.

, , , ,()F
i j k MSSK M Nσ σ σ, , ,(, ,i j k M FSSK M N

, ,
,(, ,

i j k
)M FSVK M N , ,

,(,)F MK M N
i j k

SV σ σ σ (, , ,)Fi j k TR∀ ∈

(, , ,)Fi j k TR∀ ∈

(, , ,)Fi j k TR∀ ∈, ,
)(, ,

i j k
M FSS M)F

i j k
M M

, ,
(,SS σ σ

, ,
(, ,)

i j k
M N FSVer , ,

(,F
i j k

M NrSVe σ)σ (, , ,)Fi j k TR∀ ∈

(, , ,)Fi j k TR∀ ∈, , ,
,()

i j k r
FSCVer M

, , ,i j k r
()FVer MσSC

, , ,
()F

i j k r
M (, , ,)Fi j k TR∀ ∈, , ,

,()
i j k r

FSCombin M σSCombin

(, ...)1f M M i σ (, ...1f M M i)σ σ

. . ({ / } |)v n v y M x P

. . ({ / } |)v n v y M x P σ

. .{ / }v n v y M x . .{ / }v y N xv m

. .({ / } |)v y M x Pv n ' . .({ ' } ')v y M x/ |v n P

. . { / }v y M xv n

SSE
≈, , , ,TR h g p q

SSE
≈

	1 Introduction
	2 Review of the Pi-calculus
	3 An Equational Theory of Secret-sharing
	4 Towards a Mechanized Analysis of Secret-sharing Knowledge
	4.1 A Finite Specification of Secret-sharing
	4.2 Compilation into Finite Form

	5 Conclusion

