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Reflections on the Diagonal Theorem, and Related Topics

Eiichi Tanaka†1

A formula (function), that expresses a diagonal sequence generated by all fi-
nite length formulas (functions), is an essentially infinite length formula (func-
tion). The last report made it clear that the substitution function and the
provability predicate in Gödel’s paper are essentially infinitely long expressions.
These indicate that Gödel’s proof of the incompleteness theorems is incorrect.
On the same basis this report shows that the diagonal theorem does not hold.
Since Gödel’s incompleteness theorems, Rosser’s theorem, Tarski’s theorem and
the Π 1-incompleteness theorem are proved using the diagonal theorem. This
does not mean that the theorems do not exist, but they must be reexamined.
Furthermore, the recursion theorem and the fixed point theorem must be re-
viewed, because that these theorems are proved using essentially infinite length
functions.

1. Introduction

In 1931 Gödel showed that there exists an unprovable and unrefutable finite
length formula in an arithmetic. This astonishing discovery is called the first
incompleteness theorem. A previous report13) argued that the substitution func-
tion in Gödel’s paper is an essentially infinitely long expression. This finding is
based on the fact that a formula (function) to express a diagonal sequence defined
by all finite length formulas (functions) is an essentially infinite length formulas
(function). Another report14) made it clear that the provability predicate that
is the core concept in Gödel’s paper is an essentially infinitely long expression.
These results mean that Gödel’s proof of the incompleteness theorems4) is incor-
rect.

In this report we shall show that the diagonal theorem does not hold. Since
the proof of Gödel’s incompleteness theorems is founded on the diagonal theo-
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rem, the proof is incorrect. Some proofs of Rosser’s theorem and Tarski’s one
are based on the diagonal theorem, thier proofs are also incorrect. At the mo-
ment we can not state that these theorems do not exist. In bounded arithmetic
Π1-incomleteness is known as one of the evidence of the incompleteness of Peano
Arithmetic. However a proof of Π1-incomleteness is based on the diagonal the-
orem, then the proof is wrong. An essentially infinite length function appears
also in the proofs of the recursion theorems and the fixed point theorem. Their
proofs must be reexamined. In Appendix some errors in the former reports are
corrected.

2. Preliminaries

The predicate logic for an arithmetic with addition and multiplication follows
Shoenfield10), but the classification of symbols is slightly modified.

Definition 1. The symbols of the predicate logic for the arithmetic are defined
as follows. (a1) individual constants (a, b, c, · · · ), (a2) variables (x, y, z, · · · ),
(a3) function symbols (+, ∗), (a4) a predicate symbol (=), (a5) logical symbols
1 ( ¬,∨), (a6) a logical symbol 2 (∃), (a7) subsidiary symbols ((,), comma ).
∃ is called an existential quantifier. In this paper let the basic symbols of the
predicate logic for the arithmetic be the symbols of (a1) ∼ (a5) and (a7).

Let A and B be sets of collections of objects. A mapping from the set of n-
tuples in A to B is called an n-ary function from A to B. A subset of the set of
n-tuples in A is called an n-ary predicate in A. An occurrence of variable x in
predicate A is bound in A, if it occurs in a part of A of the form ∃xA, otherwise
it is free in A.

Definition 2. (b1) An individual constant is a term. (b2) A variable is a term.
(b3) If t1, t2, · · · , tn are terms and fn is an n-ary function, fn(t1, t2, · · · , tn)
is a term. (b4) Let {t1, t2, t3, · · · } be an infinite set of terms. Define T1 =
t1 + t2 + t3 + · · · and T2 = t1 ∗ t2 ∗ t3 ∗ · · · . T1 and T2 are terms.

Definition 3. (c1) If t1, t2, · · · , tn are terms and P is an n-ary predicate,
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P (t1, t2, · · · , tn) is a formula. (c2) If A and B are formulas, A ∨ B and ¬A

are formulas. (c3) Let {A1, A2, A3, · · · } be an infinite set of formulas. Define
R = A1 ∨A2 ∨A3 ∨ · · · . R is a formula. (c4) If C(x) is a formula and x is a free
variable, ∃xC(x) is a formula.

Formulas (A → B), (A ∧ B), (A ↔ B) and ∀xA(x) are the abbreviations of
(¬A∨B),¬(A → ¬B), ((A → B)∧(A ← B)) and ¬∃¬A(x), respectively. Symbol
∀ is a universal quantifier. A formula without free variables is called a sentence.
We sometimes define function symbols and predicate symbols that are not in
the basic symbols. In this paper we assume that defined function symbols and
defined predicate symbols are rewritten using the basic symbols.

A proof is a finite sequence of one or more formulas such that each formula
of the sequence is either an axiom or an immediate consequence of preceding
formulas of the sequence. If A is the last formula in a proof P , P is said
to be a proof of A. A is said to be provable or to be a theorem. Some-
times ∃xC(x) represents finite numbers of Cs such that C(x)(x = 1, 2, · · · ,

n). We call such ∃xC(x) a finite existential formula. If ∃xC(x) represents an
infinite number of Cs such as C(x)(x = 1, 2, · · · ), we call ∃xC(x) an infinite
existential formula.

Definition 4. The length of a function is defined as the number of the basic
symbols in the function. If a function consists of infinitely many basic symbols,
it is called an infinite length function. If a function is not an infinite length
function, it is a finite length function. The lengths of a term, a formula and a
predicate are similarly defined.

Terms T1 and T2 in Definition 2 are infinite length terms. Formula R in Def-
inition 3 is an infinite length formula. Let Q be a finite length formula without
infinite existential formulas. Assume that ∃xC(x) is an infinite existential for-
mula and there is an axiom or a theorem such that ∃xC(x) → Q. ∃xC(x) can
be converted to a finite length formula.

Definition 5. If an infinite length function can not be transformed into a finite
one with any efforts, the function is called an essentially infinite length function.
An essentially infinite length formula and that predicate are defined in the similar
way.

Many types of Gödel numbering have been proposed. We do not specify a
particular numbering.

3. Diagonal Sequences

The set Ã of finite length formulas with one free variable is a countably infinite
set. Enumerate all finite length formulas with one free variable u.

A1(u), A2(u), A3(u), · · · (1)
Consider formulas I(u) and J(u) such as

I(k) = ¬Ak(k) (k = 1, 2, 3, · · · ). (2)
J(k) = Ak(k) (k = 1, 2, 3, · · · ). (3)

(2) and (3) are called the antidiagonal sequence and the diagonal sequence of (1),
respectively. If I(u) is in Ã, it is a finite length formula. Since I(k) 6= Ak(k)(k =
1, 2, 3, · · · ), it is easy to prove by the diagonal method that I(u) is not in Ã. Since
I(u) is not in Ã, it is not a finite length formula. I(u) can not be transformed
to a finite length formula. Therefore, it is an essentially infinite length formula.
Furthermore, we have

J(u) = ¬I(u). (4)
Since I(u) is an essentially infinite length formula, so is ¬I(u). That is, J(u) is
an essentially infinite length formula.

Change the order of formulas in Ã. Let it be as follows.
A′1(u), A′2(u), A′3(u), · · · (5)

Let I ′(u) and J ′(u) be the antidiagonal sequence and the diagonal sequence of (5),
respectively. I ′(u) and J ′(u) are also essentially infinite length formulas. Note
that there are infinitely many different sequences defined by all finite length
formulas with one free variable. For each sequence, there are an antidiagonal
sequence and a diagonal sequence. Both of them are essentially infinite length
sequences. If an antidiagonal sequence and a diagonal sequence are defined based
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on all finite length formulas with one free variable, we need not pay attension to
the order of formulas.

Let regard Ak(u)(k = 1, 2, 3, · · · ) as functions. Define a modified diagonal
sequence K(u) and the diagonal sequence L(u) such as

K(k) = Ak(k) + 1 (k = 1, 2, 3, · · · ). (6)
L(k) = Ak(k) (k = 1, 2, 3, · · · ). (7)

It is easy to see that K(u) is an essentially infinite length function. Note that
K(u) = L(u) + 1. (8)

From (8) the diagonal sequence L(u) is also an essentially infinite length function.

Lemma 1. There is no finite length formula (function) that has the values of any
diagonal sequences defined by all finite length formulas (functions) with one free
variable.

4. Diagonal Theorem

4.1 Diagonal theorem
We shall quote Smorynsky’s explanation11) (p.827) of the diagonal theorem.

Let T be some fixed, but unspecified, consistent formal theory. Assume that the
encoding is done in some fixed formal theory S and that T contains S. Define
function sub(α, β) as follows.

sub(dϕ(x)e, dte) = dϕ(t)e. (9)
where ϕ is any formula with one free variable, and dϕ(x)e is the Gödel number
for ϕ(x).
Diagonal theorem Let ϕ(x) in the language of T have only the free variable
indicated. Then there is a sentence ψ such that

S ` ψ ↔ ϕ(dψe). (10)
Proof. Given ϕ(x), let

θ(x) ↔ ϕ(sub(x, x)) (11)
be the diagonalization of ϕ. Let

m = dθ(x)e, ψ = θ(m). (12)
Then we claim

S ` ψ ↔ ϕ(dψe). (13)

For, in S, we see that

ψ ↔ θ(m) ↔ ϕ(sub(m, m)) (14)
↔ ϕ(sub(dθ(x)e,m)) (15)
↔ ϕ(dθ(m)e) ↔ ϕ(dψe). qed (16)

4.2 Qustions about the diagonal theorem
(1) The incorrectness of the proof
Let F be the set of all finite length formulas with one free variable. From the
following equation

sub(dAk(x)e, dke) = dAk(k)e, (k = 1, 2, · · · ) (17)
we know that sub(x, x) is a diagonal sequence fefined by F . Let k = dϕ(y)e and
change the notation from ϕ(y) to ϕk(y).

sub(k, k) = sub(dϕk(y)e, dϕk(y)e) (18)
= dϕk(dϕk(y)e)e = dϕk(k)e. (19)

[Note] From Lemma 1 ϕx(x) is an essentially infinite length function, and its
Gödel number dϕx(x)e is infinite. Therefore ϕ(sub(x, x)) is not defined. So is
θ(x). Furthermore, ”infinite” is not a natural number. The diagonal theorem
has not been proved as it was intended in the beginning, and the proof violates
the finitistism.

(2) A fixed point
Assume that the diagonal theorem holds. Though ”infinity” is not a natural
number, let inf be infinity for covenience. Since sub(x, x) = inf , from (11) we
have

θ(x) ↔ ϕk(inf). (20)
Then θ(x) must be a sentence. Let θ(x) = C, where C is a sentence. From (20),
we have

C ↔ ϕk(inf). (21)
From (12), we know that

m = dθ(x)e = dCe, ψ = θ(m) = C. (22)
From (13) and (22), the following is obtained.

C ↔ ϕk(dCe). (23)
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Let a be a sequence of symbols. Define a = bbc, if b = dae. From (21) and (23),
we conclude that

binfc ↔ ϕk(inf). (24)
Note that we can not reconstruct a formula from binfc. ϕk is an arbitrary
formula with one free variable. Let ϕh be an arbitrary another formula in F ,
where h 6= k. ϕk and ϕh have the same fixed point. That is,

binfc ↔ ϕh(inf). (25)
[Note] All formulas have at least one same fixed point in common. This indicates
that the diagonal theorem does not hold.

4.3 Does the diagonal theorem exist ?
Maehara7) (pp.132-133) explains the substance of the diagonal theorem in the

following way. Enumerate all formulas with one free variable x.
A0(x), A1(x), A2(x), · · · (26)

Consider the diagonal values.
A0(0), A1(1), A2(2), · · · , Ak(k), · · · (27)

Assume that an arbitrary univalent correspondence Φ between formulas is given.
Let the following be the sequence of formulas obtained by (27) and Φ.

Φ(Ak(k)) (k = 0, 1, 2, · · · ). (28)
Assume that a formula G(x) represents (28). That is

Φ(Ak(k)) = G(k) (k = 0, 1, 2, · · · ). (29)
G(x) is sure to be in (26). Let it be An(x).

Φ(Ak(k)) = An(k) (k = 0, 1, 2, · · · ). (30)
Put k = n. We obtain the following.

Φ(An(n)) = An(n). (31)
Let An(n) be A.

Φ(A) = A. (32)
This is the substance of the diagonal theorem. In the case that Φ(x) is not a
formula but a function, it is enough to rewrite Φ(A) with Φ(dAe) in the above
discussion.

[Note] Maehara did not put any restrictions on formulas in (26). However each
formula in (26) must be a finite length formula. As we have seen in Section 2,
there is no finite length formula (function) that represents the diagonal sequence

defined by all finite length formulas (functions). Since Ax(x) is an essentially
infinite length formula, Φ(Ax(x)) is not defined. Hence, in general, there is no
finite length G(x) such as (29) for any Φ. That is, we can not find n of An(x) in
(30). This means the non-existence of the diagonal theorem.

5. Related topics

5.1 Gödel and Rosser’s theorems
Gödel’s theorem and Rosser’s one are from Maehara7)(p.134, p.142). Some

notations are changed.
Gödel’s first incompleteness theorem: If a set K of formulas is representable
and ω consistent, there is a sentence A that can be neither proved nor refuted
from K.
A rough sketch of the proof without mention of ω consistent is as follows: Let
ProvK(x, y) be the predicate that x is a proof of a formula y. Define the prov-
ability predicate PrK(y) such that

PrK(y) = ∃xProvK(x, y). (33)
Let ϕ(y) in (10) be ¬PrK(y) and apply the diagonal theorem to ¬PrK(y). As-
sume that we have

A = ¬PrK(dAe), (34)
where A is a sentence. Assume that A is provable from K.

K ` A → K ` PrK(dAe) → K ` ¬A. (35)
This is a contradiction. A is not provable. Assume that ¬A is provable from K.

K ` ¬A → K ` PrK(dAe) → K ` A. (36)
This is also a contradiction. ¬A is not provable. That is, A is neither provable
nor refutable.

[Note] The proof of the first incompleteness theorem is carried out using the
diagonal theorem. Since the diagonal theorem (32) does not hold, the proof is
not correct. It is no need to say that the proof of the second incompleteness
theorem is also incorrect, because it is based on the proof of the first theorem.

Rosser’s theorem: If a set of formulas K is representable and consistent, there
is a sentence A that can be neither proved nor refuted from K.
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[Note] We shall omit the proof. Since the proof of Rosser’s theorem is based
on the diagonal theorem or Gödel’s first incompleteness theorem, the proof is
incorrect.

5.2 Tarski’s theorem
We shall refer Maehara’s explanation7) (pp.138-139).

Tarski’s theorem: If a set of formulas K is consistent, there does not exist a
unary formula T (x) such that the following is proved from K

A ↔ T ([A]), (37)
where [A] is the term corresponding to the Gödel number dAeof a formula A.
Proof: Assume that there exists such T (x) and show that K is inconsistent.
Applying the diagonal theorem to a unary formula ¬T (x), we can prove that
there exists a sentence B such that

B ↔ ¬T ([B]). (38)
However if we substitute B for A in (37), the following is derived.

B ↔ T ([B]). (39)
(38) and (39) contradict. Then K must be inconsistent. qed

[Note] Since the diagonal theorem is applied in the proof, the proof is incorrect.
5.3 Peano arithmetic: Π1-incompleteness
The basic notions on bounded arithmetic are from Hajek5)(p.13, pp.30-31).

(∃x < y)ϕ is an abbreviation for (∃x)(x ≤ y ∧ ϕ)ϕ and (∀x ≤ y)ϕ is an ab-
breviation for (∀x)(x ≤ y → ϕ). By convention, x and y must be distinct
variables. An L0-formula is bounded if all quantifiers occuring in it are bounded,
i.e. occur in a context as above. Futhermore, (∀x ≤ y)ϕ is an abbreviation for
(∀x ≤ y)(x 6= y → ϕ) and similarly for (∀x ≤ y) ; x 6= y is the same as ¬(x = y).
Σ0-formulas =Π0-formulas = bounded formulas; Σn+1 -formulas have the form
(∃x)ϕ where ϕ is Πn, Πn+1-formulas have the form (∀x)ϕ where ϕ is Σn. Thus a
Σn-formula has a block of n alternating quantifiers, the first one being existential,
and this block is followed by a bounded formula. Similarly for Πn.

The axioms of Robinson’s arithmetic Q are as follows.
(A1) S(x) 6= 0

(A2) S(x) = S(y) → x = y

(A3) x 6= 0 → (∃y)(x = S(y))
(A4) x + 0 = x

(A5) x + S(y) = S(x + y)
(A6) x ∗ 0 = 0
(A7) x ∗ S(y) = (x ∗ y) + x

(A8) x ≤ y ≡ (∃)(z + x = y)

Peano arithmetic (PA) is defined from Q by adding the induction schema (A9),
where ϕ(x) is a formula in an ordered ring.
(A9) ϕ(0)&∀(ϕ(x) → ϕ(x + 1)) → (∀x)ϕ(x)
Arithmetic Q< is defined by the axioms (A1) ∼ (A6) and the following (A10).
(A10)∀(x 6= 0 → ∃y(y + 1 = x))

[Q] The followings are known on Q. Kashima16)(pp.67-80)
(Q1) A total recursive function is representable by a Σ0-formula or a Π1-formula
in Q.
(Q2) [Σ1-completeness of Q]. Let ϕ(x) be a Σ0-formula with the only free variable
x and let N |= (∃x)ϕ(x). Then Q ` (∃x)ϕ(x).
(Q3) From (Q2), PA is Σ1-complete.

[Q<] The followings are known on Q<. Tanaka16)(pp.114-128)
(Q<1) A total recursive function is strongly representable as a Σ1-formula in Q<.
(Q<2) (Σ1-completeness of Q<)If ϕ is a Σ1-sentence and N |= φ, Q< ` ϕ.
(Q<3) From (Q<2), PA is Σ1-complete.

[PA] The followings are known on PA. Kashima17)(pp.59-86)
(PA1) A computable function and a computable predicate are expressed by a
Σ1-formula or a Π1-formula over PA.
(PA2) [Σ1-completeness of PA] If ϕ is a Σ1-sentence and N |= φ, PA ` ϕ.
(PA3) If a sentence G in PA is derived by the diagonal theorem, G is a Π1-
sentence that is neither provable nor refutable in PA.
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[Note](1) (Q2) and (PA3) should be reexamined, since they are obtained using
the diagonal theorem. The incompleteness of PA is described in Hajek5)(pp.160-
161). The proof is also based on the diagonal theorem.
(2) From (Q<1) ∼ (Q<3), a Σ1-formula in Q< can express a total recursive
function, and Q< is Σ1-complete. So is PA.

6. Functions proved by infinite length functions

6.1 Recursion theorem
Many versions of recursion theorems are proposed. We shall quote Davis3)

(pp.98-99).
Recursion theorem: Let g(e, x1, · · · , xm) be a partially computable function
of m + 1 variables. Then there is a number e such that

Φ(m)
e (x1, · · · , xm) = g(e, x1, · · · , xm). (40)

e is the Gödel number of Φ(m)
e .

Note that usually ∼= is used to show ”equality” between partial functions, but
Davis uses =.
Proof. Consider the partially computable function

g(S1
m(v, v), x1, · · · , xm), (41)

where S1
m is the function that occurs in the parameter theorem. Then we have

for some number z0,
g(S1

m(v, v), x1, · · · , xm) = Φ(m+1)(e, x1, · · · , xm, v, z0) (42)
= Φ(m)(e, x1, · · · , xm, S1

m(v, z0)), (43)
where we have used the parameter theorem. Setting v = z0 and e = S1

m(z0, z0),
we have

g(e, x1, · · · , xm) = Φ(m)(e, x1, · · · , xm, e) (44)
= Φ(m)

e (x1, · · · , xm). (45)

[Note] Sn
m is a primitive recursive function that appears in the parameter theorem

(which has been called the iteration theorem and s-m-n theorem)3) (p.85) such
that
Φ(m+n)(x1, · · · , xm, u1, · · · , un, y) = Φ(m)(x1, · · · , xm, Sn

m(u1, · · · , un, y)). (46)
Put n = 1. S1

m(v, v) is the diagonal sequence of all finite length functions of type

S1
m(α, β)(α, β = 1, 2, · · · ). Therefore S1

m(v, v) is an essentially infinite function.
So the proof is incorrect.

6.2 Fixed point theorem
We shall quote Rogers8)(p.21, p.180). Px is the set of instructions associated

with the integer x in the fixed listing of all sets of instructions. x is called the
Gödel number of Px. ϕ

(k)
x is the partial function of k variables determined by

Px. x is called Gödel number of ϕ
(k)
x . We shall drop the subscript (k) when its

value is clear from context or when k = 1 .
The fixed point theorem: Let f be any recursive function; then there exists
an n such that

ϕn = ϕf(n). (47)
(We call n is a fixed-point value for f .)
Proof. Let any u be given. Define a recursive function Ψ by the following instruc-
tions: to compute Ψ(x), first use Pu with input u; if and when this terminates
and gives an output w, use Pw with input x; if and when this terminates, take
its output as Ψ(x). We summarize this:

Ψ(x) =

{
ϕϕu(u)(x), if ϕu(u) is convergent;
divergent, if φu(u) is divergent.

The instructions for Ψ depend uniformly on u. Take g̃ to be the recursive function
which yields, from u, the Gödel number for these instructions for Ψ. Thus

ϕg̃(u)(x) =

{
ϕϕu(u)(x), if ϕu(u) is convergent;
divergent, if ϕu(u) is divergent.

Now let any recursive function f be given. Then fg̃ is a recursive function. Let
v be a Gödel number for fg̃. Since ϕv = fg̃ is total, ϕv(v) is convergent. Hence
putting v for u in the definition of g̃, we have

ϕg̃(u) = ϕϕv(v) = ϕfg̃(v). (48)
Thus n = g̃(v) is a fixed-point value, as desired. qed

[Note] u is the Gödel number of ϕu(x). ϕu(u) is the diagonal sequence of all finite
length functions ϕα(x)(α = 1, 2, · · · ). Therefore ϕu(u) is an essentially infinite
function. ϕϕu(u)(x) can not be defined.
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7. Concluding Remarks

This report has discussed with the diagonal theorem. The findings are as
follows. (1) The diagonal theorem does not hold. This indicates that Gödel’s
proof of the incompleteness theorems is incorrect. Furthermore the proof of
Π1-incompleteness is also incorrect. Besides them we should note that a total re-
cursive function can be expressed by a Σ1-formula in Q< and Q< is Σ1-complete.
(2) There are other theorems, such as Rosser’s theorem and Tarski’s theorem,
that are derived using the diagonal theorem. This fact does not necessary mean
that the theorems do not hold. However the theorems must be reexamined. (3)
In the theory of computation an essentially infinite length function is applied to
derive the recursion theorem and the fixed point theorem. Those theorems must
be reviewed.

Including the topics that we do not deal with the author feels that the funda-
mentals of metamathematics and those of the theory of computaion need more
reezamination.
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Appendix

(1) Reflections on the incompleteness theorems 12)

The following was distributed at the meeting (March 5, 2009).
”Errata and supplementary explanations
p.2 line 10 ↓
The definition of the length of a formula shoud be changed to the following.
”The predicate logic can be expressed using the following symbols. These are,
(1a) individual constants, (2a) variables, (3a) function symbols, (4a) predicate
symbols, (a5) logical symbols ( ¬,∨, ∧, →, ↔, ∀, ∃), (6a) subsidiary symbols
(parenthses, comma ). The set of symbols (1a) ∼ (6a) is called the basic sym-
bols. We assume that defined functions and defined predicates which are not
in the basic symbols are rewitten using the basic symbols. Since ∀xP (x) is the
abbreviation for P (1) ∨ P (2) ∨ P (3) ∨ · · · , ∀xP (x) represents infinite symbols.
However if there exists an axiom such that ∀xP (x) → Q(that consists of basic
symbols), ∀xP (x) is converted to basic symbols. It is the same with ∃xP . Taking
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the above observations into consideration we define the length of the formula as
the smallest number of symbols in it.

p.3 line 3 ↑
”find” =⇒ ”found”

Replace all the sentences in Appendix with the followings.
There are two possibilities to construct a complete formal system.
(1) We can not manipulate infinitely long formulas, since a proof is a finite se-
quence of formulas. Therefore the first measure is exclude infinitely long formulas
from the object of our studies.
(2) Another possibility to avoid the incompleteness of a formal system is to change
the definition of a proof. That is, change ”the finite sequence of formulas” to
”the sequence of formulas”. In other words, we admit an infinitely long sequence
of formulas in a proof.”

(2) Reflections on Gödel and Turing 13) 　
Sb(x, dze, Z(y)) was defined as a predicate in the report, but it must be a func-

tion. The correct definition of Sb is as follows: Consider function Sb(x, dze, Z(y)),
where x, dze and Z(y) are the Gödel number of formula x that has free variable
z, that of z and that of term y, respectively. Sb(x, dze, Z(y)) indicates the Gödel
number of the formula obtained by substituting y for z in x. Consider Sb(α, β, γ)
for arbitrary α, β and γ. If α is not the Gödel number of a formula, or β is not
the Gödel number of a free variable in formula α, or γ is not the Gödel number
of a term, Sb(α, β, γ) = 0. In spite of the confusing usage of Sb, the discussions
in the report are correct.
Note that Gödel defined Sb as a function, but he always treat Sb as a predicate.
For instance, ¬Sb.

(3) Gödel and Turing from the Viewpoint of the Theory of Computa-
tion 14) 　
Delete the subsection (3) of Section 3.
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