ポリシーを秘匿した自動トラスト 交渉

菊池浩明 Tangtisanon Pikulkaew

東海大学大学院工学研究科，259－1292 神奈川県平塚市北金目 1117，kikn＠tokai．ac．jp
あらまし 自動トラスト交渉とは，証明書から成るポリシーを持った 2 者間で互いのポリシーの漏洩を最小限にして，安全に同意を取る問題である。本稿は，両者が要求した証明書の譲渡される かどうかの判定結果だけを知るプロトコルを提案する．プロトコル実行後でもいかなるポリシー も漏れず，どのような証明書を持っているかも互いに知られない。

Privacy－Preserving Automated Trust Negotiation

Hiroaki Kikuchi Tangtisanon Pikulkaew
Graduate School of Engineering，Tokai University， 1117，Kitakaname，Hiratsuka，Kanagawa，Japan，259－1292，

Abstract

The Automated Trust Negotiation aims to securely identify the consensus between two sets of policies consisting of certificates，with minimal disclosure of policies to each other． The paper proposes a new scheme that allows both parties to learn whether or not，both parties agree to transfer a given target certificate to the requesting party．No policy is revealed after performance of the protocol．No certificate is known to each other．

1 Introduction

Automated trust negotiation（ATN）aims to allow two parties to exchange digital creden－ tials in X． 509 format that contain sensitive in－ formation such as name，address，birthday and memberships，as well as access control deci－ sions（what credentials are acceptable）．Both parties wish to minimize information to dis－ close to other party in order to learn the min－ imal agreement of both private policies．
A number of cryptographic protocols have been proposed so far to address secure and pri－ vate ATN．Winsborough et al．proposes the first scheme for ATN，classified into two ex－ treme strategies，called，parsimonious and ea－ ger strategies in［1］．In both schemes，two par－ ties need to reveal their partial policies grad－ ually and hence no privacy is preserved．Li， Du and Boneh proposes an oblivious signature based envelop in which a user send her creden－ tials to a sever who jointly compute with the
user such that she sees the requested resource if and only if both policies are consistent in ［2］．Nakatsuka and Ishida presents a scheme to minimize the sum of costs for disclosure of credentials in［3］．

In this paper，we present a new scheme com－ bining two cryptographical protocol for secure set operations，e．g．，union and intersection，［4］ and［5］．Our scheme allows both parties to learn whether or not，both parties agree to transfer a given target certificate to the re－ questing party．No policy is revealed after performance of the protocol．No certificate is known to each other．

2 Trust Negotiation

2．1 Definition

A policy is a set of logic formula consisting of certificates．Figure 1 shows an example of policies owned by a client and a server，where

Figure 1: Example of Trust Policies

Figure 2: Example of trust target graph
R is a target service.
The logical relationship between client and server can be represented in a single trust target graph, shown in Fig. 2

2.2 Two Extreme Strategies

In [1] Winsborough et. al proposed two extreme strategies for negotiation, an eager strategy in which both party disclose each policy immediately after the condition of policy is satisfied, and a parsimonious strategy in which policies are gradually disclosed only after sufficient policy is ensured.
A policy disclosure rate is a ratio of disclosed policies over the whole policies, denoted by η. A round of negotiation is a number of transmissions of message between two parties, denoted by ρ. For instance, the eager strategy gives the consensus in the sequence shown in Fig. 3, yielding $R, c_{1}, s_{1}, c_{4}, s_{4}$. The disclosure rate is $\eta_{\text {eager }}=6 / 12=0.5$ and the negotiation ends in $\rho_{\text {eager }}=7$ rounds. While, the parsimonious strategy discloses all possible (au-

Figure 3: Eager Strategy

Figure 4: Parsimonious Strategy
thorized to access) policies in Fig. 4, which $\eta_{\text {parsimonious }}=12 / 12=1.0$ in $\rho_{\text {parsimonious }}=$ 4 steps. Both parties have three paths to the given target, $\left(s_{4}, c_{4}, s_{1}, c_{1}, R\right),\left(c_{5}, s_{2}, c_{2}, R\right)$ and $\left(s_{3}, c_{2}, c_{5}, s_{2}, R\right)$.

3 Preliminary

3.1 Additive Homomorphic Publickey Encryption

To preserve the privacy of users, we use a publickey cryptosystem E which satisfies an additive homomorphic property, i.e., taking message M_{1}, M_{2},

$$
\begin{align*}
E\left[M_{1}\right] E\left[M_{2}\right] & =E\left[M_{1}+M_{2}\right], \tag{1}\\
E\left[M_{1}\right]^{M_{2}} & =E\left[M_{1} M_{2}\right] .
\end{align*}
$$

For instance, the Paillier cryptosystem[7] and the modified ElGamal cryptosystem are widely used. Both allow us to get key generation and decryption processes distributed among semitrusted authorities sharing private key.

The Paillier is more efficient than the ElGamal in the sense of decryption overhead, while the latter requires a sort of brute force technique (in the limited domain) for decrypting candidates of messages. We implement the Paillier cryptosystem for performance evaluation since the single computational cost for encryption is more significant for our proposed protocol.

3.2 Private Matching[4]

Freedman et. al presents a cryptographical protocol for secure set intersection in [4].

Let C and S be sets of secret $X=\left\{x_{1}, x_{2}, \ldots, x_{k_{c}}\right\}$ for client C and $Y=\left\{y_{1}, y_{2}, \ldots, y_{k_{s}}\right\}$ for server S. User C uses a polynomial having elements of X as its root defined as

$$
\begin{aligned}
P(x) & =\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{k_{c}}\right) \\
& =\ell_{k-1} x^{k-1}+\cdots+\ell_{0}
\end{aligned}
$$

to encode X and then send to S a sequence of ciphertexts $E\left(\ell_{0}\right), \ldots, E\left(\ell_{k_{c}}\right)$ for all coefficients $\ell 0, \ldots, \ell_{k_{c}}$ of P.
For y, server S computers

$$
\begin{aligned}
E(r P(y)+y) & =E(P(y))^{r} E(y) \\
& =\prod_{i=0}^{k_{c}}\left(\ell_{i}\right) y^{i}
\end{aligned}
$$

and sends $k s$ ciphertexts to C in random order, where r is uniform random number.
Finally, client C decrypts the ciphertexts to obtain the elements of the intersection $X \cap Y$ without learning any other element.

3.3 Secure Set Operations

In [5], Kissner and Song extends Freedman's protocol so that multiple parties can perform union of each set in addition to intersection.

4 Proposed Scheme

4.1 Hidden Policy

Neither of the parsimonious or the eager strategies preserves the privacy of policies. We aim to minimize the policies disclosed to other even after their negotiation completed.

We wish to make party to send policy only if the corresponding logical condition is satisfied. To do so, we combine the secure protocol for set intersection [4] and the set operation protocol [5]. For example, the first policy in Fig. 1,

$$
p_{1}: R \rightarrow c_{1} \vee c_{2}
$$

is represented by a 2 -order polynomial $P_{1}(x)$ contains the conditional certificates c_{1} and c_{2} as its root, e.g.,

$$
P_{1}(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) .
$$

In the same way, we represent a conjunction of certificates in the form of multi-variable polynomial. For instance, client's second policy

$$
p_{4}: c_{2} \rightarrow s_{2} \wedge s_{3}
$$

can be formed in

$$
P_{4}\left(y_{1}, y_{2}\right)=\left(y_{1}-s_{2}\right)+\left(y_{2}-s_{3}\right)
$$

which becomes 0 only when $y_{1}=s 2$ and $y_{2}=$ $s 3$.

For preserving privacy of policy, we have these polynomials encrypted with a public key of the other party. For example, the ciphertext of polynomial $P_{1}(x)=x^{2}-\left(c_{1}+c_{2}\right) x+c_{1} c_{2}=$ $x^{2}+a x+b$ is a tuple $(E(a), E(b))$, which we denote by $E\left(P_{1}\right)$ for simplification. Note that the additive homomorphic property allows any party to evaluate the polynomial at an arbitrary point without revealing the plaintext.

4.2 Conditional Transfer

A party wishes to send all candidates of certificate only if the condition is met but without revealing which certificate is sent. The other party in turns send a new candidate policy whose condition has been satisfied with the previously sent policy. These interactions are
processed with preserving privacy until a requested party verifies if the condition of the target is satisfied. What both party learn eventually from communication is just a boolean value.

To make it possible for the conditional transfer, we introduce a new trick based on the Fredman's protocol. Suppose that client having a policy $c_{1} \rightarrow s_{1}$ receives a encypted polinomial $E_{S}(P(x))=E_{S}\left(\left(x-c_{1}\right)\left(x-c_{2}\right)\right)=$ $\left(E_{0}, E_{1}, E_{2}\right)$. He obliviously evaluates $P\left(c_{1}\right)$ as $E_{0} E_{1}^{c_{1}} E_{2}^{c-1^{2}}=E\left(P\left(c_{1}\right)\right)$ and choosing a random number r sends back to server the condition of c_{1} as
$E_{S}\left(P\left(c_{1}\right)\right)^{r}\left(E_{C}(Q(y))=E_{S}\left(r P\left(c_{1}\right)+E_{C}(Q(y))\right.\right.$
where $Q(y)=\left(y-s_{1}\right)$ is a polynomial hiding his condition s_{1} and E_{C} is an encryption with the client's public key. Whether or not the domain of E_{C} is greater than that of E_{S}, the ciphertext of polynomial $E_{C}(Q(y))$ is a multiple of its modulus. Hence, we embed a temporary symmetric key k instead of $E_{C}(Q(y))$ itself into the ciphertext, and send the corresponding appropriate symmetric ciphertext in conjunction to the asymmetric ciphertext as

$$
E_{S}\left(r P\left(c_{1}\right)+k\right) ; \mathcal{E}_{k}\left(E_{C}(Q(y))\right.
$$

but we often write the two ciphertexts in the notation in Eq. (2) implicitly using hybrid encryption for simplification reason.
The client attempts to send each of his policies one by one in this manner since he does not know which policy is satisfied. In the example in Fig. 1, the client sends four ciphertexts,

$$
\begin{aligned}
B_{1} & =E_{S}\left(r_{1} P_{1}\left(c_{1}\right)+E_{C}\left(Q_{3}(y)\right)\right. \\
B_{2} & =E_{S}\left(r_{2} P_{1}\left(c_{2}\right)+E_{C}\left(Q_{4}\left(y_{1}, y_{2}\right)\right.\right. \\
B_{3} & =E_{S}\left(r_{3} P_{1}\left(c_{4}\right)+E_{C}\left(Q_{9}(y)\right.\right. \\
B_{4} & =E_{S}\left(r_{4} P_{1}\left(c_{5}\right)\right)
\end{aligned}
$$

where with only B_{1} and B_{2} the server succeeds to decrypt and extract the encoded polynomial Q_{3} and Q_{4}.

4.3 Proposed Scheme

A client and a server have set of policies $P=$ $\left\{p_{1}, \ldots, p_{n_{C}}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n_{S}}\right\}$, respec-
tively. Let E_{C}, D_{S} and E_{S}, D_{S} be public-key encryption and decryption algorithms for client and server, respectively.

1. A server sends to a client an encrypted polynomial for a target condition, $A_{1}=$ $E_{S}\left(P_{1}(x)\right)$.
2. The client evaluates the encrypted polynomial with encrypted for each certificate c_{i} of a policy $c_{i} \leftarrow f_{i}\left(s_{1}, \ldots, s_{n_{s}}\right)$ in his policy set Q as

$$
B_{i}=E_{S}\left(r P_{i}\left(c_{i}\right)+E_{C}\left(Q_{i}(y)\right)\right.
$$

for $i=1, \ldots, n_{C}$, and sends to the server $B_{1}, \ldots, B_{n_{C}}$ in random order.
3. The server decrypts $B_{1}, \ldots, B_{n_{C}}$ with his private key, wishing have $D_{S}\left(B_{i}\right)=0$, which implies that the condition for the target has been satisfied in their negotiation, and then terminates processing of the protocol.
4. Otherwise, the server retrieves an encrypted polynomial from successfully ${ }^{1}$ decrypted messages, say $E_{C}\left(Q_{i_{1}}\right), \ldots, E_{C}\left(Q_{i_{k}}\right)$, where k is the number of successfully decrypted message. For valid polynomial $Q_{i}(i=$ $\left.1, \ldots, n_{C}\right)$, the server securely evaluates polynomials for each of his policies, $\left\{s_{1} \leftarrow\right.$ $g_{1}\left(c_{1}, \ldots, c_{n_{C}}\right), \ldots, s_{n_{S}} \leftarrow g_{n_{S}}\left(c_{1}, \ldots, c_{n_{C}}\right)$ as

$$
A_{j}=E_{C}\left(r_{j} Q_{i}\left(s_{j}\right)+E_{S}\left(P_{j}(x)\right)\right.
$$

where r_{j} is uniformly chosen random number and P_{j} is the corresponding polynomial defined from the j-th policy. If the polynomial has multiple, say m, variables, she needs attempting evaluation for all size- $m,\binom{n_{s}}{m}$ combinations of her certificates. Finally, the server sends to the client $A_{1}, \ldots, A_{n_{S}}, \ldots, A_{n_{s} k}$.
5. Go to Step 2 until either of them successfully decrypts null ciphertext, which

[^0]is $D(A)=0$ ，implying＂Satisfied Nego－ tiation＂．If the number of iteration is more than the number of policies（ n_{S} or n_{C} ），then terminates declaring＂Negoti－ ation Failure＂

4．4 Example

Table 2 illustrates the sequence of messages sent from client and server having policies in Fig．1．In 5 rounds，the protocol is termi－ nated successfully with decryption being zero and hence the server learn that their policies have an agreement to provide the requested service．

4．5 Evaluation

We show a performance comparison of negoti－ ation strategies in terms of degree of privacy to be preserved（disclosure rate），and the com－ munication overhead in Table 1.

5 Conclusions

We have proposed a new cryptographical pro－ tocol for trust negotiation with full privacy preserved．Our protocol allows parties with private policies to learn if their policies can be aggraded without revealing any piece of pri－ vate information．

References

［1］W．H．Winsborough，K．E．Seamons，and V．E．Jones．＂Automated trust negotia－ tion＂，In DARPA Information Survivabil－ ity Conference and Exposition，volume I， pp．88－102，IEEE Press， 2000.
［2］N．Li，W．Du and D．Boneh，＂Oblivi－ ous signature－based envelope＂，In proc．of the 22 nd ACM Symposium on Principles of Distributed Computing（PODC），ACM Press， 2003.
［3］中塚康介，石田亨，＂分散 AND／OR 探索に よる Automated Trust Negotiation＂，情報処理学会誌，Vol．47，No．8，pp．2454－2463， 2006.
［4］M．J．Freedman，K．Nissim，and B． Pinkas，＂Efficient Private Matching and Set Intersection＂，Eurocrypt 2004，pp．1－ 19，Springer LNCS， 2004.
［5］L．Kissner and D．Song，＂Privacy－ Preserving Set Operations＂，Crypto＇05， pp．200－212，Springer LNCS， 2005.
［6］木澤，磯崎，菊池，秘匿積集合プロトコルを利用したプライバシ協調フィルタリングの提案，SCIS2009，2009．
［7］P．Paillier：＂Public－Key Cryptosystems Based on Composite Degree Residuosity Classes＂，Proc．EUROCRYPT＇g9，LNCS 1592，pp．223－238， 1999.

Table 1: Comparison of strategies

strategy	parsimonious (top down)	eager (bottom up)	proposed (top down)
trust path	$R, c_{1}, s_{1}, c_{4}, s_{4}$ $\left(s_{4}, c_{4}, s_{1}, c_{1}, R\right)$, $\left(c_{5}, s_{2}, c_{2}, R\right)$, $\left(s_{3}, c_{2}, c_{5}, s_{2}, R\right)$	$R, c_{2}, s_{2}, s_{3}, c_{5}$	
disclosure rate η	$6 / 12$	$12 / 12$	0
rounds ρ	7	4	5
communication	light	large	$\rho\left(2 n_{C} n_{s}\right)$

Table 2: Sample Negotiation Processing

	client	server
0	$\begin{aligned} & c_{1}: Q_{1}(y)=\left(y-s_{1}\right) \\ & \left.c_{2}: Q_{2}\left(y_{1}, y_{2}\right)\right)=\left(y_{1}-s_{2}\right)+\left(y_{2}-s_{3}\right) \\ & c_{4}: Q_{4}(y)=\left(y-s_{4}\right) \\ & c_{5} \end{aligned}$	$\begin{aligned} & R: P_{0}(x)=\left(x-c_{1}\right)\left(x-c_{2}\right) \\ & s_{1}: P_{1}(x)=\left(x-c_{4}\right)\left(x-c_{5}\right) \\ & s_{2}: P_{7}(x)=\left(x-c_{4}\right)\left(x-c_{5}\right) \\ & s_{3}, s_{4} \end{aligned}$
1		$A_{1}=E_{S}\left(P_{0}(x)\right)$
2	$\begin{aligned} & B_{1}=E_{S}\left(r_{1} P_{1}\left(c_{5}\right)\right) \\ & B_{2}=E_{S}\left(r_{1} P_{1}\left(c_{1}\right)+E_{C}\left(Q_{1}(y)\right)\right. \\ & B_{3}=E_{S}\left(r_{1} P_{1}\left(c_{2}\right)+E_{C}\left(Q_{2}\left(y_{1}, y_{2}\right)\right)\right. \\ & B_{4}=E_{S}\left(r_{1} P_{1}\left(c_{4}\right)+E_{C}\left(Q_{4}(y)\right)\right. \end{aligned}$	\longrightarrow
3		$\begin{aligned} & \text { decrypt } B_{1}, \ldots, B_{4} \text { and see } \\ & D_{S}\left(B_{1}\right) \neq 0, D_{S}\left(B_{4}\right) \neq 0, \\ & D_{S}\left(B_{2}\right)=E_{C}\left(Q_{1}(y)\right), D_{S}\left(B_{3}\right)=E_{C}\left(Q_{2}\left(y_{1}, y_{2}\right)\right), \\ & \hline A_{2}=E_{C}\left(r Q_{1}\left(s_{3}\right)\right) \\ & A_{3}=E_{C}\left(r Q_{1}\left(s_{4}\right)\right) \\ & A_{4}=E_{C}\left(r Q_{1}\left(s_{1}\right)+E_{S}\left(P_{1}(x)\right)\right. \\ & A_{5}=E_{C}\left(r Q_{1}\left(s_{2}\right)+E_{S}\left(P_{2}(x)\right)\right. \\ & A_{6}=E_{C}\left(r Q_{2}\left(s_{3}, s_{4}\right)\right) \\ & A_{7}=E_{C}\left(r Q_{2}\left(s_{3}, s_{1}\right)+E_{S}\left(P_{1}(x)\right)\right. \\ & A_{8}=E_{C}\left(r Q_{2}\left(s_{3}, s_{2}\right)+E_{S}\left(P_{2}(x)\right)\right. \\ & A_{9}=E_{C}\left(r Q_{2}\left(s_{4}, s_{1}\right)+E_{S}\left(P_{1}(x)\right)\right. \\ & A_{10}=E_{C}\left(r Q_{2}\left(s_{4}, s_{2}\right)+E_{S}\left(P_{2}(x)\right)\right. \\ & A_{11}=E_{C}\left(r Q_{2}\left(s_{1}, s_{2}\right)+E_{S}\left(P_{1}(x)\right)+E_{S}\left(P_{2}(x)\right)\right. \\ & \hline \end{aligned}$
4	$\begin{aligned} & \text { decrypt } A_{2}, \ldots, A_{11} \text { and gets valid } \\ & E_{S}\left(P_{1}\right)=D_{C}\left(A_{4}\right), \text { and } E_{S}\left(P_{2}\right)=D_{C}\left(A_{8}\right) \\ & \hline B_{5}=E\left(P_{1}\left(c_{1}\right)\right)+E_{S}\left(Q_{1}(y)\right) \\ & B_{6}=E\left(P_{1}\left(c_{2}\right)\right)+E_{S}\left(Q_{2}\left(y_{1}, y_{2}\right)\right) \\ & B_{7}=E\left(P_{1}\left(c_{4}\right)\right)+E_{S}\left(Q_{4}(y)\right) \\ & B_{8}=E\left(P_{1}\left(c_{5}\right)\right) \\ & B_{9}=E\left(P_{2}\left(c_{1}\right)\right)+E_{S}\left(Q_{1}(y)\right) \\ & B_{10}=E\left(P_{2}\left(c_{2}\right)\right)+E_{S}\left(Q_{2}\left(y_{1}, y_{2}\right)\right) \\ & B_{11}=E\left(P_{2}\left(c_{4}\right)\right)+E_{S}\left(Q_{4}(y)\right) \\ & B_{12}=E\left(P_{2}\left(c_{5}\right)\right) \\ & \hline \end{aligned}$	\longrightarrow
5		$\begin{aligned} & \text { decrypt } B_{5}, \ldots, B_{12} \text { and gets } \\ & E_{C}\left(Q_{4}(y)\right)=D_{S}\left(B_{7}\right), E_{C}\left(Q_{4}(y)\right)=D_{S}\left(B_{11}\right) \\ & \text { and } D_{S}\left(B_{12}\right)=0 \text {, hence ends "Successfully". } \end{aligned}$

[^0]: ${ }^{1}$ We assume that the integrity of message can be tested by predetermined format of valid message so that we easily see if an attempt of decryption is successful or not.

