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Global Image Registration using Random Projection

Shuang Lu,†1 Hayato Itoh,†1 Tomoya Sakai†2

and Atsushi Imiya †3

Using the efficient random projection, we develop an efficient algorithm that
establishes global image registration. Image registration, which is the first pro-
cess in image data alignment and applied in remote sensing, image processing,
medical image analysis, robot vision, car mounted vision system, and industrial
image inspection. The current image registration techniques are classified into
local registration and global registration. Our aim in this paper is to speed
up global registration using random projection. Random projection refers to a
simple technique of projecting a set of points from a high-dimensional space to
a randomly chosen low- dimensional subspace and can preserve the geometric
properties in the higher-dimensional space. We develop a global registration
using random projection We use spectrum spreading and circular convolution
to reduce computational cost of random projection.
Keywords : Image Registration, Global Registration, Random Projection,
Spectrum spreading, Circular convolution, Nearest Neighbor Search

1. Introduction

In this paper, we develop a global image registration using random projec-

tion2)–4). Image registration is a fundamental task for image analysis. For in-

stance, in computer vision, image registration is a pre-processing for automatic

target recognition and image mosaicing. In medical image analysis, the processing

is used for monitoring tumor growth and treatment verification. In cartography

and geographic information systems (GIS), the method is used for map updat-

ing and integrating of multichannel images5). Therefore, image registration is a

crucial step to combine various data sources for in image.

Image registration overlays two or more images, which are the same sense

observed at different times, from different viewpoints, and/or by different sensors.
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Fig. 1 Affine Transformation and Flow of Global Registration

In general, there are parallel, rotation, scaling, and shearing spatial relationship

between reference image and template images. Therefore, image registration is an

estimation process of these geometric transformations that transform all points

or most points of the template images to points of the reference image. For

estimation of these spatial transformations, various methods are developed5),6).

Image registration method generally classified into local image registration and

global image registration. For global alignment images, linear transformation

x′ = Ax+ b. (1)

is used to relate the template image to the reference image. Figures 1(a) 1(b)

show linear transformation and the procedure of global registration, respectively.

the nearest neighbour based image registration detects the transformation

which establishes the best matching from generated transformations. Performing
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Fig. 2 Geometry of random projection. (a) Random Projection 3D → 2D. (b) 2 points
P ′
1 and P ′

2 in 3-dimensional space correspond to points P1 and P2, respectively in
2-dimensional space after random projection.

the inverse affine transformation on template image with the affine parameters,

we obtain a new image that approximate the reference image. Then, the regis-

tration is completed.

However, there is a computational cost problem on parameters estimation us-

ing nearest neighbour search (NNS). To reduce the computational cost of NNS

without significant loss of accuracy, random projection refers to a simple tech-

nique of projecting a set of points from a high-dimensional space to a randomly

chosen low- dimensional subspace1) and can preserve the geometric properties

in the higher-dimensional space. Our aim in this paper is to speed up global

registration using random projection.

2. Random Projection

Let u = (u1, . . . , un)
T and v = (v1, . . . , vk)

T be a column vector in n-

dimensional Euclidean space and the target column vector in k-dimensional Eu-

clidean space(k < n). Using a uniform random orthonormal matrix R and scale,

v =

√
n

k
RTu, (2)

where the scaling factor
√

n
k is selected to ensure the expected squared length of

v equal to the squared length of u.

Random projection approximately preserves pairwise distances with high prob-

ability. The Johnson-Lindenstrauss lemma ensure this precise.

Lemma 1 (Johnson−Lindenstrauss)7) For any 1
2 > ε > 0, and any set

of points X in R
n, according to eq. (2), upon projection to a uniform random

k-dimensional subspace, where k ≥ 4
ε2/2−ε3/3 logn the property least 1

2 ,

(1− ε)|u− v|2 ≤ |f(u)− f(v)|2 ≤ (1 + ε)|u− v||2 (3)

is satisfied for every pair u and v and their projection f(u) and f(v).

Frankl and Maehara8) have shown that the Lemma 1 is true when the projection

matrix R is a Random orthonormal matrix, that is, each entry of the random

matrix is selected independently from the standard normal distribution N(0, 1)

with mean0 and variance 1. Note that the scaling factor is different. Pairwise

distance is the distance between random 2 points in n-dimensional space.

3. Efficient Random Projection

Let w = [w1, . . . , wd]
� be an independent, such that, with E[w] = 0,

E[ww�] = γ2I. Using he (i − 1)-time shifting of w such that ci =

[wi, . . . , wd, w1, . . . , wi−1]
�, we define the matrix

C =

⎡
⎢⎣

c�1
...

c�d

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

w1 w2 · · · wd−1 wd

w2 w3 · · · wd w1

...
. . . · · · . . .

...

wd w1 · · · wd−2 wd−1

⎤
⎥⎥⎥⎥⎦ . (4)

Since

E(c�i cj) = { γ2d (i = j)

0 (i �= j)
(5)

we have the relation

E[|y|22] = E[
k∑

i=1

(c�i x)2]

=

k∑
i=1

x�E[cic
�
i ]x =

k∑
i=1

x�γ2Ix = kγ2|x|2. (6)

We set γ = 1/
√
k. Using discrete Fourier transform, the circular convolution is

efficiently computed. Even if distances are preserved, Lemma 1 is not ensured

for random set X ⊂ Rd.

Spread-spectrum is a method by which a signal generated in a particular band-
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Algorithm1 Preparation of random projection

Input : d: former dimension;

k: target dimension;

1 w = [w1, . . . , wd]
�, wi(i = 1, . . . , d)

is satisfied with independent distribution of

standard deviation 1√
k
and

the mean of wi is 0;

2 ŵ = F [w]:Fourier transform

3 s = [s1, . . . , sd]
�,

si(i = 1, . . . , d) ∈ {+1,−1};
4 L = l1, . . . , lk ⊂ 1, . . . , d,

all elements of L is not duplicate;

Output :ŵ, s,L.

width is deliberately spread in the frequency domain, resulting in a signal with a

wider bandwidth. The direct-sequence spread spectrum (DSSS) is a modulation

technique. As with other spread spectrum technologies, the transmitted signal

preserves more bandwidth than the information signal that is being modulated.

Therefore, we can use the direct-sequence spread spectrum method to transform

F [x] to dense vector.

Let s = [s1, . . . , sd]
� be a set of independent stochastic columns such that

E[s] = 0 and E[ss�] = σ2I. We use s to transform x to be dense. Therefore, a

dense vector ζ is computed as

ζ = s� x = diag(s)x, (7)

where [s] is the diagonal matrix whose elements are {si}di=1. Then, we compute

y = [η1, . . . , ηk]
�, η = Cζ = C[s]x (8)

The expectation of norm is

E[|y|22] = kγ2σ2|x|22. (9)

To preserve E[|y|22] = |x|22, for γ = 1/
√
k and σ = 1. Therefore, X is projected

to Y using O(d) memory area and O(nd log d) calculation time.

Using efficient random projection, we propose an algorithm for image registra-

Algorithm2 Efficient random projection

Input : X = {x1, . . . ,xn ∈ Rd},
ŵ, s,L: the set from Algorithm 1;

1 for ∀xi ∈ X do

2 ζ = s� xi;

3 η = F−1[ŵ �F [ζ]∗];
4 yi = [ηl1 , . . . , ηlk ]

�;
5 end for

Output :Y = {y1, . . . ,yn ∈ R
k}

D 40000 16384 10000 6400 4096
T imeRP (s) 51.59 20.91 12.80 8.19 5.24
T imeERP (s) 0.017 0.017 0.016 0.016 0.017
Eresult 34187 34132 34418 34148 34322
EOriginal 34328 34328 34328 34328 34328

D 2500 1024 400 100 25
T imeRP (s) 3.21 1.32 0.52 0.13 0.03
T imeERP (s) 0.017 0.016 0.017 0.017 0.017
Eresult 34434 34519 32781 33742 31066
EOriginal 34328 34328 34328 34328 34328

Table 1 Computational Comparision: T imeRP : Computation time of basic random projec-
tion contains the time of choosing random matrix and performing random projection.
T imeERP : Computation time of efficient random projection contains the time of
preparation andperforming random projection. Eresult: Energy of result images.
EOriginal: Energy.

tion. The algorithm can not only save the computing cost, also register images

accurately. The flow charts are shown in Fig. 3.

4. Numerical Examples

Using efficient random projection, we propose an algorithm for image registra-

tion. The algorithm can not only save the computing cost, also register images

Projected dimension 100000 10000 1000 100 10
d 816.8 816.8 816.8 816.8 816.8
di 818.6 819.9 818.5 807.5 673.4

Table 2 Pairwise distance
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accurately. The flow charts are shown in Fig. 3.

We first evaluate performance of our random projection algorithm These re-

sults show that the computational time of basic random projection is be directly

proportional to the projected dimension number, although the computational

time of efficient random projection is always less than the time of basic random

projection and it is just change more or less. About the energy of result images,

Except energy of the result image that projected to 25-dimensional space, the en-

ergy is approximately preserved during the projection. The one of 25-dimensional

space is fail, because of the projected dimension is too small(25 
 65536). The

computational time of efficient random projection is not consider to the projected

dimension number, so there is no necessary to choose a very small projected di-

mensional space. The results show that if the projected dimension number is not

too small, pairwise distance will be aproximately preserved during the projection.

Next, we show the registration results under verious dimensionality reduction.

Algorithm

Input : IR: Reference Image,

IT : Template Image

Output : ÎT
1. Enlarge the size of the reference image and

the template image to the same size.

Then, coordinate the barycenter of

reference image and template image

to the center of the image domain.

2. Transform centered reference image

IR to n images

I1, . . . , In
by using affine transformation. (Ai, i = (1, . . . , n):

affine matrix)

3. Do efficient random projection on images of 2.

(Î1, . . . , În)

4. Do efficient random projection on centered template

image IT with the same random matrix as 2 used.

(IT−r)

5. Find the most approximate one Îk from Îi by using

nearestneighbor search. The corresponding affine

matrix is Ak.

6. Using inserse affine transformation, ÎT = A−1
k I′

T .

Figure 5 shows results of registration under verious dimensionality reduction in

random projection. Eq. (10) shows the estimated affine transformations under

verious dimensionality reduction in random projection.

A16384 = A10000 = A6400 = A4096 =

⎛
⎜⎝

0.9135 −0.4067 0

0.4067 0.9135 0

0 0 1

⎞
⎟⎠

4 c© 2011 Information Processing Society of Japan

Vol.2011-CVIM-177 No.7
2011/5/19



IPSJ SIG Technical Report

(a) D40000 (b)D16384 (c)D10000(d)
D6400

(e)
D4096

(f)
D2500

(g)
D1024

(h)
D400

(i)
D100

(j)
D25

Fig. 4 Rrandom projections of Images

Template Running time of Running time of
ERP parameters estimation

Image 1 339.303s 0.319s
Image 2 340.268s 0.317s

Table 3 Computational Times

A2500 = A1024 =

⎛
⎜⎝

0.9205 −0.3907 0

0.3907 0.9205 0

0 0 1

⎞
⎟⎠ (10)

A25 =

⎛
⎜⎝

1.3661 0.4177 0

−0.4177 1.3661 0

0 0 1

⎞
⎟⎠ .

Finally, we evaluate performance of the algorithm for different template.

The computational times are shown in table 3 and the estimated parameters

are.

(a) Refer-
ence

(b) Template (c) Result:
to 16384 di-
mension

(d) Result:
to 10000 di-
mension

(e) Result:
to 6400 di-
mension

(f) Result:
to 4096 di-
mension

(g) Result:
to 2500 di-
mension

(h) Result:
to 1024 di-
mension

(i) Result:
to 25 di-
mension

Fig. 5 Result images for verious dimensionality reduction with 256× 256 pixel-resolution.

A1 =

⎛
⎜⎝

0.9135 −0.4067 0

0.4067 0.9135 0

0 0 1

⎞
⎟⎠ , A2 =

⎛
⎜⎝

0.7697 0.9850 0

−0.9850 0.7697 0

0 0 1

⎞
⎟⎠ (11)
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Fig. 6 Running times for projected dimnsion.

5. Conclusions

In this paper, using the efficient random projection, we developed an efficient

algorithm that establishes global image registration. We introduced to use spec-

trum spreading and circular convolution to reduce computational cost of random

projection.

Extensions of the method to range images and 3D volumetric images are strigh-

forward.
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Appendix

A. The Nearest Neighbor Search

The nearest neighbor search (NNS) problem is the following: Given a set of n

points P = p1, . . . , pn in a metric space X, preprocess P closest to a query point

q ∈ X. The two most well-known methods are the k-nearest neighbor search and

the ε-approximate nearest neighbor search.

( 1 ) Near neighbour (range search): find one/all points in P within distance r

from q.

( 2 ) Spatial join: given two sets P ,Q, and find all pairs p ∈ P , q ∈ Q, such

that p is within distance r from q.

( 3 ) Approximate near neighbor (ANN): find one/all points p in P , whose dis-

tance to q is at most (1 + e) times of the distance from q to its nearest

neighbor.

In the algorithm of this page, we have used the approximate nearest neigh-

bours(ANN) which is: Find a point p ∈ P that is an ε-approximate nearest

neighbor of the query q in that for all p′ ∈ P ,d(p, q) ≤ (1 + ε)d(p′, q).
5.1 B. Image Compression by Random Projection

By expressing an image, for instance an 256× 256, as the matrix A such that

A = (a1,a1, . . . ,a256) (12)

where A ∈ R256×256 and ai ∈ R256 we first transform A to U ,

u ∈ R65536,u =

⎛
⎜⎝

a1

...

a256

⎞
⎟⎠ . (13)

For a random projection matrix R ∈ R1024×65536 which satisfies the relation

N(0, 1), we compute

v =

⎛
⎜⎜⎜⎜⎝

v1
v2
...

v1024

⎞
⎟⎟⎟⎟⎠ , v =

√
1

1024
R�u, (14)

and transform v to B such that

B ∈ R32×32,B =

⎛
⎜⎝

v1 v33 v65 · · · v993
...

...
...

. . .
...

v32 v64 v96 · · · v1024

⎞
⎟⎠ . (15)

Then, we can have compressed image B from A.

C. Compression by The Pyramid Transform

The pyramid transform reduces the size of signals and images with preserving

global appearances of them. For the discrete signal u = (u1, u2 . . . , uN )� the

pyramid transform of the factor 2

vn = w2n, wn =
1

4
(un−1 + 2un + un+1).

is expressed in the matrix form as

R = DG, D = I ⊗ e�2 , e
�
2 = (0, 1)�, G =

1

4

⎛
⎜⎜⎜⎜⎝

1 1 0 . . . 0 0

1 2 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 1

⎞
⎟⎟⎟⎟⎠ .

with the von-Neumann boundary condition. Furthermore, the pyramid transform

of factor k is expressed as Rk−1. Furthermore, for discrete images, R is defined

as

R =
1

2
(DG⊗ I + I ⊗DG),

where A⊗B is the Kroneker product of matrices A and B.

Since ρ(R) ≤ 1, we have the relation

|Ru1 −Ru2| ≤ |u1 − u2|.
This relation leads to the conclusion that the pyramid transform does not preserve

distance properties. Moreover, since (Ru1,Ru2) = (R�Ru1,u2), generally

(Ru1,Ru2)

|Ru1||Ru2| �=
(u1,u2)

|u1||u2| .
Therefore, the pyramid transform does not generally preserve angle properties.

7 c© 2011 Information Processing Society of Japan

Vol.2011-CVIM-177 No.7
2011/5/19


