
IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011)

Regular Paper

On Auto-tuned Pre/postprocessing for the Singular Value

Decomposition of Dense Square Matrices

Hiroki Toyokawa,†1 Kinji Kimura,†2

Yusaku Yamamoto,†3 Masami Takata,†4

Akira Ajisaka†2 and Yoshimasa Nakamura†2

An auto-tuning technique is devised for fast pre/postprocessing for the sin-
gular value decomposition of dense square matrices with the Dongarra or the
Bischof-Murata algorithms. The computation speed of these two algorithms
varies depending on a parameter and specification of computers. By divid-
ing these algorithms into several parts and by modeling each of them, we can
estimate their computation times accurately. This enables us to choose an
optimal parameter and the faster algorithm prior to execution. Consequently
the pre/postprocessing is done faster and the singular value decomposition is
applied faster to dense square matrices. Numerical experiments show the ef-
fectiveness of the proposed auto-tuning function. The I-SVD library, which
incorporates this auto-tuning function, has been published.

1. Introduction

The I-SVD algorithm 1)–4) is a fast and accurate algorithm for singular value
decomposition. The original I-SVD algorithm can be applied only to bidiagonal
matrices. Before we apply the I-SVD algorithm to a dense square matrix, a
preprocessing stage that transforms a dense square matrix to a bidiagonal matrix
should be applied to the matrix. In addition, a postprocessing stage is necessary,
which transforms the singular vectors of the bidiagonal matrix to those of the
original matrix.

The Dongarra 5) algorithm and the combination of the Bischof algorithm 6) and
the Murata 7) algorithm are fast pre/postprocessing. In this paper, we call the

†1 NS Solutions Corporation
†2 Graduate School of Informatics, Kyoto University
†3 Graduate School of System Informatics, Kobe University
†4 Graduate School of Humanities and Sciences, Nara Women’s University

combination of the Bischof algorithm and the Murata algorithm as the Bischof-
Murata algorithm. The computation time of the Bischof-Murata algorithm varies
according to the parameter called band width L. Therefore we have to choose
a proper value of the parameter L for fast computation. Furthermore the com-
putational cost of the Bischof-Murata algorithm is larger than that of the Don-
garra algorithm. However the Bischof-Murata algorithm consists of faster level-3
BLAS operations, while the Dongarra algorithm includes slower level-2 BLAS
operations. Since level-3 BLAS operations run much faster than level-2 BLAS
operations on modern processors 8),9), the Bischof-Murata algorithm is faster than
the Dongarra algorithm in some conditions.

A technique to select better algorithms and parameters is called auto-tuning.
For example Dackland, et al. 10) and Cuenca, et al. 11) propose a way for modeling
the performance of a matrix computation algorithm. For performance modeling,
polynomial functions, spline functions 12) and piecewise linear functions 13) are
used. However, it is difficult to estimate the whole computation time with func-
tions of one kind if the algorithm is complicated and composed of several parts.
In that case, the algorithms should be divided into several parts and modeling
of each of them should be done separately.

In this article, we divide the Bischof-Murata algorithm into three parts to
estimate its computation time accurately. We determine different function and
make estimation curves for the three phases individually. Furthermore, for the
Bischof-Murata algorithm, estimation curves depending on the parameter L are
also created. Based on these curves, a faster algorithm and a better value of the
parameter L can be determined.

2. Preprocessing and Postprocessing

In this section, we explain the Bischof-Murata and the Dongarra algorithms
briefly, focusing on the kind and size of BLAS routines used in the algorithms.

2.1 The Bischof-Murata Algorithm
In the preprocessing stage of the Bischof-Murata algorithm, a dense square

matrix A is transformed to a bidiagonal matrix B in two steps. In the following,
we denote the size of A by N . In the first step, A is transformed to a lower
triangular band matrix C with band width L using the Bischof algorithm 6). We

9 c© 2011 Information Processing Society of Japan

10 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

can choose the bandwidth L (1 ≤ L ≤ N − 1) freely. We call this step Bischof
preprocessing. In the second step, the matrix C is transformed to the bidiagonal
matrix B with the Murata algorithm 7). This step is called Murata preprocessing.
The singular values of B and C are same as those of A.

The postprocessing stage of the Bischof-Murata algorithm also consists of two
steps. In the first step, called Murata postprocessing, the singular vectors of B

are transformed to the singular vectors of C. In the second step, called Bischof
postprocessing, the singular vectors of C are transformed to those of A.

In the following, we explain each of these two preprocessing and two postpro-
cessing steps. For simplicity, we assume that N is divisible by L and define
N ′ = N/L. We regard A as an (N/L) × (N/L) block matrix whose block size
is L × L, and denote the submatrix of A consisting of the I1th through the I2th
block rows and the J1th through the J2th block columns by AI1:I2,J1:J2 . AI1:2,∗
means the submatrix of A consisting of the I1th through the I2th block rows and
all the block columns. The identity matrix of order k is denoted by Ik and the
transpose of matrix A is denoted by AT .

2.1.1 Bischof Preprocessing
The algorithm of Bischof preprocessing is shown as Algorithm 1. In this

algorithm, we transform the input dense matrix A to a lower triangular band
matrix by eliminating its block rows and block columns step by step. Here, for
an M × L matrix X, BlockHouse(X) denotes a subroutine that computes a
block Householder transformation 14) IM − Y TY T (Y ∈ RM×L, T ∈ RL×L)
that transforms X to a matrix whose first block is upper triangular and all the
subsequent blocks are zero. After we have executed Algorithm 1, the matrix A

contains a lower triangular band matrix, which we denote by C.
The computationally heaviest parts of Algorithm 1 are applications of block

Householder transformations, in particular, Steps 3, 5, 7 and 9. As can be seen
from the algorithm, these computations can be done with matrix-matrix multipli-
cation, or BLAS routine DGEMM, which belongs to level-3 BLAS. For example,
Step 3 is a multiplication of a (N ′ − K + 1)L × (N ′ − K + 1)L matrix and a
(N ′−K +1)L×L matrix, while Step 5 is a multiplication of a (N ′−K +1)L×L

matrix and a L × (N ′ − K + 1)L matrix. Both of these matrix multiplications
require O(N2L) work. By summing up these computational work, we know that

the Bischof preprocessing requires 8N3/3 floating-point operations in the form
of DGEMM. Other computations, such as the construction of block Householder
transformations and computation of Steps 4 and 8, require only O(N2L) work in
total, which is much smaller than the work for DGEMM when L � N .

[Algorithm 1: Bischof preprocessing]
1: for K = 1, N ′ do
2: (Y (K)

R , T
(K)
R) = BlockHouse(AT

K,K:N ′)
3: F = AK:N ′,K:N ′Y

(K)
R

4: G = FT
(K)
R

5: AK:N ′,K:N ′ := AK:N ′,K:N ′ − G(Y (K)
R)T

6: (Y (K)
L , T

(K)
L) = BlockHouse(AK+1:N ′,K)

7: FT = (Y (K)
L)T AK+1:N ′,K:N ′

8: GT = (T (K)
L)T FT

9: AK+1:N ′,K:N ′ := AK+1:N ′,K:N ′

−Y
(K)
L GT

10: end for

2.1.2 Murata Preprocessing
In Murata preprocessing, we transform the lower triangular band matrix C to

a bidiagonal matrix B step by step. This is carried out by applying small House-
holder transformations of length L to C repeatedly. The number of Householder
transformations is N2/L and the computation is done with the level-2 BLAS.
The total computational work is 8LN2.

2.1.3 Murata Postprocessing
In Murata postprocessing, we apply the Householder transformations used in

Murata preprocessing to singular vectors of B in reversed order. To speed up the
computation, we combine L Householder transformations using a technique called
compact WY representation 14) and apply them at once using matrix-matrix mul-
tiplication. The combining process is called Creating compact WY representation,
while the applying phase is called Applying compact WY representation.

In applying compact WY representation, we perform multiplication of a 2L ×
2L matrix and a 2L × N matrix

(
N
L

)2
+ N

L times using DGEMM. The total

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

11 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

computational cost for this is 4N3. In addition, we need to do some data copy
operations, copying an L × N matrix

(
N
L

)2
+ N

L times. This is done with the
BLAS routine DCOPY. Note that DCOPY belongs to neither level-1, 2 nor 3
BLAS, because it does not perform any computation. Creating compact WY
representation requires O(N2L) work, which is much smaller than the work for
applying compact WY representation.

2.1.4 Bischof Postprocessing
The algorithm of Bischof postprocessing is shown as Algorithm 2. In this

algorithm, we apply the block Householder transformations generated in Bischof
preprocessing to the singular vectors of C in reversed order. In the algorithm,
V and U denote matrices whose column vectors are the right and left singular
vectors of C, respectively. The matrices Y

(K)
R , T

(K)
R , Y

(K)
L and T

(K)
L represent

block Householder transformations generated in Algorithm 1.

[Algorithm 2: Bischof postprocessing]
1: for K = N ′, 1,−1 do
2: WT = (Y (K)

R)T VK:N ′,∗
3: ZT = T

(K)
R WT

4: VK:N ′,∗ := VK:N ′,∗ − Y
(K)
R ZT

5: WT = (Y (K)
L)T UK+1:N ′,∗

6: ZT = T
(K)
L WT

7: UK+1:N ′,∗ := UK+1:N ′,∗ − Y
(K)
L ZT

8: end for

As can be seen from Algorithm 2, the algorithm consists entirely of the level-3
BLAS, or DGEMM. The computationally heaviest parts are Steps 2, 4, 5 and 7.
Step 2 is a DGEMM of a L × (N ′ − K + 1)L matrix and a (N ′ − K + 1)L × N

matrix, while Step 4 is a DGEMM of a (N ′ − K + 1)L × L matrix and a L × N

matrix. Both of these require O(N2L) work. Steps 5 and 7 are similar to Steps 2
and 4, respectively. The total computational work of Algorithm 2 is 4N3, all of
which are executed as DGEMM.

2.2 The Dongarra Algorithm
The Dongarra algorithm 5) transforms a dense square matrix A into a bidi-

agonal matrix B directly. This algorithm is implemented in the matrix library
LAPACK 15) and is widely used. In this subsection, we will explain the prepro-
cessing stage and the postprocessing stage of the Dongarra algorithm briefly. We
adopt the MATLAB notation and denote the submatrix of A consisting of the
i1th through the i2th rows and the j1th through the j2th columns by Ai1:i2,j1:j2 .

2.2.1 Dongarra Preprocessing
Like the Householder algorithm for bidiagonalization 8), the Dongarra algorithm

transforms the input matrix to a bidiagonal matrix step by step, eliminating one
row and one column at each step using Householder transformations.

At the step k of Dongarra preprocessing (1 ≤ k ≤ N − 1), we construct a
Householder transformation IN−k+1 − t

(k)
R y(k)

R (y(k)
R)T that transforms AT

k,k:N to
a vector whose first element is nonzero and all the other elements are zero. By
applying this Householder transformation to Ak:N,k:N from the left, as shown
below, we can eliminate the upper triangular elements of the kth row of A.

f = Ak:N,k:Ny(k)
R , (1)

g(k)
R = t

(k)
R f , (2)

Ak:N,k:N = Ak:N,k:N − g(k)
R (y(k)

R)T . (3)

However, in the Dongarra algorithm, we compute only Eqs. (1) and (2) at
step k. We wait performing the update operation (3) until k is a multiple of
M1, where M1 is a positive integer called block size, and then update A using
M1 vectors y(k)

R and g(k)
R (k = (k′ − 1)M1, . . . , k

′M1 for some k′). The update
operation can be done with DGEMM. On the other hand, Eq. (1) requires
matrix-vector multiplication, or DGEMV, which is a level-2 BLAS operation.
The elimination of columns are done in the same way. In summary, Dongarra
preprocessing consists of both DGEMM and DGEMV, each of which requires
4N3/3 computational work.

2.2.2 Dongarra Postprocessing
In Dongarra postprocessing, we apply the Householder transformations gener-

ated in the preprocessing stage to singular vectors of B in reversed order. In
applying the transformations, we combine M2 consecutive Householder trans-
formations, where M2 is some positive integer, and construct a compact WY
representation. Then, application of the M2 Householder transformations can be

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

12 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Table 1 Computational cost.

BLAS Dongarra Bischof Murata

Pre DGEMM 4N3/3 8N3/3
DGEMV 4N3/3 8LN2

Post DGEMM 4N3 4N3 4N3

(in the case of L � N)

done at once using DGEMM. The sizes of the DGEMM’s are almost the same
as those in Bischof postprocessing, and the total computational work is 4N3.

2.2.3 The Optimal Block Sizes
In principle, we should discuss optimizing the block sizes M1 and M2 in the

Dongarra algorithm. However, the optimal values of M1 and M2 have been
discovered for various computers and matrix sizes, and these values are used in
the LAPACK bidiagonalization routine automatically. We therefore adopt these
values and do not discuss optimizing M1 and M2 in this article.

2.3 Summary of the Bischof-Murata and Dongarra Algorithms
We summarize the BLAS routines used in Dongarra/Bischof-Murata

pre/postprocessing and their computational cost in Table 1.

3. Auto-Tuning

According to Table 1, it seems that the Dongarra algorithm is always faster
than the Bischof-Murata algorithm for all (N,L), because its computational work
is smaller. However this is not the case.

The Dongarra algorithm contains level-2 BLAS operations, DGEMV, which
are not fast. On the contrary, the Bischof-Murata algorithm consists of level-3
BLAS operations, DGEMM, which is fast using cache memory. Depending on the
band width L, the Bischof-Murata algorithm might be faster than the Dongarra
algorithm. The faster algorithm depends on the value of L, the matrix size N ,
and the computational environment.

In this article, a function to determine the faster algorithm and a good param-
eter L automatically is proposed. This funtion is called Auto-tuning. The detail
of the proposed auto-tuning function is described in this section.

3.1 Estimating the Computation Time of the Dongarra Algorithm
According to Table 1, the total computation work of the Dongarra algorithm

Fig. 1 Computation time of the Dongarra algorithm.

Table 2 Specification of the Test Computer.

Computer G I

CPU Intel Core i7 X980 3.33 GHz Intel Core 2 Duo E6700 2.66 GHz
(6 cores × 1 processor) (2 cores×1 processor)

Cache 12 MBytes L3 4 MBytes L2
Memory 24 GBytes 8 GBytes
Memory bandwidth 25.6 GBytes/s 8.5 Gbytes/s
OS Fedora Linux 13 Fedora Linux 12
(Kernel) (2.6.34.6-47.fc13.x86 64) (2.6.32.16-150.fc12.x86 64)
Compiler icpc & ifort 11.1 icpc & ifort 11.1

(-xsse4.2 -ipo -O3 option) (-xsse3 -ipo -O3 option)
BLAS GotoBLAS2-1.13

is O(N3). Thus it is natural to model the computation time ED(N) of the
Dongarra algorithm by a cubic function in N . We did a preliminary experiment
to see whether this gives a reasonably accurate model.

In the experiment, computation time for the Dongarra algorithm of dense
square matrices (N = 1,000, 2,000, . . . , 10,000) are measured (actual time in
Fig. 1). Then we regard 5 points (N = 1,000, 2,000, . . . , 5,000) as sampling
points, and a cubic function is determined to fit the sampling points by the
least squares method. The curve is shown in Fig. 1 as “Determined curve”. The
experiment is done on the computer G described in Table 2.

The result of the experiment shows that the actual computation time of the
Dongarra algorithm can be modeled accurately with the curve. Therefore we
estimate the computation time of the Dongarra algorithm with a cubic function
of N determined by the least squares method.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

13 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Fig. 2 Actual computation time of the Bischof-Murata algorithm (vertical axis: scale factor
= time / minL(time), N = 4,000, computer: G).

3.2 Estimating the Computation Time of the Bischof-Murata Algo-
rithm

According to Table 1, it is tempting to model the total computation time of
the Bischof-Murata algorithm EBM(N,L) with the expression as follows:

EBM(N,L) ∝ 8
3
N3 + 8LN2 + 8N3. (4)

This function is cubic in N and linear in L.
3.2.1 Practical Computation Time of the Bischof-Murata Algorithm
The actual computation time of the Bischof-Murata algorithm is shown in

Fig. 2. Dense square matrices of size 2,000×2,000, 4,000×4,000 and 8,000×8,000
are prepared for the test. The computer G described in Table 2 is used.

Though Table 1 suggests that EBM(N,L) is a linear function of L if N is fixed,
the actual result shown in the figure does not match any linear function of L.

This difference occurs because of the cache memory. If the matrix size N is
neither too large nor too small, the data transfer time is reduced by the cache
memory. But if L is smaller, the cache memory does not work efficiently, conse-
quently the computation is done slowly. This utilization of cache memory makes
the functional form of EBM(N,L) complicated. It is difficult to analyze the effect
of cache memory analytically.

Fig. 3 Classification of the computation time of the Bischof-Murata algorithm (N = 4,000,
computer: G).

Fig. 4 Classification of the computation time of the Bischof-Murata algorithm (N = 4,000,
computer: I).

3.2.2 Breakdown of the Computation Time of the Bischof-Murata
Algorithm

Figures 3 and 4 shows the breakdown of computation time of the Bischof-
Murata algorithm for a 4,000 × 4,000 matrix on the computer G and I.

According to these figures, the relation between L and the computation time
of each part can be classified into three patterns as follows:
(1) The part whose computation time increases in proportion to L.
(2) The part whose computation time decreases gradually as L increases.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

14 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

(3) The part whose computation time decreases rapidly as L increases and then
stays constant.

The Murata preprocessing is classified as the first. Applying the compact WY
representation is classified as the second. The other processes are classified as
the third.

We divide the Bischof-Murata algorithm into the three parts as described above.
First we estimate the computation time of these three parts individually. After
estimating the time of those 3 parts accurately, we estimate the total computation
time by adding the three estimated times.

EBM(N,L) = E
(1)
BM(N,L) + E

(2)
BM(N,L) + E

(3)
BM(N,L), (5)

where E
(1)
BM(N,L) means the computation time for the Murata preprocessing,

and E
(2)
BM(N,L) means the computation time for applying the compact WY rep-

resentation. E
(3)
BM(N,L) means the computation time for the other processes.

3.2.2.1 The Murata Preprocessing
The computational cost of the Murata preprocessing is O(LN2). This prepro-

cessing mainly consists of the level-2 BLAS operations, which cannot utilize cache
memory well. For sufficiently large N , the matrix data is always out of cache,
so the computational speed measured in GFLOPS is almost independent of L.
Thus the computation time is proportional to the computational cost. Therefore
we adopt the following function to estimate the computation time of the Murata
preprocessing:

E
(1)
BM(N,L) = cLN2.

We determine the coefficient c with the least squares method.
3.2.2.2 Applying the Compact WY Representation
The process of applying the compact WY representation mainly consists of

matrix-matrix product and data copy operations with DGEMM and DCOPY
routines in the BLAS. If L is small, these routines do not work efficiently. But
the performance is expected to improve as L increases.

As explained in Section 2.1.3, DGEMM and DCOPY routines are called
(

N
L

)2
+

N
L times for applying the compact WY representation. Therefore the theoretical
computation time is described as follows:

E
(2)
BM(N,L) =

{(
N

L

)2

+
N

L

}
× (EDGEMM(N,L) + EDCOPY(N,L)) , (6)

where EDGEMM(N,L) means the time to execute DGEMM, and EDCOPY(N,L)
means the time to execute DCOPY. As is described in Section 2.1.3, the DGEMM
routine executes the product of a 2L × 2L matrix and a 2L × N matrix. The
DCOPY routine executes data copy whose length is L × N . Thus it is consid-
ered that EDGEMM(N,L) = O(4NL2) and EDCOPY(N,L) = O(NL). However,
when L is small, it often occurs that the computation times EDGEMM(N,L) and
EDCOPY(N,L) are not proportional to the computational costs.

We therefore estimate EDGEMM(N,L) and EDCOPY(N,L) from the measured
values at sample points in the (N,L) plane. More specifically, we first measure
the actual compuation time of DGEMM for several pairs of parameters {(Ni, Lj)}
(i = 1, . . . , nN , j = 1, . . . , nL) (Fig. 5, Step 1). Then, for each j, we approxi-
mate the measured values at (Ni, Lj) (i = 1, . . . , nN) with a linear function of
N (Fig. 5, Step 2). Here, the least squares method is used to determine the co-
efficients of the linear function. Finally, from the values of the linear functions
at (N,Lj) (j = 1, . . . , nL), a quadratic function of L is computed by the least
squares method (Fig. 5, Step 3). EDGEMM(N,L) is estimated as the value of this
quadratic function at L. Similarly, EDCOPY(N,L) is estimated from the actual
computation time of DCOPY. The only difference is that a linear function of L

is used instead of a quadratic function in Step 3.
Once EDGEMM(N,L) and EDCOPY(N,L) have been estimated in this way,

E
(2)
BM(N,L) can be calculated from Eq. (6).
3.2.2.3 The Other Processes
In the Bischof preprocessing and postprocessing, the execution time of

DGEMM routines dominates most of the computation time. The computational
cost of each DGEMM routine in these two stages is O(LN2), as can be seen from
Algorithm 1 and Algorithm 2. This implies that as L increases, the computation
speed of the DGEMM routine increases rapidly and stays constant. This can be
confirmed from Figs. 3 and 4, which shows that the computation time of Bischof
preprocessing and postprocessing decreases rapidly as L increases and then stays
constant.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

15 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Fig. 5 Process flow to estimate the computation time of the given pair of parameters (N, L).

To model the computation time of these parts, E
(3)
BM(N,L), we also use the

procedure described in Fig. 5. In Step 2, we use a cubic function of N , while in
Step 3, we use a natural cubic spline function of L.

3.2.2.4 Total Time
The total computation time EBM(N,L) can be estimated by Eq. (5). In sum-

mary, we can estimate EBM(N,L),∀N,L > 0 as follows:
(1) Determine several sampling points

{(Ni, Lj)}i,j and obtain actual values of E
(1)
BM(Ni, Lj), EDGEMM(Ni, Lj),

EDCOPY(Ni, Lj) and E
(3)
BM(Ni, Lj) at each sampling point. (Step 1 in

Fig. 5). Once we have obtained the data and saved them, we need not
do this step and we only have to load the saved data instead.

(2) Estimate N -time curves of E
(1)
BM(N,Lj), EDGEMM(N,Lj), EDCOPY(N,Lj)

and E
(3)
BM(N,Lj) at several fixed {Lj} (Step 2 in Fig. 5).

(3) Estimate L-time curves of E
(1)
BM(N,L), EDGEMM(N,L), EDCOPY(N,L) and

E
(3)
BM(N,L) for the size N of the given matrix from the estimated N -time

curves (Step 3 in Fig. 5).
(4) Calculate E

(2)
BM(N,L) from Eq. (6) and EBM(N,L) from Eq. (5).

Here, N -time curve means a curve for which the horizontal axis is N and the
vertical axis is the computation time. L-time curve means a curve for which the
horizontal axis is L and the vertical axis is the computation time. The N -time
and L-time curves are obtained by applying the least squares method to the
functions shown in Table 3.

3.3 Implementation of Auto-Tuning
In order to utilize this auto-tuning function, we have to measure several ac-

tual values of E
(1)
BM(Ni, Lj), EDGEMM(Ni, Lj), EDCOPY(Ni, Lj) and E

(3)
BM(Ni, Lj)

(Step 1 in Fig. 5). For this purpose, we prepare matrices of several sizes {Ni} by
random numbers, measure the computation time for several band widths {Lj},
and save the results (preparation process). This process has to be done only once,
for example on installing the I-SVD library. If the computation environment such
as CPU, OS, BLAS and so on is changed, this process should be done once again.

After the preparation process, we can use the auto-tuning function. Given an
N × N input matrix, we compute its singular value decomposition as follows:

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

16 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Table 3 Interpolation and extrapolation curves.

N -time curve (L is fixed) L-time curve (N is fixed)

The Murata preprocessing E
(1)
BM(N, L) Quadratic in N Linear in L

Applying compact WY repr. E
(2)
BM(N, L)

{(
N
L

)2
+ N

L

}
× (EDGEMM(N, L) + EDCOPY(N, L))

(EDGEMM(N, L)) Linear in N Quadratic in L
(EDCOPY(N, L)) Linear in N Linear in L

The others E
(3)
BM(N, L) Cubic in N Natural cubic spline of L

The Bischof-Murata algorithm EBM(N, L) E
(1)
BM + E

(2)
BM + E

(3)
BM

The Dongarra algorithm ED(N) Cubic in N -

(1) Estimate the computation time EBM(N,L) of the Bischof-Murata algo-
rithm for several values of {Lj}, and choose a proper value of L.

(2) Estimate the computation time EBM(N,L) of the Bischof-Murata algo-
rithm at the parameter (N,L).

(3) Estimate the computation time ED(N) of the Dongarra algorithm.
(4) Compare the 2 estimated time and apply the faster preprocessing.
(5) Apply the parallel I-SVD algorithm.
(6) Apply the postprocessing corresponding to the preprocessing used in

Step (4).

4. Numerical Experiments

4.1 Experimental Conditions
In this section, we check the effectiveness of the auto-tuning function described

in Section 3. Table 2 shows the test environment.
There is a published I-SVD library 16). This library contains the Dongarra

and the Bischof-Murata algorithms. Therefore users can utilize the library for
dense square matrices. The I-SVD algorithm for dense square matrices is im-
plemented as DGESLV. The function of auto-tuning described in this article is
also implemented. We use the source code of the I-SVD library for the numerical
experiments in this section.

This library is parallelized. The I-SVD algorithm is parallelized with
pthread 17),18). The Murata preprocessing is parallelized with OpenMP 19). The
Murata postprocessing, the Bischof pre/postprocessing, and the Dongarra algo-

rithm are parallelized with GotoBLAS 2 20). Six cores are used on the computer
G and two cores are used on the computer I.

For the experiments in this section, random matrices of several size are adopted.
Before the experiments, actual computation time of the Dongarra and the
Bischof-Murata algorithms is measured at 30 pairs of parameters {(N,L)}, N =
{1,000, 2,000, 3,000, 4,000, 5,000} and L = {50, 100, 150, 200, 250, 300}, in order
to estimate EBM(N,L) and ED(N). Actual computation time of DGEMM and
DCOPY is also measured at these parameters.

4.2 Experimental Results
Figures 6 and 7 show interpolation curves for N = 2,000, 4,000 and an ex-

trapolation curve for N = 8,000. According to the figures, the interpolation and
extrapolation curves approximate the L-time curve well. Using the interpolation
and extrapolation curves, we can guess a proper band width L and estimate the
computation time.

Figures 8, 9 and Table 4 show the auto-tuned band width L, estimated
computation time and actual computation time with the band width. As can be
seen from the graph, the estimated computation time approximates the actual
computation time well. On the computer G, the Bischof-Murata algorithm is
faster than the Dongarra algorithm. On the contraty, the Dongarra algorithm is
faster than the Bischof-Murata algorithm on the computer I. This difference is
also predicted by the estimated computation time.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

17 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Fig. 6 Estimation curve of L-time and actual computation time (computer: G).

Fig. 7 Estimation curve of L-time and actual computation time (computer: I).

4.3 Performance Analysis
4.3.1 The Preferred Algorithm and the Performance Difference be-

tween DGEMV and DGEMM
In this subsection, we investigate why different pre/postprocessing algorithms

are preferred on computers G and I. As is shown in Table 1, the Bischof-Murata
algorithm is theoretically more expensive than the Dongarra algorithm. In par-
ticular, the computational work of Bischof-Murata postprocessing is twice that
of Dongarra postprocessing. However, in the Dongarra algorithm, half of the
computational work in the preprocessing phase is done with the slower level-2
BLAS, or DGEMV. In contrast, in the Bischof-Murata algorithm, most of the
computations can be done with the level-3 BLAS, or DGEMM. Considering these
characteristics, it is likely that which algorithm is faster depends on performance
difference between DGEMV and DGEMM.

Fig. 8 Estimated and actual computation time (computer: G).

Fig. 9 Estimated and actual computation time (computer: I).

To confirm this, we measured the performance of the DGEMV and DGEMM
routines on both computers. The sizes of the matrices for DGEMV are those used
in Eq. (1) in Dongarra preprocessing. The sizes of the matrices for DGEMM are
those used in Steps 3 and 7 of Bischof preprocessing (Algorithm 1). The results
on computer G and I are shown in Figs. 10 and 11, respectively. It can be seen
from the graph that the performance advantage of DGEMM over DGEMV is
more than 15 times on computer G, while it is about 6 times on computer I.
This explains why the Bischof-Murata algorithm, which replaces DGEMV with
DGEMM by permitting increase in the computational work, is advantageous on
computer G.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

18 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Fig. 10 Performance of the DGEMV and DGEMM routines (computer: G).

Fig. 11 Performance of the DGEMV and DGEMM routines (computer: I).

4.3.2 The Origin of Performance Difference between DGEMV and
DGEMM

Next, we consider why the performance difference between DGEMV and
DGEMM differs on computer G and I based on the hardware specification shown
in Table 2. As is well known 8),9), on most computers, a properly implemented
DGEMM routine that fully utilizes the cache memory can achieve near-peak per-
formance of the hardware. On both of computers G and I, each core can perform
four double-precision floating-point operations per cycle using SSE2 instructions.
Thus we can estimate the peak performance of computer G as 80 GFLOPS (4
operations × 3.33 GHz × 6 cores), and that of computer I as 21.33 GFLOPS (4
operations × 2.66 GHz × 2 cores).

On the other hand, the performance of DGEMV is usually bounded by the
memory bandwidth. When the vector is in the cache and the matrix is out of the

Table 4 Auto-tuned parameters and computation times.

Matrix Auto-tuned algorithm/parameter Actual time
Computer size N Algorithm Band width L Estimated time BM D Error

G 1,000 BM 50 0.6 0.7 0.5 +23%
2,000 BM 50 3.9 4.2 4.3 +7%
3,000 BM 107 11.6 12.2 15.7 +5%
4,000 BM 117 26.5 27.3 36.9 +3%
5,000 BM 126 51.3 52.4 72.1 +2%
6,000 BM 192 87.6 82.1 122.2 −7%
8,000 BM 200 204.8 188.6 293.4 −9%

10,000 BM 202 398.4 356.9 563.5 −12%

I 1,000 D 50 1.9 2.8 1.9 −1%
2,000 D 66 14.7 17.4 14.9 +2%
3,000 D 97 46.9 54.0 47.5 +1%
4,000 D 111 107.0 123.0 110.2 +3%
5,000 D 123 203.1 230.4 208.6 +3%
6,000 D 133 343.6 391.2 358.6 +4%
8,000 D 155 791.0 892.6 831.9 +5%

10,000 D 172 1,515.4 1,859.3 1,560.9 +3%

BM: the Bischof-Murata algorithm, D: the Dongarra algorithm

cache, the DGEMV routine requires loading one floating-point data (8 Bytes) to
perform two floating-point operations. Thus the ratio of data transfer to floating-
point operations is 4 Bytes/FLOP. Hence, the maximum achievable performance
on computer G is 6.4 GFLOPS ((25.6 GBytes/s) ÷ (4 Bytes/FLOP)), while it is
2.13 GFLOPS ((8.5 GBytes/s) ÷ (4 Bytes/FLOP)) on computer I. Accordingly,
if both DGEMM and DGEMV achieve maximum performance, the performance
difference between DGEMV and DGEMM is 12.5 times (= 80÷6.4) on computer
G and 10 times (= 21.33÷2.133) on computer I. Thus the performance difference
is slightly larger on computer G.

According to Fig. 10, on computer G, DGEMM achieves more than 75% of the
hardware peak performance, while DGEMV achieves only 55% of the maximum
performance bounded by the memory bandwidth. On the contrary, on computer
I, DGEMM achieces only 50% of the hardware peak performane, while DGEMV
achieves nearly 80% of the maximum performance bounded by the memory band-
width (see Fig. 11). Such variation in the efficiency of the BLAS routines, along
with the performance limit by hardware specification, gives rise to the perfor-
mance difference between DGEMV and DGEMM.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

19 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Note that DGEMV can achieve higher performance when the matrix is stored
in the cache. This is the case of N = 1,000 on computer G, where the matrix is
of 8 MBytes and can be stored in the L3 cache. However, such a situation occurs
only for relatively small matrices. We therefore assumed that the matrix is out
of the cache in the above analysis.

4.4 Cost of the Auto-tuning
Finally, we discuss the cost of auto-tuning. As explained in Sections 3.2.2.4

and 3.3, the cost of auto-tuning consists of the following two parts:
• The cost to measure the actual values of E

(1)
BM(N,L), EDGEMM(N,L),

EDCOPY(N,L) and E
(3)
BM(N,L) at sampling points in the (N,L) plane and

measure the actual values of E
(N)
D at sampling points on the N axis (prepa-

ration process).
• The cost to model the execution time EBM(N,L) and ED(N) based on the

sampled data, evaluate their values for given N and several values of L,
choose the best value of L for the Bischof-Murata algorithm, and decide
which algorithm is faster.

As noted in Section 3.2.2.4, the former part needs to be done only once for each
computational environment. The latter part is done each time the bidiagonaliza-
tion routine is called.

The time required for the former part is 769 seconds on computer G and 3,181
seconds on computer I. This is comparable to the time required to install AT-
LAS 21), a BLAS library with auto-tuning facility. On the other hand, the time
required for the latter part is 3.4 × 10−4 second and 7.1 × 10−4 second on com-
puter G and I, respectively. Thus it is negligible compared with the time for
pre/postprocessing.

5. Conclusion

The computation time for the Bischof-Murata and the Dongarra algorithms
depends on the specification of computers, the matrix size N , and the band
width L. For fast computation, we have to select an appropriate algorithm
and a band width L. In this article, a method is devised to estimate faster
pre/postprocessing and a proper band width L. For accurate estimation, the
Bischof-Murata algorithm is divided into 3 parts and the computation time are

estimated individually. Furthermore N -time curves and L-time curves are made
separately.

Numerical experiments are carried out to examine the effectiveness of our
method. The result of the experiments shows that the proposed manner is effec-
tive.

References

1) Iwasaki, M. and Nakamura, Y.: Accurate computation of singular values in terms
of shifted integrable schemes, Japan Journal of Industrial and Applied Mathematics,
Vol.23, pp.239–259 (2006).

2) Nakamura, Y.: Functionality of Integrable System (in Japanese), Kyoritsu Pub-
lishing, Tokyo (2006).

3) Takata, M., Kimura, K., Iwasaki, M. and Nakamura, Y.: Performance of a new
scheme for bidiagonal singular value decomposition of large scale, Proc. IASTED
International Conference on Parallel and Distributed Computing and Networks
(PDCN2006), pp.304–309 (2006).

4) Takata, M., Kimura, K., Iwasaki, M. and Nakamura, Y.: Implementation of library
for high speed singular value decomposition, J. IPS Japan, Vol.47, No.SIG7 (ACS
14), pp.91–104 (2006).

5) Dongarra, J.J., Hammarling, S.J. and Sorensend, D.C.: Block reduction of matrices
to condensed forms for eigenvalue computations, Journal of Computational and
Applied Mathematics, Vol.27, pp.215–227 (1989).

6) Bischof, C.H., Marques, M. and Sun, X.: Parallel bandreduction and tridiagonaliza-
tion, Proc. Sixth SIAM Conference on Parallel Processing for Scientific Computing,
pp.22–24 (1993).

7) Murata, K. and Horikoshi, K.: A new method for the tridiagonalization of the
symmetric banded matrices, J. IPS Japan, Vol.16, pp.93–101 (1975).

8) Golub, G.H. and van Loan, C.F.: Matrix Computations, 3rd ed., Johns Hopkins
University Press (1996).

9) Demmel, J.W.: Applied Numerical Linear Algebra, SIAM, Philadelphia (1997).
10) Dackland, K. and K̊agström, B.: A hierarchical approach for performance anal-

ysis of ScaLAPACK-based routines using the distributed linear algebra machine,
Proc. Applied Parallel Computing, Industrial Computation and Optimization, 3rd
International Workshop (PARA 96), pp.186–195 (1996).

11) Cuenca, J., Giménez, D. and González, J.: Architecture of an automatically tuned
linear algebra library, Parallel Computing, Vol.30, No.2, pp.187–210 (2004).

12) Katagiri, T., Kise, K., Honda, H. and Yuba, T.: ABCLibScript: A directive to sup-
port specification of an auto-tuning facility for numerical software, Parallel Com-
puting, Vol.32, No.1, pp.92–112 (2006).

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

20 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

13) Yamamoto, Y.: Performance modeling and optimal block size selection for a BLAS-
3 based tridiagonalization algorithm, High Performance Computing and Grid in
Asia Pacific Region, International Conference on Eighth International Conference
on High-Performance Computing in Asia-Pacific Region (HPC-ASIA’05), pp.249–
256 (2005).

14) Schreiber, R. and Van Loan, C.: A storage-efficient WY representation for products
of Householder transformations, SIAM J. Sci. Stat. Comput., Vol.10, No.1, pp.53–
57 (1989).

15) LAPACK: http://www.netlib.org/lapack/
16) I-SVD Library: http://www-is.amp.i.kyoto-u.ac.jp/lab/isvd/download/
17) Toyokawa, H., Kimura, K., Takata, M. and Nakamura, Y.: On parallelism of the I-

SVD algorithm with a multi-core processor, JSIAM Letters, Vol.1, pp.48–51 (2009).
18) Toyokawa, H., Kimura, K., Takata, M. and Nakamura, Y.: On parallelization of

the I-SVD algorithm and its evaluation for clustered singular values, Proc. Inter-
national Conference on Parallel and Distributed Processing Techniques and Appli-
cation, pp.711–717 (2009).

19) OpenMP: http://openmp.org/
20) GotoBLAS2: http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
21) Whaley, R.C., Petitet, A. and Dongarra, J.J.: Automated Empirical Optimization

of Software and the ATLAS Project, Parallel Computing, Vol.27, No.1-2, pp.3–25
(2001).

(Received October 1, 2010)
(Accepted January 5, 2011)

Hiroki Toyokawa received his B.E. and M.I. degrees from
Kyoto University, in 2008 and 2010, respectively. He has been
working for NS Solutions Corporation since 2010. Since 2011, he
has also been a doctoral course student at Kyoto University while
working.

Kinji Kimura received his Ph.D. degree from Kobe University
in 2004. He became a PRESTO, COE, and CREST researcher
in 2004 and 2005. He became an assistant professor at Kyoto
University in 2006, an assistant professor at Niigata University
in 2007, a lecturer at Kyoto University in 2008, and has been a
research associate professor at Kyoto University since 2009. He is
an IPSJ member.

Yusaku Yamamoto received his master’s degree in Material
Physics from the University of Tokyo in 1992. He started work-
ing at the Central Research Laboratory, Hitachi, Ltd. from 1992.
He became a visiting scholar at business school of Columbia Uni-
versity in 2001. In 2003, he moved to Nagoya University as an
assistant professor. He received his Ph.D. degree in Engineering
from Nagoya University in 2003. He became a lecturer at Nagoya

University in 2004, associate professor at Nagoya University in 2006. He is now a
professor at the Department of Computational Science, Kobe University. His re-
search interests include numerical algorithms for large-scale matrix computation
and financial engineering problems.

Masami Takata is an assistant professor of the Department of
Advanced Information and Computer Sciences at Nara Women’s
University. She received her Ph.D. degree from Nara Women’s
University in 2004. Her research interests include parallel algo-
rithms for distributed memory systems and numerical algebra.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

21 On Auto-tuned Pre/postprocessing for the Singular Value Decomposition

Akira Ajisaka received his B.E. and M.I. degrees from Kyoto
University, in 2009 and 2011, respectively. Since 2011, he has been
working at NTT DATA Corporation.

Yoshimasa Nakamura was born in 1955. After getting Ph.D.
thesis in 1983 from Kyoto University, he worked for Mathematics
Departments of Gifu University, Doshisha University and Osaka
University. From 2001 he has been a faculty member of the Grad-
uate School of Informatics, Kyoto University. His research in-
terests include integrable dynamical systems. Integrable systems
originally appear in classical mechanics. But they have a rich

mathematical structure. His recent subject is to find possible applications of
integrable systems to various areas such as numerical algorithms, combinatorics
and mathematical statistics. He is a member of JSIAM, MSJ, SIAM and AMS.

IPSJ Transactions on Advanced Computing Systems Vol. 4 No. 3 9–21 (May 2011) c© 2011 Information Processing Society of Japan

