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Locality-Aware Metadata Lookups
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GMount is a high-performance distributed file system with locality-aware metadata lookups
and small installation effort. GMount organizes computer nodes in a decentralized hierarchical
overlay to unify separate local file systems into a global shared namespace and achieve locality-
aware metadata lookups. Using GMount implies not only better performance when there
is considerable data access locality, but also the ability to effortlessly and rapidly enable
data sharing among clusters, clouds, and supercomputers. This paper presents performance
evaluation of latest GMount implementation by using both micro-benchmark and real-world
data-intensive applications. Experimental results show that GMount has highly scalable
metadata and I/O performance when data access locality is common, and the performance is
practically useful for routine data-intensive computing practice.

1. Introduction

Distributed file systems have been used as an
indispensable data sharing approach for data-
intensive distributed computing. However,
particularly in the wide-area computing envi-
ronments, traditional distributed file systems
can encounter several problems in terms of
limited metadata operation scalability and
deployment complexity.

High-Latency Metadata Operation Existing
distributed file systems usually adopt the
architecture of centralized metadata server
and multiple data storage server, which
can lead to the nontrivial problem in
the high-latency wide-area environments.
Specifically, the metadata lookups could
suffer from high latency when requesting
clients are located far way from the central
metadata server. It is especially inefficient
when the target data is actually stored
close to the clients, but the metadata of
the target data needs to be retrieved from
the distant metadata server. Moreover,
data-intensive applications have a tendency
of data access locality, achieved by either
application its own inherent structure or
file affinity job scheduling of workflow
management system1). Therefore, it is
important that distributed file system
should take advantage of the data access
locality to optimize the overall application
execution performance by reducing the
metadata operation latency in the wide-
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area environments.
Limitation of Dedicated File Servers Con-

ventional distributed file system usually
uses dedicated filesystem servers (both
metadata server and data storage server)
to server file requests from many computer
nodes. First, this design has a problem
of limited scalability when the increasing
computer nodes exceed the capacity of
dedicate file servers. Second, this design
does not benefit from the co-location of
data and computation, in which data can
be stored and processed on computer nodes
(e. g., on the local filesystems of computer
nodes) to achieve better throughput.

High Setup Cost The installation of most
distributed file systems requires sophisti-
cated system knowledge and, sometimes,
root privilege. There is an extra setup cost
if the filesystem depends on a heavy stack
of software. In the large-scale environments
having many servers, the deployment of
distributed file system, usually undertaken
by system administrators, is considerable
complex, laborious, error-prone, and te-
dious for general users.

Cross-Domain Restrictions Realistic domain
policies and restrictions impose additional
challenges to installing existing distributed
file systems across different administration
domains. For example, different domains
have different user sets and security poli-
cies. Dedicated file servers are not exported
to computer nodes in other domains. Other
restrictions such as network configurations
as NAT or firewall, can further limit the
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feasibility to build a common middleware
over different domains.

Targeting these problems, we propose
GMount — a instantaneously deployable user-
level filesystem with locality-aware metadata
lookups. By GMount, non-privileged users
are able to effortlessly and quickly install a
distributed file system on arbitrary resources
they can access. More important, the metadata
operation performance of GMount can scale in
the wide-area environments by making use of
the data access locality of applications. We
have illustrated the design and a prototype
implementation of GMount in our previous
paper2). This paper presents the performance
evaluation of latest GMount implementation
with several performance enhancements. As
a comparison with existing distributed file
system, we particularly study the impact of
data access locality on overall scalability and
performance of running real-world applications.

2. System Organization

2.1 Architecture
Figure 1 shows the architecture of GMount

distributed file system. GMount is constructed
from a standalone FUSE3)-based remote file
system called SSHFS-MUX4) (denoted as
sshfsm in Figure 1). SSHFS-MUX enables non-
privileged users to transparently manipulate
files on multiple remote machines via one
mountpoint on local file system (with the union
file system semantics5)), only requiring that
users can login to remote machines by SSH.

By a scalable spanning tree based algorithm
and two SSHFS-MUX mount operations (i. e.,
Union-Mount and Cascade-Mount, see our
previous paper2) for details), separate computer
nodes are organized in a hierarchical overlay
in order that their individual local names-
paces/filesystems are unified into one global
shared namespace and metadata lookups are
carried out in a locality-aware manner.

gmnt_exec

1: Planning
    - Collecting hosts information
    - Make the mount plan
    - Broadcast the mount plan

2: Plan Execution
   - Each node executes
     mount plan locally

3: Aggregation
    - Collecting execution result
    - Prompt user

GXP master node

GXP control flow

SSHFS-MUX mount

Fig. 2 Execution Flow of GMount
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GMount uses GXP parallel/distributed shell6)

as the distributed loader of GMount to invoke
SSHFS-MUX processes in parallel, which allows
users to efficiently install GMount in large-scale
distributed environments. Figure 2 illustrates
the execution flow of GMount.
2.2 Locality-Aware Metadata Lookups
Since there is no a central metadata server,

the metadata lookups are performed in a
location affinity sequence relative to the
requesting client. Specifically, a file lookup first
takes place in the client’s own local namespace,
then in the namespaces of adjacent nodes (i. e.,
in the same cluster), and finally floods to other
distant nodes until the target data is found.
Using Figure 1 as an example, a client in site
A first searches the target file within nodes of
site A, and stops searching if the file is found.
Otherwise, the client sends addition lookup
messages to nodes in site B until the request
is satisfied (i. e., file is finally found or does not
exist in all nodes).

Figure 3 summarizes the circumstances when
GMount performs better and worse than
distributed file system using central metadata
server. For central metadata server approach,
the latency of file lookup is determined by
the distance between metadata server and
client. However, for GMount, the latency of
file lookup depends on how target file is close
to the client. Therefore, GMount can benefit
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from data access locality to outperform central
metadata server approach. However, GMount
can fall behind when target files are always in
remote sites or do not exist since in this case
a global search through many/every node is
required.
2.3 Performance Improvements
Our evaluation on previous GMount imple-

mentation has pointed out two issues mainly
related to I/O performance2).

One problem is the limited data transfer rate
over SSH channel. For this problem, we use a
proxy-like approach to bypass SSH and conduct
data transfer over raw sockets instead. This
approach enables data transfer to benefit from
TCP auto-tuning feature provided by most
modern OS kernels7).

The other problem is the I/O congestion since
all I/O traffic is delivered indirectly over the
overlay. For this problem, we use a file location
piggybacking approach to pass the real file
storage location to requesting client in initial
file lookup reply. As a result, clients establish
extra direct connections (separate from overlay)
on demand to the nodes that hold the target
data for I/O operations.

3. Evaluation

3.1 Experimental Environments
Our experiments use the InTrigger multi-

cluster platform8), consisting of 16 sites of
clusters with approximately 400 nodes in
total. The sites are geographically distributed
in universities and research institutions of
Japan. All nodes have uniform installation and
configurations of software: Linux kernel 2.6.26,
OpenSSH 5.3p1, FUSE 2.8.3, SSHFS-MUX 1.3
and GXP 3.06. We used 64 available nodes
from 4 sites for the evaluation. Figure 4 shows
the configuration of these nodes, with the RTT
(Round Trip Time) of network links between
sites. Note that the RTT between nodes of
same site is around 0.15ms.

The micro-benchmark used in experiments is
ParaMark9), which can issue parallel metadata
or I/O requests with configurable access pattern
from multiple clients to stress file system.

We compare GMount with Gfarm1),10), a
wide-area distributed file system with central
metadata server. Since Gfarm uses the same
strategy as GMount (i. e., co-location of data
and computation by harnessing local file system
of computation nodes) and it has been deployed
on the InTrigger platform for cross-site data

Keio: 8 nodes

Hongo: 26 nodes

Sendai: 14 nodes

Sapporo: 16 nodes
27ms

2.9ms

14ms

9.4ms

4.5ms
Tsukuba: 16 nodes

22.1ms

8ms

17.3ms

13.8ms30ms

Gfarm Meta 
Server

Fig. 4 Configuration of Experimental Environments

sharing purpose, it allows us to conduct an
accurate and fair comparison. Note that Gfarm
metadata server is at Tsukuba site.
3.2 Parallel Metadata Operation
We first investigate the impact of data access

locality on the overall performance. From the
client’s point of view, metadata access can
involve manipulating files that reside on close or
distant servers to the client. Here, one node is
considered adjacent to another node if they are
in the same site/LAN. Accordingly, we define
radj as the ratio of “the amount of adjacent data
access” to “the amount of total data access”
of one client, where adjacent access is the data
access to servers that are located in the same
cluster/LAN as the requesting client.

We synthesize following access pattern to
investigate the impact of data access locality
on metadata operations performance. First,
ParaMark creates and distributes a collection
of data files over all nodes. Next, it generates
a random access sequence of data files such
that this sequence includes a ratio radj of
adjacent access (relative to the client). Then
this sequence is applied to access data file from
the client. The count of each type of metadata
operation is 1000 and we use the aggregated
throughput of all clients for comparison.

Since Gfarm has one central metadata server
located in one site, the metadata operations
performance of Gfarm client depends on the
client’s location relative to the metadata server.
Therefore, we differentiate following two cases:
(i) Gfarm in LAN — client is in the same LAN
as the metadata server, and (ii) Gfarm in WAN
— client is in a different site.

From Figure 5, it reads that the metadata
operations performance of Gfarm scales up to
10000ops/sec when the number of clients is
16 for most metadata operations except rmdir.
Though Tsukuba site has only 16 nodes in
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Gfarm in LAN (radj = 1)
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Fig. 6 Parallel Metadata Operations Performance of
Gfarm in WAN (radj = 1)

this test, the metadata operations throughput
does not scale significantly when the number of
clients increases from 4 to 16.

In WAN, Gfarm achieves only 1600ops/sec
peak performance for 32 clients in our
experimental configuration. Similar results
have been reported in another evaluation of
Gfarm in InTrigger environment1), where creat

achieves about 1800ops/sec for 32 clients and
about 2400ops/sec for 64 clients. Though
2400ops/sec for 64 clients is higher than the
performance we measured in our test, both
results are in the same order of magnitude and
the differences can be due to the selection of
different clients. The high latency between
clients and metadata servers results the overall
low metadata operations performance of Gfarm
in the wide-area environments.

Instead, as shown in Figure 7, the metadata
operations performance of GMount scales up
to an average of 70000ops/sec for 64 clients
in WAN environment, this mainly attributes
to the locality-aware metadata lookups. Note
that our result is also comparable to the
100000ops/sec throughput of Ceph (using
multiple metadata servers) for 128 distributed
data servers in LAN11).

Figure 8 and Figure 9, respectively, show
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Fig. 7 Parallel Metadata Operations Performance of
GMount in WAN (radj = 1)
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Fig. 8 Parallel Metadata Operations Performance of
Gfarm in WAN (0.2 < radj < 0.8)
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Fig. 9 Parallel Metadata Operations Performance of
GMount in WAN (0.2 < radj < 0.9)

the performance results of Gfarm and GMount
with 64 concurrent clients when there are
references to remote files, or radj 6= 1. While
the performance of Gfarm remains constant
with the latency between clients and metadata
servers, GMount is sensitive to data access
locality of requests. As shown in Figure 9,
GMount achieves an equivalent performance as
Gfarm when radj ≈ 0.65. GMount is about
5x slower than Gfarm when there is only 20%
adjacent data accesses, because GMount has
to search local nodes first before looking up in
remote nodes, as indicated in Section 2.2.
3.3 Parallel I/O Performance
Using the same configuration for metadata

tests, we evaluate the parallel read and write
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Fig. 11 Comparison of Parallel Write Performance

performance using 2GB file size and 128KB
block request size for each client.

Results in Figure 10 and Figure 11 show that
the performance of Gfarm and GMount both
scales with the number of clients, while GMount
has an overall 10%-20% better throughput
than Gfarm. One possible overhead of
Gfarm I/O is that data servers need to
synchronize metadata updates to metadata
server. Comparing to our I/O evaluation of
previous GMount implementation2), proposed
enhancements (see Section 2.3) significantly
boost the I/O throughput and scalability.
3.4 Real-World Applications
Finally, we use two real-world scientific

applications to investigate the workflow ex-
ecution performance by using GMount and
Gfarm. We used GXP make12), a workflow
engine based on GNU make, to execute this
workflow on the same 64 nodes as in previous
experiments. For both GMount and Gfarm,
the input data is initially put in one node and
distributed accordingly during the execution by
file systems.
3.4.1 Event Recognition
The event recognition application13) is to

extract and classify biomolecular events men-
tioned in English texts. Example biomolecular
events of interest are an expression of a
certain gene, a phosphorylation of a protein,

Medline XML

Text Extraction

Protein
Name Recognizer Enju Parser

Sagae’s
Dependency Parser

Event 
Recognizer

Event Structure

Fig. 12 Workflow DAG of Event Recognition
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Fig. 13 Execution Profiles of Event Recognition

and a regulation of certain reactions. Its
execution structure (workflow DAG) is shown
in Figure 12. The input dataset consists of 158
input data (i. e., medline XML file), where each
input data corresponds to a processing unit (the
entire DAG chart) shown in Figure 12. We
allow a maximum of 4 jobs to run concurrently
on each node, resulting an overall maximum
parallelism of 252.

Figure 13 shows the comparison of execution
summaries, where the workflow finished in 3257
seconds when using Gfarm and 2759 seconds, or
15% speedup, when using GMount. However,
the peak parallelism 159 by using Gfarm was
reached at 28 second, and 156 parallelism by
using GMount was reached at 198 second.
Workflow running on Gfarm has faster initial
scheduling performance is because many new
files/directories are created under the work
directory during the data distribution stage at
the beginning. In Gfarm, the metadata server
can quickly handle these requests because
metadata is managed in one place. However, in
GMount, a file creation in root directory results
a file existence checking in all nodes.

To verify this finding, we extract and collect
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the execution time of those small jobs that
create new files under the working directory by
using GMount and Gfarm. The distribution
of execution time of these jobs is presented in
Figure 14. We found that the file creation in
GMount has an average of higher latency than
in Gfarm, some of file creation time even are 100
times than the average latency. This is due to
concurrent creations on many nodes, resulting
saturated data traffic in GMount overlay.
3.4.2 Montage
Another workflow is Montage astronomy

scientific application14), a popular benchmark
that has been widely used in workflow
studies15) . The input data used in this
experiment includes 609 input files. Note that
the input data corresponds to the jobs in the
first stages of the entire workflow?1 Here, we use
a smaller scale configuration including 40 nodes
from Keio and Hongo sites since using more
nodes does not change the execution structure
but only increases the execution time. We set a
maximum of 8 jobs to run concurrently on each
node, resulting an overall maximum parallelism
of 320.

Figure 15 shows the comparison of execution
profiles, where the workflow finished in 3638
seconds when using Gfarm and 547 seconds
when using GMount. Like event recognition
workflow, GMount has lower performance at
the initial phase mProjectPP because many files
are created under the root directory.

Figure 16 shows the comparison of execution
time of each phase. In one of major data process
phases mDiffFit, GMount has a 2x speedup
than Gfarm. Surprisingly, the largest difference
comes from the phase mConcatFit, where 2000
seconds are cost in Gfarm but only 20 seconds

?1 The workflow DAG of Montage is online available
at http://confluence.pegasus.isi.edu/display/
pegasus/WorkflowGenerator.

0

175

350

0 700 1400 2100 2800 3500

Pa
ra

lle
lis

m

Execution Time (second)

GMount Gfarm

Fig. 15 Execution Profiles of Montage

0

1,000

2,000

3,000

4,000

GMount Gfarm

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

on
d)

mProjectPP mDiffFit mConcatFit mBgModel mBackground
mAdd mShrink mImgTbl mAdd’ mJPEG

mConcatFit

mDiffFit

Fig. 16 Comparison of Execution Time of Phases

are used in GMount. We found that mConcatFit
is a significant data aggregation phase which
collects (i. e., offset read from) small fraction of
data from many files (> 1000 files). In Gfarm,
files opened for read are first replicated/cached
on client node, leading heavy copy operations.
In GMount, client only read required portion
of data from each remote server over the
network with specified access offset. Though
the performance comparison of mConcatFit

phase does not mainly related to data access
locality, it shows that caching/replication have
an adverse effect on performance in some cases.

4. Related Work

Most existing high-performance distributed
file systems consist of dedicated file servers
and are designed for the single-cluster environ-
ments, such as PVFS16), Lustre17), GPFS18),
GoogleFS19), and HadoopFS20). To the best
of our knowledge, they have not been widely
deployed in multi-cluster environments except
GPFS-WAN21). Experimental deployment
and evaluation of Lustre wide-area environ-
ments have been studied22),23), in which the
complexity of deployment and low scalability
and performance in wide-area have also been
reported. Ceph11) is an experimental peta-scale

先進的計算基盤システムシンポジウム SACSIS 2011 
Symposium on Advanced Computing Systems and Infrastructures

202 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26



System Architecture

A
da

pt
ab

ili
ty

WAN

LAN

United server Single metadata server, 
multiple data servers

Multiple metadata servers, 
multiple data servers

NFS pNFS

PVFS

Lustre

GFS

HDFS

Ceph

Gfarm

GlusterFS

DFS Instance Future Direction

Dynamic
distributed
metadata

GMount

Mainstream High-Performance DFS

Fig. 17 Architectural Comparison of Existing
Distributed File Systems

parallel file system, using a cluster of metadata
servers to achieve scalable metadata operations.
It also uses dedicated file servers. The effect of
multiple metadata servers has not been studied
in multi-clusters environments.

Figure 17 illustrates the architectural com-
parison of existing distributed file systems. The
decoupling of metadata and file data manage-
ment, one of key ideas for distributed file system
design, brings out significant scalability of
high-performance parallel file systems. PVFS,
Lustre, pNFS, GFS, HDFS, and Gfarm all
benefit from this principle and thus adopt the
“one metadata server, multiple data servers”
architecture. However, with the increasing
data footprint in application and the number
of clients, single metadata server easily reaches
its capacity and becomes the limitation for
further performance improvement. Therefore,
the distributed management of metadata is
introduced, and one typical example of this
design is Ceph. In addition, GFS shows its
future plan of using distributed namespace
servers24). Lustre and Gfarm also intend
to implement multiple metadata servers10),17).
Though without many details, GlusterFS also
gives a hint on using dynamic distributed
metadata technique, similar as GMount, to
achieve better scalability25).

To comprehensively clarify the differences
between GMount and other distributed file
systems, we state that GMount should not be
considered as a persistent distributed storage
system and its usage scenario is different.

First, GMount is an instantaneous dis-
tributed file system that is supposed to be
constructed on demand and destructed after
the usage. It is a complementary distributed
file system for data sharing practices (i. e.,
execute data-intensive applications among
cross-domain resources in the wide area) where

traditional distributed file systems can not
be straightforwardly applied or work well as
expected.

Second, as tradeoffs to achieve better perfor-
mance when there are more data access locality
and instantaneous deployment, GMount adopts
a weaken cache consistency model and sacrifices
the fault tolerance in current implementation.
GMount does not have its own cache subsystem
or create data replicates for I/O or fault
tolerance. Data are manipulated directly on
the target data stored in remote servers over
the network. Since GMount directly harnesses
the local file system to store user data, the data
availability of GMount is dedicated to local
filesystems of each host.

5. Conclusions and Future Work

GMount is a high-performance distributed
file system with locality-aware metadata oper-
ations and small installation effort. Evaluation
shows that GMount can benefit from data
access locality of applications to achieve better
performance than existing wide-area file system
with central metadata server. In addition,
with the ability to rapidly and effortlessly unify
local file system for global data sharing on
arbitrary resource, GMount is practically useful
for general users to conduct their data-intensive
distributed computing practice. It also shows a
way of building the distributed file system with
a small implementation.

The major future work includes a design
and implementation of sophisticated metadata
management to improve the metadata lookup
performance by reducing the overhead of global
searching when file creation and data access
locality is not significant. There is also a plan to
implement a simple interface to allow workflow
management systems to query file locations for
file affinity scheduling.

Finally, GMount is open-source software and
online available at http://sf.net/projects/
gxp/ and http://sshfsmux.googlecode.com/.
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