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Abstract In this paper, we define an abstraction of verifiable multi-secret sharing protocols that is 

accessible to a fully mechanized analysis. The abstraction is formalized within the applied pi-calculus 

using a novel equational theory that abstractly characterizes the cryptographic semantics of secret 

share. We present an encoding from the equational theory into a convergent rewriting system that is 

suitable for the automated protocol verifier ProVerif. 

1 Introduction 

Pi-calculus are now widely considered a 

particularly salient approach for formally 

analyzing security protocols, dating back to 

Abadi’s seminal work on secrecy by typing [1]. 

One of the central challenges in the analysis of 

complex and industrial-size protocols is the 

expressiveness of the formalism used in the 

formal analysis and its capability to model 

complex cryptographic operations. While such 

protocols traditionally relied only on the basic 

cryptographic operations such as encryption 

and digital signatures, modern cryptography 

has invented more sophisticated primitives with 

unique security features that go far beyond the 

traditional understanding of cryptography to 

solely offer secrecy and authenticity of a 

communication. Secret share constitute a 

prominent such primitive.  

In 1994, Dawson et al. [4] propose 

multi-secret sharing (MSS) schemes. In such 

schemes, several secrets can be shared during 

one secret sharing process. In 2004, Yang et al. 

(YCH) [5] propose a new MSS, which is based 

on two-variable one-way function and allows to 

reconstruct several secrets parallelly. In 2005, 

Shao and Cao (SC) [6] propose an efficient 

verifiable multi-secret sharing based on YCH 

and feldman’ schemes. In 2006, Zhao et al. 

(ZZZ) [7] propose a practical verifiable 

multi-secret sharing based on YCH and 

Hwang-Chang (HC) schemes [5].  

Due to the complexity of verifiable 

multi-secret sharing scheme, it is very difficult 

to devise the abstraction of secret-sharing proof 

which can hold all the security features above.  

Our main contributions are as follows: First, 

we present an abstraction of verifiable 

multi-secret sharing schemes within the applied 

pi-calculus [2] using a novel equational theory 

that abstractly characterizes the cryptographic 

semantics of secret-sharing proofs. On the basis 

of that, we transform our abstraction into an 

equivalent formalization that is accessible to 

ProVerif  [3], a well-established tool for the 

mechanized analysis of different security 

properties.  



  

2 Review of the Pi-calculus 

The syntax of the applied pi-calculus [3] is 

given as follow. Terms are defined by means of 

a signature ,Σ  which consists of a set of 

function symbols, each with an arity. The set of 

terms TΣ is the free algebra built from names, 

variables, and function symbols in  applied to Σ

arguments. We let u range over names and 

variables. Terms are equipped with an 

equational theory E, i.e., an equivalence 

relation on terms that is closed under 

substitution of terms and under application of 

term contexts (terms with a hole). We write 

E M = N and E M≠ N for an equality and 

an inequality, respectively, modulo E. 

The grammar of processes (or plain processes) 

is defined as follows. The null process 0 does 

nothing; nν .P generates a fresh name n and 

then behaves as P; if  M = N then P else Q 

behaves as P if  E M = N, and as Q 

otherwise; u(x).P receives a message N from the 

channel u and then behaves as P{N/x};  (N).P 

outputs the message N on the channel u and 

then behaves as P; P|Q executes P and Q in 

parallel; !P generates an unbounded number of 

copies of P. 

Extended processes are plain processes 

extended with active substitutions. An active 

substitution {M/x} is a floating substitution 

that may apply to any processes that it comes in 

contact with. To control the scope of the active 

substitutions, we can restrict the variable x. 
intuitively, constrains the scope 

of {M/x} to process P. If  the variable x is not 

restricted, as it is the glasses case in the 
process , then the substitution is 

exported by the process and the environment 

has immediate access to M. As usual, the scope 

of names and variables is delimited by 
restrictions and by inputs. We write 

.( | { / })vx P M x

( | { / })P M x

( )fv A  and 

( )fn A to denote the free variables and names in 

an extended process A and we write  

and to denote the bound variables and 

names in an extended process A, respectively. 
We let

( )bv A
( )bn A

( ) :free A = ( ) ( )fv A fn A∪ and ( ) :bound A =  

. For sequence        and ( )bv A ∪ ( )bn A     

    , we let enote   | 

, ...,1
        d  …

W

      |

      . e always assume that substitutions 

are cycle-free, that extended processes conation 

at most one substitution for each variable and 

that extended processes contain exactly one 

substitution for each restricted variable. 

A context is a process or an extended process 

with a hole. An evaluation context is a context 

without private function symbols whose hole is 

not under a replication, a conditional, an input, 

or an output. A context C[_] closes A if  C[A] is 

closed. A frame is an extended process built up 

from 0 and active substitutions by parallel 
composition and restriction. We let φ andψ  

range over frames. The domain ( )dom φ of a 

frameφ is the set of variables thatφ exports, i.e., 

those variables x for which φ contains a 

substitution {M/x} not under a restriction on x. 

Every extended process A can be mapped to a 
frame ( )Aφ by replacing every plain process 

embedded in A with 0.             

 

Definition 1 (Structural Equivalence) 

Structural equivalence (≡) is the smallest relation 
on extended processes that satisfies the rules in Table 2 
and that is closed underα -renaming, i.e., renaming 

of  bound names and variables, and under 
application of  evaluation contexts. 

Definition 2 (Internal Reduction) Internal 
reduction (→ ) is the smallest relation on extended 
processes that satisfies the rules in Table 3 and that is 
closed under structural equivalence and under 
application of  evaluation contexts. 

We write    to denote that A can send a 

message on

 

α , i.e., e 

evaluation context C[_] that does not bind .     

*A→           for som

a

u

kM M

1 , ...

M =

kx xx =
1 1}{ /M x

{ / }k k

{ /M x}

M x

A α⇓
[ . ]C a M p< >

 



  

Definition 3 (Observational Equivalence) 

Observational equivalence ( ≈ ) is the largest 
symmetric relation R between closed extended 
processes with the same domain such that ARB implies: 

1) if A α⇓ , then B α⇓ ; 

2) if *A→ A’, then *B→ B’ and A’R B’ for some B’; 
3) [ ] [ ]C A RC B for all closing evaluation contexts C[_].   

3 An Equational Theory of 
Secret-sharing 

Our equational theory is explained in the 

following. Secret-sharing process with thresho- 

ld (l, t) is represent as a term ssp(τ , l, t), name 

τ is used to identify specified secret-sharing 

process, we abuse notation by writing   which 

represents ssp(τ , l, t); The secret key for secret 

share is represent as a term of              , 

where  , called dealer parameters, denote 

sequence M1…Mi of  terms; while m, called the 

proof’s identity Id, can be used to identify 

different secret key in same secret-sharing 

process and . The secret share is represe- 

nt as a term of form                      , 

m l≤

where N , called player parameters, denote 

sequence N1…Nj of terms; denote sequence 
F1…Fk of (i, j)-formulas which constitute a for- 

mula over i dealer parameters and j player para- 

meters, see below; Hence,      is a function 

of arity j+k+1 and       is a function of arity 

i+k+2. 

F

The formula F constitutes a constant without 

names and variables, which is built upon distin- 

guished nullary functions   and   with i∈Ν.   

Definition 4 ((

 

i, j)-formulas) We call a term an (i, 
j)-formula if the term contains neither names nor 
variables, and if for every   and   occurring 
therein, we have  and  . m∈ [1, ]i [1, ]n j∈

The values  and  in F constitute placeholders 

for the terms Mi and Nj. For instance,  

F =         ;

denotes a secret share of the term 

(sign ( ),h m SK ) which is a signature of m 

with in a Secret-sharing scheme with 

threshold (3, 2). More precisely, the statement 

reads:“The dealer use   o 

start a Secret-sharing process with threshold (3, 

2) according to dealer parameter SK. Then 

players use            to create 

secret share according to player parameter h(m). 

Finally, sign(h(m), SK) can be computed from 2 

secret shares of the Secret-sharing process”. 

Since each player does not own SK, sign(h(m), 

SK) is kept the secret to him.  

SK

             t

           

The verification key share for a secret share is 

representing as a term of form  

and we have m l≤ . Verification of a secret share 

with respect to a secret share verification key is 

modelled as a function of arity 3 that is 

defined by the following equational rule: 

SVer

 
= true . 

Combination of secret shares with respect to 

(i, j)-formulas is modelled as function 

of arity r+k that is defined by the following 

equational rules: 

,…,            

= true  iff 
1)       for1 ,m n r ≤ ≤ and m n≠ ; 

2) r≥ t. 

,…,     =   {   /α }{   }  

iff  

 

1)        (   ,…,      )= true; 

2) p≤ k. 

This rules guarantee in the abstract model 

the soundness and correctness of Secret- 

sharing protocols with threshold (l, t) that 

knowledge of any t-1 or fewer secret shares 

leaves secret completely undetermined and 
knowledge of any k or more secret shares make 
secret easily computable. We shall often omit 

arities and write this statement as           . 

,l tτ

,, , , ,( , )l ti j k M FSSK m τ

M

,, , , ,
, , )( , ( , ),

l ti j k i j k
N M F FSS SSK m τ

, ,i j kS S

, ,i j k
SSK

iα iβ

mα nβ

iα jβ

1,1,1 1,1,1 3,2( ( ), ( ,1, , ), );SS h m SSK SK F Fτ 1 1( , )α

1,1,1 3,2 , )1, FSK τ

,, ,
, ,( , )

l ti j k

sign

( ,SSK

β

M FK m τ

),

SV

, ,, , , , , , , ,, , , ,( ( , ), ( , ( , ),
l t l ti j k i j k i j k i j kM F N M m FSVer SVK m SS SSKτ τ F

)F

, , ,i j k r
SCombin

, , , , 1 ,, , , ,, , ,( ( ( )i j k i j k l ti j k rSCVer SS N SSK M i F Fτ , ) , , , ,,( (i j k i j kNSS SSK

,, , ,, ), ) ))l trM i FF Fτ

m ni i≠

pF1, , ,( (p i j k rSecret SCombin ss , ))rss F /N βM

, , ,i j k r
SCVer ,ss Fr1ss

( )om bin M

1,1,1 1,1,1 3,2), ,1, , ), )h m SSK SK F Fτ

SC

( ( (SS

 



  

4 Towards a Mechanized Analysis 

of Secret-sharing Knowledge 

The equational theory ESS defined in the 

previous section is not suitable for existing tools 

for mechanized security protocol analysis. The 

reason is that the number of possible formulas, 

and thus the number of equational rules in ESS, 

is infinite. In this section, we specify an 

equivalent equational theory in terms of a 

convergent rewriting system. This theory turns 

out to be suitable for Proverif [3]. 

4.1 A Finite Specification of 
Secret-sharing 

The central idea of our equivalent finite 

theory is to focus on the secret shares used 

within the process specification and to abstract 

away from the additional ones that are possibly 

generated by the environment. This makes 

finite the specification of the equational theory. 

Pinning down this conceptually elegant and 

appealing idea requires to formally 

characterizing the secret share generated and 

combined in the process specification. First, we 

track the secret share generated or combined in 

the process specification by a set TR of  triples 

of the form (i, j, k, ), where  is sequence 
of k (i, j)-formulas of Secret-sharing scheme. 

Second, we record the arity h, g, p, q of  the 

largest used in the process specification. For 

terms M and processes P, we let terms(M) 

denote the set of subterms of M and terms(P) 

denote the set of terms in P. We can now 

formally define the notion of (TR, h, g, p, 

q)-validity of terms and processes. 

F F

Definition 5 (Term Validity) A term Z is (TR, h, 

g, p, q)-valid if  and only if  the following conditions 
hold: 
1) For every                ,              , 

,      (M, N, F ), 

and         ( ,M F ) terms(Z), we have ∈
, , , ( , )i j k r M

a). ( i, j, k, F )∈TR , 

b). for every  ( i, j, k, 'F ) ∈TR such that        

'F = F , we have ='F F . 
2) for every l∈Ν ,   and   occur in Z only inside of 

(i, j)-formula of  Z. 

3) for every (i, j, k, F )∈TR, we have        ,  
    [0, ]g  and k ∈      . 

4) for every                           , … ,                

∈ terms(Z), we have  
a). r q≤ , 

b).        for1 ,m n r≤ ≤ and m n≠ . 

5) for every                               , 

,

∈ terms(Z), we have  

a).      

b).       for1 ,m n r ≤ ≤ and m n≠ ; 

6) For every      (M) ∈ terms(Z), we have    . 

We check that each secret share generation, 

verification and combination is tracked in TR 

(condition 1). We also check that for all 

Secret-sharing proofs used in the process 

specification, the arity of dealer parameters, 

player parameters and (i, j)-formulas is less or 

equal than h, g and p, respectively (condition 3). 

Finally, we check that the arity of   and      

used in the process specification is 

less or equal that q and only different secret 

shares in same secret-sharing process can be 

combined (condition 4, 5). 

We now encode the Secret-sharing proof ge- 

nerated by the environment. These proofs are 

possibly different from the ones specified in the 

process. We include in the signature       the 

function symbols   ,    ,     ,  ,          

       ,     . We then replace every term        

,             ,          ,            

M,N, F ),       ( M , F ) ,        ( M , ) with F

( ,M ,M N ),   ( , ,M M N ),    ,       

(M, N),         (

   

M ) and    (      M )  

respectively. Since F are uniquely determined by 

     ,     ,    ,   ,      and         ,     , ,
,( , , )

i j k
M FSSK M N , ,

( , , , )
i j k

MSVK M N F

, ,i j k
SVer SCVer, ,

)( , ,
i j k

M FSS M F

, , ,i j k r
SCombin

Ess→

lα lβ

[0, ]i h∈ j∈
[0, ]p

, , , , , , , 1 ,, ,( ( , ( , ), )tSCVer S K F Fi j k r i j k i j k lNSS S M i τ

,, , , ,( , ( , ), ), )r l ti j k kN MSS SSK i F F Fτ, ,i j

m ni i≠

( ( , (NSCombin S S K , , 1 , ,, ), ),...,i j k i j k l ti j k r S S M i F Fτ

, ,, , , , , ,( , ( , ), ), )r l ti j k i j kN MSS SSK i F F Fτ
, ,, , ,

r q≤

m ni i≠

lSecret l q≤

, , ,
F

i j k rer

, , , ,TR h g p q
SSE

, ,
F
i j k

SSK
, ,
F
i j k

KSV
, ,
F
i j k

SS
, ,
F

i j k
rSVe

, , ,i j k r
FSCVer

, , ,
F
i j k r

bin

, , , , ,( )i j k

SCom

M FSSK M N , , , , ,( )i j k M FSVK M N , , , ,( )i j k M FSS M
, ,i j kSVer

, , ,i j k r
ombin

(

, , ,i j k r
SCVer SC

, ,
F
i j k

SSK
, ,
F
i j k

K
, ,i j k

M MSV )( ,FSS

, ,
F

i j kSVer
, , ,
F

i j k rSCVer , , ,
F
i j k rombinSC

, ,
F
i j kSSK

, ,
F
i j kSVK

SCV

, , ,
F
i j k rSCombin

, ,i j k
FSS

, , ,
F
i j k rSCombin

, , ,
F

i j k rSCVer, ,
F

i j krSVe

 



  

it can be omitted from the protocol specification.  

For finitely modeling the combination of 

secret-sharing, we include in      the function 

         .   

Combination of r different secret shares is 

modeled by the following equational rules: 

( M ) =         ( M ,        ( M )) ); 

,…,   

)) = (t = r)  ∨
, … , 

)); 

) = (t = 1); 

(                            , … ,  

, true)) = pF { M /α }{ /N β }; 

The       functions are private, hence they 

cannot be used by the adversary. 

4.2 Compilation into Finite Form 

We now define the static compilation of 

term and processes. We first review these 

notions. 

 

Definition 6 (Term Equality in Frame) Two term 
M and N are equal in a frameφ , written (M = N)φ , if  

and only ifφ       , M Nσ σ≡ , and     ( (       )fn M ∪

for some name and substitutionn σ . 
The next definition introduces a normal 

form of terms. Intuitively, a term is in (TR, h, g, 

p, q)-normal form if the subterms generated by 

the environment cannot be further simplified. 

Definition 7 (Normal Form) A term M is in (TR, 
h, g, p, q)-normal form with respect to a frameφ if  

and only if  the following conditions hold: 
1) For every             and             ∈  

terms(M), we have that       xφ =m, 

        and , , (i, j, k,m∈Ν m l≤ F )∈TR; 

2) For every           ∈ terms(M), we have that       

                   , (i, j, k, F )∈TR; 
3) For every            ∈ terms(M), we have 

that                  , 

 , (i, j, k, F )∈TR; 
4) For every             ∈ terms(M), we have 

that                          , 

1; 2...; rm = , ( i, j, k, F )∈TR and en ≠ fn  

iff           , e≠ f . 

,
, , )

l t
Fmτ

5) For every                ∈ terms(M), we 

have that        

1; 2...; r

                     , 

m = , ( i, j, k, F )∈TR and en ≠ fn  

iff 1 ,e f r≤ ≤ , e≠ f . 

6) For every      (x) ∈ terms(Z), we have that  

, l k≤ . 

For any term there exists an equivalent term 

in normal form. 

We now characterize the notion of validity 

of extended processes. Intuitively, an extended 

process is (TR, h, g, p, q)-valid process if  it can 

be separated into an (TR, h, g, p, q)-valid 

process and a frame where free variables, 

referring to output messages, are associated to 

(TR, h, g, p, q)-valid terms, and bound variables, 

referring to input messages, are associated to 

erms in (TR, h, g, p, q)-normal form that only 

contain free names and free variables.  

t

fr
Definition 8 (Extended Process Validity) A 

ameφ is (TR, h, g, p, q)-valid if  and only if  there 

exist  ,  ,{ Z / x }, with  such that the 
following conditions hold: 

    , 

1) φ  =           ;              

2) for every ( )kx fv φ∈ , we have that kZ is (TR, h, g, 

p, q)-valid;  
3) for every ( )kx bv φ∈ , we have that kZ is in (TR, h, 

g, p, q)-normal form with respect to φ  and 

( )kfree Z ∩ ( )bound φ =∅ .  

An extended process A is (TR, h, g, p, q)-valid if  and 

only if  there exist ,   , { Z / x }, with ch 
that the following conditions hold:          

    , su

1) A = . .({ / } |v n v y Z x P ) 

2) . .{ / }vn v y Z x is (TR, h, g, p, q)-valid. 

3) P is(TR, h, g, p, q)-valid. 

We now introduce the static compilation of 

, , , ,TRh g p q
SSE

, , ,
F
i j k rPCombin

{ }n ∩.vnσ≡

( ))fn N = ∅

, ,
,( , , )

i j k
Z FSSK x y , ,

,( , , )
i j k

Z FSVK x y
Ess → Ess →

,l t
τyφ =

, ,
,( , )

i j k
Z FSS x

,, ,
,( , , )

l ti j k
M FSSK mτEss →xφ =

, ,
( , , )

i j k
FSVer x y

, , , )( ,i j k N FE x SS Mss φ→ =

, , , 1 ,,...,( )i j k r r FSCVer z z

,, , , , ,, , ,( ( )
l ti j k i j k m , )z N M FmE SS SSK nss φ τ→ = F

1 ,e f r≤ ≤

, , ,
F
i j k rSCombin

, , ,
F
i j k rPCombin

, , ,
F

i j k rSCVer
, , , 1 ,,...,( )i j k r r FSCombin z z

, , ,(i j k ME y SVKss φ→ =

,, , , ,) )
l ti j k m ,, , , ,( (i j kz N M F Fm SS SSK nss φ τE → =

lSecret

, , , 1 ,,...,( )i j k r r FE x SCombin M Mss φ→ =

n y ⊆y x

. .{ / }v n v y Z x

n y ⊆

))

y x

, , , , , , , 1 ,,( ( , ( ,F F F
i j k r i j k i j k l tNSC Ver SS SSK M i τ

, , ( ,F
i j k NS S

, , ,, ,( )F
i j k l tM rSSK i τ

1, , , 1 , , , , ,,( ( , ( ,F F F
i j k r i j k i j k l tN MSC V er SS SSK i τ

− , , ( ,F
i j k NS S))

1, , ,, ,( )r
F
i j k l tMSSK i τ

−

,, , ,1 , , , , ,, ,( ( ( l t
F F

i j k i j k
F
i j kN MS C V er S S S S K i τ ))

, , ,
F
i j k rPCombin

, , (F
i j kSS, , , , ,,1, ,( ( (F F

i j k i j k l tN MSS SSK i τpSecret ))

), , ,
F

N SSKi j ,
,( , )

l t
M ri τk

, , ,
F
i j k rPCombin

 



  

terms at run-time. 

Definition 9 (Static Compilation) the (TR, h, g, p, 

q)-static compilation is the partial function σ:    →         

recursively defined as follows: 
σ =                              

σ =            

σ  =         

σ =           

σ =    

σ  =    

          = 

xσ = x  

nσ =  n
In the following, for every (TR, h, g, p, 

q)-valid process A=               , we can 

write Aσ to denote                 . 

The next definition introduces the notion of 

similarity for frames. 

Definition 10 (Frame Similarity) two 
frameφ andψ are similar, writtenφ ∼ ψ , if  and only if  

the following conditions hold: 
1) There exist TR, h, g, p and q such thatφ andψ be 

two  (TR, h, g, p, q)-valid frames; 
2) φ  =            and ψ  =           ; 

3) For every ( )ix bv φ∈ , we have i iM N= .  

The following theorem finally states that 

observational equivalence is preserved under 

static compilation and hence asserts the 

soundness of the encoding from the infinite 

specification into the finite specification.  

Theorem 1 (Preservation of Observational 

Equivalence) Let A and B be extended process such that 

A=                  , for some 

(TR, h, g, p, q)-valid processes P and and 

, B            =

'P       

∼ ' . .{ '/ }vn v y M x . Letσ be the (TR, h, g, p, q)-static 

compilation. If  Aσ        Bσ ,  then A    B. 

5 Conclusion 

We have designed an abstraction of 

Secret-sharing protocols in the applied 

pi-calculus. A novel equational theory for terms 

characterizes the semantic properties of secret 

share. Additionally, we propose an encoding 

a finite specification in terms of a 

convergent rewriting system that is accessible to 

fully mechanized analysis. The encoding is 

und and fully automated.  

into 
SS

T
∑

, , ,TR h g q
SS

T
∑

a 
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