
Yet Another Taint Mode for PHP

HIROSHI TOI,† RYOTA SHIOYA,†† MASAHIRO GOSHIMA†

and SHUICHI SAKAI †

Nowadays, security of web applications faces a threat of script injection attacks, such as cross-site script-
ing (XSS), or SQL injection. DTP (Dynamic Taint Propagation) has been established as powerful techniques
to detect script injection attacks. However, current DTP systems still suffer from trade-off between false
positives and negatives, because these systems propagate tainted information from source operands to desti-
nation operands. We proposed SWIFT, which traces memory accesses of a program execution, detects string
access and distinguishes string operations from other memory accesses, and propagates tainted information
under string operations. This makes SWIFT provide a better accuracy on detection of script injection attacks
than the current DTP systems. Since SWIFT only concentrates on address traces of a target program, it can
be implemented both on interpreters of script languages and on hardware mechanisms of processors. In this
paper, We implemented SWIFT to PHP, executed typical string operations and made injection attacks to
some real-world web applications with known vulnerabilities. As a result of our experiments, SWIFT on
PHP shows a high precision. Moreover, we evaluated the performance overhead. The average performance
overhead is 55%.

1. Introduction

With an increase in web applications, attacks ex-
ploiting vulnerabilities of them have also been in-
creasing. The attackers exploit various security vul-
nerabilities to do a wide variety of tasks, such as
stealing secret or personal information, making a
profit, or just enjoying.

In the past, most prevalent attacks are ones to
applications in binary code on the client, as rep-
resented by buffer overflow attacks. This kind of
attacks, however, has been subsided. It is possibly
because most of them can be prevented by NX bit
and ASLR(Address Space Layout Randomization).

Instead of them, the most serious attacks in recent
years are script injection attacks to web servers,
such as cross-site scripting (XSS), SQL injection
or directory traversal. According to National Vul-
nerability Database1), vulnerabilities to script injec-
tion attacks have been increased sharply in recent
years.(Fig. 1).

DTP (Dynamic Taint Propagation) is proposed to

����������

�

����	
�	�
������������	���
�����
���

�

�

�

��

��

��

��

��

��

��

��

��

�
�
��
��
��
�
��
�

	
��

�
�	����	���
�

���	��
�����
�	��
�

� !����	���
�

��
��"���	���������#�
$%��&

Fig. 1 Increase of script injection attack

† Graduate School of Information Science and Technology,
The University of Tokyo

†† Graduate School of Engineering, Nagoya University

prevent these attacks. The mechanism of DTP is to
tag data from untrusted sources as tainted, dynam-
ically propagate tainted information with program
execution and check whether the tainted data is an
attack or not.

The original inspiration of DTPs was given by the
taint mode of Perl2). Since then, this kind of tech-
niques have been supported by various program-
ming language systems, such as PHP3)∼5), Ruby,
Java6),7), C8),9) and its descendants. These language-
level supports are referred to as language DTPs.
On the other hand, Suh et al. first applied Perl taint
mode to a processor in order to detect injection at-
tacks to binary code, and named it DIFT(Dynamic
Information Flow Tracking)10). We refer to such
techniques on processors as platform DTPs. Al-
though the purpose of platform DTPs was to detect
binary injection attacks and platform DTPs were af-
fected by interpreting noise, Dalton et al. pointed
out that they could also detect script injection at-
tacks and they could provide a accuracy class which
is just the same as language DTPs11) .

Though DTPs are considered to have potential to
root out script injection attacks, current systems still
suffer from trade-off between false positives and
negatives. We take Base64 as an example in or-
der to explain the trade-off problem in section 2.
Existing DTPs don’t propagate tainted information
through Base64. This is because Base64 converts
source strings by using table reference. If we regard
table reference as safe, it produces security hole.
On the contrary, if we regard table reference as un-
safe, it results in mass of false positives. Conven-
tional DTPs select the former and they don’t prop-
agate tainted information through Base64.

We proposed a technique named SWIFT12),

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

160 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

which provides a solution to deal with the trade-
off problem. We introduced a completely different
approach from conventional systems. As is referred
to in more detail in Section 3, SWIFT observes the
memory access of the target program, detects string
access from address trace, distinguish string oper-
ations from common memory accesses, and prop-
agate tainted information through string operations
from read string to write string. We showed the re-
sult that SWIFT provided a better accuracy on de-
tecting script injection attacks.

We proposed SWIFT on processors as platform
DTP12), because the main advantage of platform
DTPs is the comprehensiveness. However, it is hard
for SWIFT to be commonly used because it is diffi-
cult to design new processors.

In this paper, We implemented SWIFT to PHP
as an example of language DTP. We selected PHP
as an implementation target because PHP is widely
used in the world as script language designed for
server-side web applications. By implementing
SWIFT to PHP, coverage is limited for PHP, but
the highly accurate DTP can be implemented in
the range of taint-support PHP. And it is easy for
SWIFT to be broadly used.

The rest of the paper is organized as follows. Sec-
tion 2 reviews background knowledge for script in-
jection attacks and DTPs. Section 3 firstly describes
two types of string operations in order to explain
why existing DTPs fall into trade-off between false
positives and negatives. In the rest of this section,
we describe SWIFT in detail, that is free from the
trade-off problem. Section 4 explains how to im-
plement SWIFT to PHP. Section 5 summarizes
the evaluation results of the accuracy and the per-
formance overhead. Section 6 presents the related
work. Section 7 states the conclusion and future
work.

2. Script Injection Attacks and Dynamic
Taint Propagation

2.1 SQL injection
From cross-site scripting to SQL injection, at-

tackers have various techniques to attack web ap-
plications. This subsection takes SQL injection as
an example to explain how script injection attacks
occur.

SQL injection is a most common attacks. It
allows an attacker to access sensitive information
from a Web server’s database. Fig. 14 shows an ex-
ample of SQL injection.

A web page shows the price of a product asking
the user the name of it through a text box. Fig. 2(a)
shows a PHP statement in the page. The string the
user entered in the text box has been stored in the
variable $name. Concatenating $name and the
constant strings, the statement produces the SQL

$cmd =
”SELECT price FROM prod WHERE name=$name”

(a) PHP statement

$name:
ruby

$cmd:
SELECT price FROM prod WHERE name=’\
ruby’

(b) Non-attack string and produced command

$name:
dummy’; \
UPDATE prod SET price=0 WHERE name=’ruby

$cmd:
SELECT price FROM prod WHERE name=’\
dummy’; \
UPDATE prod SET price=0 WHERE name=’ruby’

(c) Attack string and produced command

Fig. 2 Example of SQL injection

command $cmd to send to the SQL server.
In a usual case, the user entered just ruby for

$name, $cmd in Fig. 2(b) is produced. In this
and the next figures, the substrings corresponding
to $name are underlined. The database will return
the price of ruby.

If an attacker injects the string into $name as
in Fig. 2(c), $cmd in the same figure is produced.
Then, the database will be updated against the pro-
grammer’s intention.

As seen in this example, a script injection attack
is performed by making the victim server interpret
the string including attack code written in script lan-
guage. As for binary injection attacks, even if an
attack binary is successfully injected, execution of
injected binary can be easily prohibited, e.g., by NX
bit. As for script injection attacks, however, inter-
pretation of injected scripts itself cannot be prohib-
ited, because it is the main benefit in using script
languages. This is the main difficulty of script in-
jection attack detections.

2.2 Detection of Script Injection Attacks
DTPs are promising techniques to detect script

injection attacks. The idea behind DTP is to tag
data from untrusted source as tainted. The tag is
used to tainted data from untrusted source, for ex-
ample, data from network I/O, user input, or read
from any untrusted devices. The tags are propa-
gated through program execution. If tainted data
is used in unsafe ways, such as a system call or a
SQL command, attacks will be detected.

In the example of SQL injection in section 2.1,
tainted substring is underlined. Because SQL com-
mands, such as UPDATE or SET, or field and table
names, such as price or prod are tainted, SQL in-

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

161 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

$redir =
base64 decode($ GET[r̈edir]̈);

(a) PHP statement

http://[victim]cc3/index.php?act=login&
redir=L3NpdGUvZGVtby9jYzMvaW5kZXgucGhwP
2FjdD12aWV3RG9jJmFtcDtkb2NJZD0x

(b) Attack code

$redir:
/site/demo/cc3/index.php?act=viewDoc&docId=1

(c) XSS code

Fig. 3 Example of base64 vulnerability

jection can be detected.
In the next subsection, we explain command pars-

ing, which SWIFT is supposed to be used with.
2.3 Command Parsing
Su et al. show that SQL injection can always

be perfectly detected as long as the SQL syntax
is known and the substrings are correctly detected
trusted or untrusted13).

As the example of SQL injection we describes in
section 2.1, the command parser of the SQL server
knows which substring must be trusted and which
substring may be untrusted. Specifically, keywords,
such as UPDATE or SET, or field and table names,
such as price or prod, must be trusted; while ar-
guments such as ruby could be untrusted. If the
parser knows that the substring of $cmd corre-
sponding to $name, underlined data in SQL injec-
tion, is untrusted, the parser can easily distinguish
$cmd is an attack or not.

This command parsing can also be applied to any
commands raised from web applications other than
SQL such as system calls. In general, data from un-
trusted source should not specify the names of the
system resources, but may specify their contents.
The names of the system resources include file
names, command names, or field and table names
of databases.

Used with command parsing, therefore, it is not
rational to let DTPs decide which substring is un-
trusted on its own judgment. DTPs should always
leave the substring corresponds to $name tainted
even in non-attack cases. In the example of section
2.1, even if ruby is left tainted, the parser can dis-
tinguish it from attacks. Academic researcher have
had appropriate command parsing to prevent many
kinds of script injection attacks14)9).

In the next subsection, We take Base64 as an ex-
ample to explain a problem of existing DTPs.

2.4 Problem of Existing DTPs
Some web applications use Base64 to obfuscate

sensitive input. In Cubecart3.0.3, we could find the
code in Fig. 3(a)

After this base64 decode(), $redir is not sani-
tized, and this can lead to a cross-site scripting at-
tack.

For example, if an attacker creates and inputs
a specially crafted URL in Fig. 3(b), $redir in
Fig. 3(c) is generated after base64 decode function.
And when the code is executed, cross-site scripting
occurs.

Existing DTPs don’t propagate tainted informa-
tion through Base64, so they can’t detect the cross-
site scripting mentioned above. In the rest of this
section, we will explain why existing DTPs don’t
propagate tainted information through Base64.

Base64 encoding procedure is as follows:
(1) 3 uncoded bytes (8*3=24bits) are converted

into 4 numbers (6*4=24bits)
(2) 4 numbers are converted to their correspond-

ing values by using a conversion table
Base64 decoding procedure is the reverse. The
point is that Base64 uses table reference as conver-
sion. In general, table reference is like this:

$ostr = $table[$istr];

We can regard table reference as safe in usual
cases, but if it is used as conversion, it is unsafe.
When thinking from the point of taint propagation,
table reference falls into a trade-off between false
positives and negatives. If we regard table refer-
ence as safe, tainted information isn’t propagated
from $istr to $ostr, and it produces security hole.
On the contrary, if we regard table reference as un-
safe, tainted information is propagated from $istr to
$ostr, and it results in mass of false positives. Most
existing DTPs select the former, so they don’t prop-
agate tainted information through Base64.

3. SWIFT

This section explains SWIFT that we have pro-
posed12). SWIFT provides a higher accuracy on
detecting script injection attacks than conventional
DTPs. First, we describe two types of string op-
erations: “loop-in-select” and “select-in-loop” in
section 3.1. Second, we present the algorithm of
SWIFT in detail in section 3.2.

3.1 Loop-in-Select and Select-in-Loop
Fig. 4 shows that string operations using table ref-

erence can be classified into two types: safe and
unsafe. The string operation in Fig. 4(a) is safe, be-
cause the string that the user chooses is necessarily
under control of the programmer. It is practically
impossible for attackers to attack through this op-
eration. On the other hand, the string operation in
Fig. 4(b) is unsafe, because the user can control the
output and get arbitrary string. It is possible to at-
tack through this operation. This string operation
includes string copy and all kinds of string conver-
sions such as case conversions or coding conver-

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

162 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

$table[’0’] = ”ruby”;
$table[’1’] = ”sapphire”;
/* ... */

$ostr = $table[$i];

(a) Sample code of safe string operation

$table[’a’] = ’A’;
$table[’b’] = ’B’;
/* ... */
for ($i = 0; $i <strlen($istr); $i++)

$ostr[$i] = $table[$istr[$i]];

(b) Sample code of unsafe string operation

Fig. 4 Two types of string operations

���������

�

����������	
	��
���������	 � ����

� � ���

�����
	 ���
�

�

�

�

	

�
�

	

� ������������

� ����������

� ������������	

� ����������	

�
������� � �

�	
	�����

���	�����

�����������

�

���	�����

�����������

�

 !" " " #!

�

�	
	�����

���	�����

�����������

�

���	�����

�����������

�

 !" " " #!

�

���
����������

Fig. 5 “Loop-in-Select” structure - safe

���������

�

���������	��

���
���������� �� ����

�

�

	

�

�

�

� � ���

�����
	 ���
�

� �	���	���
��

� ���	���
��

� ��
�������������
�
��������	���	���

� ��
�������������
�
����������	���

�
� � � � ���
� � �

�

������� !

������ !

��
��"�"�

��
��"�"�

#$% % $#

&

&

�

������� !

������ !

��
��"�"�

��
��"�"�

#$% % $#

&

&

��������������

Fig. 6 “Select-in-Loop” structure - unsafe

sions.
The string operations in Fig. 4(a) and Fig. 4(b) are

almost the same except that the table reference of
the latter unsafe string operation is used in the for
statement. We can distinguish these two types by
focusing on address trace. Fig. 5 and Fig. 6 show
address traces of these string operations. In these
figure, the x-axis indicates the address, and the y-
axis indicates the time. There are four types of
triangles. Upward blue triangles and red triangles
indicate load instructions to untaint data and taint
data, respectively. Downward blue triangles and
red triangles indicate store instructions whose store
value should be untainted and tainted, respectively.
The load/store instructions that do not relate to DTP
are not drawn in these figures.

Fig. 5 corresponds to the sample code of the safe
string operation shown in Fig. 4(a). The first tainted
load indicates the load to input variable $i. In
this case, the value of $i is ’0’, then the con-

stant string "ruby" is copied to the output vari-
able $ostr. Fig. 6 corresponds to the sample
code of unsafe string operation shown in Fig. 4(b).
The tainted input string "ruby" is converted to
"RUBY".

In the both figures, the load instructions of the
string read and the store instructions of the string
write appear in an interleaved fashion. The ob-
vious difference is that the loads are untainted in
the safe string operation while tainted in the unsafe
string operation. If we regard table reference as “se-
lect” and interleaving read/write as “loop”, we can
see that the safe string operation is loop-in-select
structure in Fig. 5. And, we can also see that un-
safe string operation is select-in-loop structure in
Fig. 6. Existing DTPs don’t pay attention to non-
local structures such as loop-in-select and select-in-
loop, so they fall into table reference trade-off.

3.2 Loop-in-Select Structure Detection
3.2.1 Abstract of Algorithm
We proposed SWIFT12), which is a proper

method to distinguish loop-in-select and select-in-
loop structures. Unlike existing DTPs, SWIFT
doesn’t track information flow instruction by in-
struction. SWIFT only observes address trace of
executed load/store instructions and detects select-
in-loop string operations.

SWIFT detects sequential memory accesses as
string accesses. Moreover, SWIFT detects inter-
leaving string read and write as string operation. If
the read string is tainted, SWIFT detects this string
operation as a select-in-loop string operation and
propagates tainted information from the read string
to the write string.

3.2.2 Streams and Interleaving Pair
A read stream is a sequence of read accesses to a

string, and a read access in a read stream is referred
to as a stream read. Likewise, a write stream is a
sequence of write accesses to a string, and a write
access in a write stream is referred to as a stream
write.

The purpose of the algorithm is to detect an
interleaving pair of a read stream and a write
stream. Fig. 7 shows an example of an interleav-
ing pair. This figure shows an address trace of
base64 encode. In an interleaving pair, the stream
reads and writes appear in turn. The read stream is
divided into plural read substreams by occurrences
of the stream writes, and vice versa. Each of the
read/write substreams contains one or more stream
reads/writes. And, a read/write access in the read/
write stream of an interleaving pair is referred to as
an interleaving-stream read/write.

3.2.3 Tables
Two tables are used to detect read and write

streams. Each of the entries of the read/write stream
tables is allocated to a stream.

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

163 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

 56940

 56950

 56960

 56970

 56980

 56990

 57000

 57010

 57020
 150 200 250 300 350 400 450 500

tim
e

address

base64encoding

untainted_load
tainted_load

untainted_store
tainted_store

Fig. 7 Address trace of base64 encode

The entry of the tables has the following fields:
• start The start address of the stream.
• next The predicted next address of the stream.
• n access The current number of accesses in the

stream.
• n substrm The current number of substreams in

the stream.
• switched A flag to calculate n substrm.
3.2.4 Stream Read/Write Detection
On a read access to addr, next of all the entries

of the read table is compared to addr. If there is no
match, a new entry is created, start, next, n access
are initialized to addr, the address next to add, and
one. If there is a match, n access is incremented
and next is advanced for the future access. An en-
try with n access greater than a threshold is recog-
nized to represent a read stream. In other words, if
addr matches the next and n access is greater than
a threshold, the read access is detected as a stream
read. And, the same holds true for the write table
and write accesses.

3.2.5 Interleaving Stream Read/Write Detec-
tion

When a stream write is detected, the switched
flags of all the entries of the read (not write) ta-
ble are set. After that, a read access of a stream
is detected as the first access to a new substream
because switched is set. Then, n substrm is incre-
mented, and switched is reset for the possible sec-
ond access in the same substream. An entry with
n substrm greater than a threshold is detected as the
read stream of an interleaving pair. In other words,
if addr matches the next and n substrm is greater
than a threshold, the read access is detected as an
interleaving stream read. Likewise, the same holds
true for the write table and write accesses.

3.2.6 Propagation and Backtracking
Every time a stream read is detected, the tainted-

ness of the read is stored in the taintedness. Then,
when an interleaving stream write is detected, the
taintedness of the written word is set to the value of
taintedness.

When the detector detects streams, the same
number of accesses as the threshold have already
been performed. Thus, backtracking is needed,

���������

�

��

�	�
��
�����
��

�	�

�����

��
�������
�

����

���
���

��������
�����
��

�� ��

 ���
!"�

�"��

#�$����
�����%
���������

Fig. 8 General view of implementation

���������

�

��

��	
	

��
����
�������������
�
��������
�����

�� ��
�����
��!�

"

�#���������������

�����#���$�%�
��!���#��

�&

��
����
�
�'�(���
����
�	�����������������������	���
!�
)))
*+,-%./0��������1�
-2%34/55��������6�������7
/**89,��������������1�:���
*+,-%./0��������1�
-2%34/55���������;#���$�%�
��!�;
/**89,��������������1�:��<

��
����
�
�'�(���������
�	�����������������������	���
!�
)))
*+,-%./0�������1�
-2%34/55��������;�����
;
/**89,�������������1�:���
�� ��

=+,-%/**89,%�%>/,-5+0���
��? ? ? ? ? ? ? ? ? ? ? ��

��? ? ? ? ? ? ? ? ? ? ? � �
"

=��%#���$�%�
��!����
��? ? ? ? ? ? ? ? ? ? ? ? ��
"

@>@�����)!���
�!�
��
����
�

=����
����
�

=�
!�	��!�

�
!���

@>@�����	�
8
���'�!�������!�
�����A�����	��!��� *��������!�

@>@�#����)�
�
��
����
�

Fig. 9 Relationship among script, intermediate code and
source code

that is, these written characters should also be
tainted. The start field of the entry is mainly used
to locate the start address of the stream.

4. Implementation of SWIFT to PHP

This section explains how to implement SWIFT
to PHP. Since SWIFT only focuses on address
traces of a program execution, it can be imple-
mented both on script interpreters and on proces-
sors.

PHP is widely used in the world as script lan-
guage designed for server-side web applications.
By implementing SWIFT to PHP, coverage is lim-
ited for PHP, but a highly accurate DTP can be im-
plemented in the range of taint-support PHP. And it
is easy for SWIFT to be popularized.

We first give an overview of implementation in
section 4.1. After that, we briefly summarize ease
of taint propagation in interpreters and native func-
tions from the point view of platform DTPs and lan-
guage DTPs in section 4.2. In section 4.3, we ex-
plain PHP interpreter. Finally, we explain how to
acquire memory addresses on the source code of the
interpreter in detail in section 4.4.

4.1 Overview
Fig. 8 shows the general view of our implemen-

tation. A script of PHP is compiled to the interme-
diate code by a runtime compiler and is executed
by an executor. We have already had SWIFT en-
gine, which has hash table of taint-bit whose access
keys are memory addresses. What we have to do is
to get memory addresses from a source code of the
executor by inserting hook functions.

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

164 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

struct zval struct {
zvalue value value; /* value */
zend uint refcount gc;
zend uchar type;
zend uchar is ref gc;

}zval ;

Fig. 10 Zval structure

4.2 Ease of Taint Propagation: interpreters
and native functions

In platform DTPs, it is difficult to propagate
tainted information through an interpreter because
there is mass of interpreting noise, while it is easy
to do through native functions because there is no
influence of interpreting noise. Interpreting noise is
instructions executed only for interpreting scripts,
which provide no help in information flow tracking.
Tens of native instructions are needed just in order
to interpret a single instruction of the intermediate
language of scripts. And these instructions are not
directly related to information flow tracking, so for
the script injection attack detection, it behaves as
noise.

In language DTPs, however, ease of taint prop-
agation mentioned above is reversed. It is easy
to propagate tainted information through an inter-
preter because we can utilize interpreter’s informa-
tion, while it is difficult to do through native func-
tions because we can’t utilize interpreter’s informa-
tion. In this research, we acquire memory addresses
from each native functions reading source code.

4.3 PHP Interpreter
4.3.1 Relationship among Script, Opcode

and Source code
We use Fig. 9 in order to describe relationship

among scripts, intermediate codes and source codes
of PHP interpreter. The left script in Fig. 9 is a sam-
ple script.

The intermediate code is an ordered array (an op
array) of instructions (known as opcodes)15), such
as DO FCALL and ASSIGN. We call source codes
of each opcodes zend opcode handlers.

The sample script uses base64 encode, which is a
PHP built-in function. We call source codes of each
PHP built-in functions zif functions. Zif functions
correspond to native functions.

The sample script also uses caselow, which is
a PHP user-defined function. In an intermediate
code, PHP user-defined functions are op arrays as
well, as if they were miniature scripts.

Therefore, we have only to acquire memory ad-
dresses from zend opcode handlers and zif func-
tions.

4.3.2 Variable Management
In PHP, all variables are zvals. Fig. 10 and Fig. 11

show zvals C structure and its complementary data
container.

To access the data in the various types, you can

typedef union zvalue value {
long lval;
double dval;
struct {

char *val; /* string value */
int len;

} str;
HashTable *ht;
zend object value obj;

} zvalue value;

Fig. 11 Zval’s data container

Table 1 Memory-management Wrapper Functions
Function Usage
void *emalloc(size t size) malloc() replacement
void efree(void *ptr) free() replacement
void *erealloc(void *ptr, size t size) realloc() replacement
char *estrndup(char *str) strndup() replacement

use the macros, which take zvals as their arguments.
For instance, if you want to extract the string buffer
for zval, zval* or zval**, you would use Z STRVAL,
Z STRVAL P or Z STRVAL PP.

4.3.3 Memory Management
PHP interpreter uses its own internal memory-

management wrapper functions. Table 1 shows
memory-management wrapper functions.

4.4 Acquisition of Memory Addresses
We explain how to acquire memory addresses.

Because we can utilize information of the inter-
preter’s source code, there is no influence of inter-
preting noise, namely we can acquire only memory
addresses of strings. We acquire memory addresses
from zend opcode handlers and zif functions.

4.4.1 Zend Opcode Handler
String access opcodes are the following:
• ASSIGN, ASSIGN DIM
• ADD CHAR, ADD STRING, ADD VAR
• BW AND, BW NOT, BW OR, BW XOR
• CONCAT
• POST INC, POST INC OBJ
• PRE INC, PRE INC OBJ

We focus on zend opcode handlers corresponding
to these opcodes. In zend opcode handlers, string
access is done by using the macros mentioned in
section 4.3.2, so we can recognize string access.
However, we don’t get memory addresses from all
macros, because the macros only return the pointer
to the string. We get memory addresses only when
a memory area where string is stored moves to an-
other memory area. There are two actual cases.

One case is that memory-management wrapper
functions take the macros as their arguments. The
function to which we should pay attention is the fol-
lowing: estrndup, erealloc, memcpy. Memcpy is C
built-in library function. Estrndup and erealloc use
memcpy internally. Address trace of memcpy is in-
terleaving read and write. For example, we can find
source code as below:

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

165 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

PHPAPI unsigned char *php base64 encode
(const unsigned char *str, int length, int *ret length)
{

const unsigned char *current = str;
unsigned char *p;
unsigned char *result;
/* ... */
while (length <2) {

swift load((char*)current,1);
swift store((char*)p,1);
*p++ = base64 table[current[0] >>2];
swift load((char*)¤t[1],1);
swift store((char*)p,1);
*p++ = base64 table[((current[0] & 0x03)
<<4) + (current[1]>>4)];

/* ... */
}

Fig. 12 Acquisition of memory addresses from zif function

memcpy(Z STRVAL P(result), Z STRVAL P(op1),
Z STRLEN P(op1));

In this case we should get addresses of
Z STRVAL P(result) and Z STRVAL P(op1).
Z STRVAL P(op1) corresponds to read string, while
Z STRVAL P(result) corresponds to write string.

Another case is that the macros access an element
of the string by using subscript. For example, we
can find source code as below:

Z STRVAL P(T->str offset.str)[T->str offset.offset]
= Z STRVAL(tmp)[0];

In this case we should get the addresses of right
and left operands as read access and write access.

4.4.2 Zif Functions
There are about a hundred zif functions from

which we have to get memory addresses. For
example, urlencode, base64 encode, ereg replace.
Because only pointers to char are passed to zif
functions, we must read the source code and get
memory addresses mechanically . In source code
of base64 encode, we get memory addresses like
Fig. 12

Reading the source code, we find that the vari-
able current corresponds to read string and the
variable p corresponds to write string. We use
swift load and swift store as hook functions to get
memory addresses. The first argument of these
functions is memory addresses of load/store access
and the second arguments is bytesize of load/store
access.

5. Evaluation

5.1 Evaluation Method
5.1.1 Environment
We implemented SWIFT to PHP-5.3.1. As for

PHP-taint, we used PHP-taint 20080622 package3).
PHP-taint is first implementation of taint support
for PHP released November 2007. Table 2 shows
the evaluation environment we set.

5.1.2 Methodology
To evaluate the taint propagation accuracies, we

checked which substring of the output string is

Table 2 Evaluation environment
PHP-SWIFT modified PHP-5.3.1

PHP-taint PHP-taint 20080622 package
OS Ubuntu 9.04

Web Server Apache 2.2.14
SQL Server Mysql 5.1.37

tainted when the target programs call sensitive
functions.

To evaluate the performance overhead, we in-
serted microtime function, which is a PHP built-in
function, into first and last of the scripts and mea-
sured execution time of interpreting scripts.

5.2 Taint Propagation Accuracy
5.2.1 String Operations
Table 3 summarizes the result of basic string

operations. The string operations include string
copies, case and code conversions, which are com-
monly used in web applications. (2) to (7) are PHP
built-in functions, thus they are written in C.

(1)concatenation, (2)substr(), and (3)ereg replace()
execute string copies in the ends of operations,
and all the models can propagate taint correctly.
(4)ereg() is regular expression match, and all the
model untaint the scalar result.

(5)strtoupper/strtolower() are case conversions.
(6)urlencode/urldecode() and (7)base64 encode/

base64 decode() do encode and decode operations.
As a result, PHP-taint untaints the outputs of all
these functions.

(8)untaint table and (9)taint table retrieve values
from tables with taint keys.(8)untaint and (9)taint
table have been stored untaint and taint values, re-
spectively. Since PHP-taint regards the values from
tables as safe, it results in false negative in (9)taint
table. On the other hand, PHP-SWIFT can track
the flow between the input and the output values
through a table.

(10) is a uppercase conversions code, shown in
Fig. 4(b). Though the function is the same as (5)str-
toupper(), it is written in PHP. (10) is written with
a switch statement construction. PHP-SWIFT pro-
duce no false positives or negatives, because PHP-
SWIFT can correctly propagate tainted information
for all the operations. So, even if programmers
use operations such as these to be the input argu-
ments of applications, PHP-SWIFT could also pro-
vide high precision.

5.2.2 Real-World Web Applications
We executed seven web applications with known

vulnerabilities written in PHP. The applications are
phpSysInfo 2.3, QwikiWiki 1.4.1, phpBB 2.0.8,
PHP-Nuke 7.5, Cubecart 3.0.3 and PHP-Nuke 7.1.
To choose the web applications, we selected appli-
cations whose specific exploit codes can be found
on the web. These applications use some input vari-
ables as an argument without validation or even any
string operations to them. We made Script injection

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

166 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

Table 3 Results of string operation
Operation PHP-SWIFT PHP-taint

FN FP FN FP
(1) concatenation
(2) substr()
(3) ereg replace()

√

(4) ereg()
(5) strtoupper/tolower()
(6) urlencdoe/decode()

√

(7) base64 encode/decode()
√

(8) untaint table
(9) taint table

√

(10) toupper (switch-statement)
√

FN : false negative FP : false positive

http://[target]/qwiki/index.php?page=
../_config.php%00

(a) Attacke code

data/../_config.php%00

(b) Path argument

Fig. 13 Qwikiwiki vulnerability

attacks such as cross-site scripting (XSS), SQL in-
jection and directory traversal according to the ex-
ploit code. As summarized in Table 4, PHP-SWIFT
caused no false positives or negatives. But PHP-
taint produced false negatives.

Cubecart 3.0.3 and PHP-Nuke 7.1 use base64 in
a risky way. As described in section 2.4, to ex-
ploit these vulnerabilities, attackers should make
the attack code to be base64 encoded, and use these
base64 encoded code to create a specially crafted
URL.

The vulnerabilities of other web applications are
elementary.

In the rest of this section, we will explain Qwiki-
Wiki 1.4.1 and PHP-Nuke 7.1 in detail.

QwikiWiki 1.4.1
QwikiWiki 1.4.1 has a directory traversal vulner-

ability in “index.php”. It allows attackers to read
arbitrary files via a .. (dot dot) and a %00 at the end
of the filename in the page parameter.

For example, the attack code is configured as
Fig. 13(a). Then, it raised open() system call with
the string in Fig. 13(b) as its path argument. It will
open config.php that an attacker is not allowed to
access. PHP-SWIFT successfully tainted the under-
lined substring.

Qwikiwiki first stores the parameters such as
page into a hash table, then it uses them from the
table. Therefore, the same situation as (9) taint ta-
ble in the previous subsection occurs.

PHP-Nuke 7.1
PHP-Nuke 7.1 has a SQL injection vulnerabil-

ity in ”modules.php”. When we check the source
code of ”modules.php”, we could find the code in
Fig. 14(a).

$nukeuser =
base64 decode($user);

(a) PHP statement

http://[target]/nuke71/modules.php?name=
Private_Messages&file=index&folder=
inbox&mode=read&p=1&user=eDpmb28nIFVO
SU9OIFNFTEVDVCAyLG51bGwsMSwxLG51bGwvKjox

(b) Attack code

$nukeuser:
x:foo’ UNION SELECT 2,null,1,1,null/*:1

(c) SQL injection code

Fig. 14 PHP-Nuke vulnerability

Table 4 Results of web applications
Program Attack PHP-SWIFT PHP-taint

FN FP FN FP
phpSysInfo Cross-site

2.3 scripting
Qwikiwiki Directory √

1.4.1 traversal
phpBB Cross-site √
2.0.8 scripting

PHP-Nuke SQL √
7.5 injection

CubuCart Cross-site √
3.0.3 scripting

PHP-Nuke Cross-site √
7.1 scripting

PHP-Nuke SQL √
7.1 injection

FN: false negative FP: false positive

Table 5 Performance overheads
Program Attack Overhead

phpSysInfo Cross-site 6%2.3 scripting
Qwikiwiki Directory 95%1.4.1 traversal

phpBB Cross-site 72%2.0.8 scripting
PHP-Nuke SQL 35%7.5 injection
CubuCart Cross-site 84%3.0.3 scripting
PHP-Nuke Cross-site 53%7.1 scripting
PHP-Nuke SQL 36%7.1 injection

And we can see the base64 decoded global vari-
able $nukeuser, the application did nothing to
validate the variable. So it means the variable
$nukeuser can contain user supplied data with
out sanitization and lead to sql injection.

For example, if an attacker input a spe-
cially crafted URL in Fig. 14(b), $nukeuser in
Fig. 14(c) is generated after base64 decode func-
tion. Concatenating the substring of $nukeuser
and the constant strings a programmer provided, an
attack sql query is produced.

In the issue, we could bypass the user-level au-
thentication by this exploit.

5.3 Performance
Table 5 shows the performance overheads for

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

167 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

web applications against an unmodified version of
PHP. The overhead is between 6% to 95%, with
an average of 55%. This overhead is bigger than
prior result reported by PHP-taint3). Optimization
of implementation is our future work.

6. Related Work

6.1 Existing DTPs
This subsection summarizes existing DTPs from

the viewpoint of non-propagation policy. Non-
propagation policy is a policy when NOT to propa-
gate tainted information. It is as important as how
to propagate tainted information, because a perfect
DTP, which can perfectly track all kind of informa-
tion flow(data flow, address flow, and control flow),
would mark all the output as tainted and such DTP
is useless.

As far as we know, all the current DTPs define
non-propagation policyon heuristics, such as about
sanitization or table reference.

Perl taint mode
As described before, the notion of DTP was first

introduced by taint mode of Perl2).
Perl’s Taint Mode is a collection of specific re-

strictions to help programmers to write safer scripts.
While in this mode, Perl takes special precautions
called taint checks to prevent security traps which
originate from external data. It make the external
data be tainted, and tainted data is prevented from
being used directly or indirectly in any conditions
which contains potential hazard, such as invoke a
sub-shell, modify files or directories, send sensitive
data over network. Since it is the first implemen-
tation of DTP, the non-propagation rules are not so
sophisticated.

The only way to clean taint bits of variables is to
do a regular expression match. Subpatterns from
regular expression matches and values used as keys
in a hash table are untainted. And it does not track
control flows.

DTP for Java string
Haldar et al. implemented a modified java.lang.

String for DTP6). It specifies sources and sinks
for the J2EE library. And it associated a taint flag
with every string to track the taintedness of strings.
It taints strings and propagates tainted information
from sources to sinks. Strings are untainted when
passed through regular expression matches, or been
tested for the presence of a particular character.

It trust the programmer to have performed a
meaningful check that accounts for all cases that
might be exploitable in an attack. But the most
commonly vulnerabilities are caused by program-
mer’s faulty input validations or faulty coding. So
it could not provide a precise detection for script
injection attacks.

Raksha
Raksha is one of the latest descendants of plat-

form DTP. Raksha architecture provides a flexibil-
ity DTP proposal for taint propagation11). And the
most significant attribute of Raksha is it points out
platform DTP systems can also detect script injec-
tion attacks.

It supports multi-bit taints and extends taint prop-
agation registers which can follow four different
policies. Processor provides a comprehensive plat-
form, so it can work with arbitrary binary and in-
dependency of code languages. It could deal with
a wide range of web application attacks and work
with any programs which written in multiple code
languages.

The main non-propagation policy of Raksha is to
untaint when bounds check is detected, more pre-
cisely, to untaint a register when it is compared.
And Raksha does not track address flows by de-
fault, in order not to propagate tainted information
through hash tables or arrays. Although Raksha can
be configured to track address flows, it results in
mass of false positives11).

As just the same as the other DTPs, it does not
track control flows.

Source transformation for C
Xu et al. applies a taint analysis to a source-

to-source transformation of C programs targeting
not only for binary but also for script injection at-
tacks8),9). It can transform script language inter-
preters written in C into ones resistant to injection
attacks.

Though the approach itself is very comprehen-
sive, the non-propagation policy is quite poor. For
example, it propagate tainted information through
hash tables.

String conversions, such as case conversions or
coding conversions are very commonly used in web
applications. When the source string is tainted, the
converted string should also be tainted. Such code
conversions, however, sometimes utilize hash ta-
bles.

It is still difficult even for the static analyzer to
distinguish string conversions using hash tables be-
cause syntactic structures of the target programs are
complicated. Therefore, they decided to propagate
tainted information even through hash tables, which
leads to a mass of false positives.

6.2 Blackbox Detection
Prithvi et al. develop an approach and a tool to

identify server-side input validation problems, es-
pecially parameter tampering vulnerabilities, using
a black-box analysis of the server16). The tool is
called NoTamper. First of all, NoTamper analyzes
each form on the web page and constructs logical
formulas representing the constraint-checking func-
tion. Then, it submits hostile and benign inputs to

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

168 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

the server, and compare each hostile response to be-
nign responses. Finally, a human tester verify hos-
tile inputs as parameter tampering vulnerabilities.

Though this approach itself is comprehensive, it
cannot offer guarantees of completeness because of
the inherent limitations of black-box analysis. In
addition, the approach can only detect parameter
tampering vulnerabilities, while DTPs, including
SWIFT, can detect various kinds of server-side in-
put validation attacks, which can execute arbitrary
malicious codes.

As a result of their evaluation, they were able to
confirm only 9 exploits out of 50 tampering oppor-
tunities. 43 cases are false positives. The false pos-
itive rate is very high. Moreover, examining 50 op-
portunities takes time.

7. Conclusion

In this paper, we implemented SWIFT to PHP.
SWIFT is a completely different approach from
conventional DTPs. In order to detect script in-
jection attacks precisely, SWIFT observes mem-
ory accesses of a target programs, detects select-
in-loop string operations and propagate tainted in-
formation through them. Since SWIFT only uses
address traces of a program, it can be implemented
both on script language interpreters and on proces-
sors.

We implemented SWIFT to PHP, compared the
accuracy with taint-support PHP and evaluated the
performance overhead. PHP-SWIFT can correctly
propagate tainted information for typical string
operations and real-world web applications with
known vulnerabilities, while PHP-taint don’t. And
the average performance overhead is 55%.

In this research, we did naive implementation of
SWIFT to PHP. Thus, we are interested in opti-
mization of implementation so as to reduce the per-
formance overhead. This is our future work.

Another plan for the future work is to do further
evaluation using real-world web applications with-
out known vulnerabilities. We want to verify no
false positives are produced.

We are planning to distribute PHP-SWIFT in the
near future.

Acknowledgments

This research was partially supported by Core
Research for Evolutional Science and Technology
(CREST) of the Japan Science and Technology
Agency (JST), and by Grant-in-Aid for Scientific
Research (B) No.22300014 from Ministry of Ed-
ucation, Culture, Sports, Science and Technology
Japan.

References
1) NIST: National Vulnerability Database. http://web

.nvd.nist.gov/view/vuln/statistics.
2) Allen, J.: Perl Version 5.8.8 Documentation -

Perlsec (2006). http://perldoc.perl.org/perlsec.pdf.
3) Venema, W.: Taint support for PHP (2008).

http://wiki.php.net/rfc/taint.
4) Pietraszek, T. and Berghe, C.: Defending against

Injection Attacks through Context-Sensitive String
Evaluation, 8th Int’l Symp. on Recent Advances in
Intrusion Detection, pp. 124–145 (2005).

5) Nguyen-Tuong, A., Guarnieri, S., Greene, D.,
Shirley, J. and Evans, D.: Automatically Hardening
Web Applications using Precise Tainting, 20th Int’l
Information Security Conf. (2005).

6) Haldar, V., Chandra, D. and Franz, M.: Dynamic
Taint Propagation for Java, 21st Annual Computer
Security Applications Conf. (2005).

7) Livshits, B., Martin, M. and Lam, M. S.: SecuriFly:
Runtime Protection and Recovery from Web Ap-
plication Vulnerabilities, Tech. Rep., Stanford Univ.
(2006).

8) Xu, W., Bhatkar, S. and Sekar, R.: Practical Dy-
namic Taint Analysis for Countering Input Vali-
dation Attacks on Web Applications, Tech. Rep.
SECLAB-05-04 (2005).

9) Xu, W., Bhatkar, S. and Sekar, R.: Taint-Enhanced
Policy Enforcement: A Practical Approach to De-
feat a Wide Range of Attacks, 15th USENIX Security
Conf., pp. 121–136 (2006).

10) Suh, G. E., Lee, J. W., Zhang, D. and Devadas, S.:
Secure Program Execution via Dynamic Informa-
tion Flow Tracking, 11th Int’l Conf. on Architectural
Support for Programming Languages and Operating
System (2004).

11) Dalton, M., Kannan, H. and Kozyrakis, C.: Raksha:
A Flexible Information Flow Architecture for Soft-
ware Securit, 34th Int’l Symp. on Computer Archi-
tecture, pp. 482–493 (2007).

12) Li, K., Shioya, R., Goshima, M. and Sakai, S.:
String-wise information flow tracking against script
injection attacks, IEEE Int’l Symp. on Pacific Rim
Dependable Computing (PRDC 2009), pp. 169–176
(2009).

13) Su, Z. and Wassermann, G.: The Essence of Com-
mand Injection Attacks in Web Applications, 33rd
Symp. on Principles of Programming Languages
(2006).

14) Dalton, M.: THE DESIGN AND IMPLEMEN-
TATION OF DYNAMIC INFORMATION FLOW
TRACKING SYSTEMS FOR SOFTWARE SECU-
RITY , PhD Thesis, Stanford University (2009).

15) Schlossnagle, G.: Advanced PHP Programming,
DEVELOPER’S LIBRARY (2003).

16) Bisht, P., Hinrichs, T., Skrupsky, N., Bobrowicz,
R. and Venkatakrishanan, V.: NoTamper: Automatic
Blackbox Detection of Parameter Tampering Oppor-
tunities in Web Application, CCS ’10 Proceedings of
the 17th ACM conference on Computer and commu-
nications security, pp. 607–618 (2010).

先進的計算基盤システムシンポジウム SACSIS 2011
Symposium on Advanced Computing Systems and Infrastructures

169 ⓒ 2011 Information Processing Society of Japan

SACSIS2011
2011/5/26

