
Regular Paper

Inter-OS Communications

for a Real-Time Dual-OS Monitor

Daniel Sangorrin,†1 Shinya Honda†1

and Hiroaki Takada†1

Virtualization solutions that support collaboration among its guest OS enable
the development of safe complex software architectures. Most studies address-
ing inter-OS communications focus on throughput improvements for hypervi-
sors targeted at server consolidation or cluster computing. However, research
on inter-OS communications for hard real-time virtualization, which requires
different communication patterns and predictable latencies rather than high
throughput, is still scarce. We present a novel approach to inter-OS commu-
nications based on a globally scheduled real-time dual-OS monitor that en-
ables specifying the priority and bandwidth of each communication channel or
port. Our approach takes advantage of memory and time isolation asymme-
tries to implement preemptable low-overhead communications. Three real-time
communication patterns are supported: lock-free unqueued messages, priority-
based message queues and shared memory. The architecture was implemented
and compared to previous approaches to demonstrate its advantages for hard
real-time virtualized systems.

1. Introduction

The increasing sophistication and complexity of modern embedded systems has

created a new requirements conflict. On one hand, the need to leverage existing

general-purpose OS (GPOS) kernel and libraries to address all this complexity

is already indisputable. On the other hand, most embedded systems still need

to perform activities with special requirements (e.g., security, certifiability or

timeliness) that only a low-scale real-time embedded OS (RTOS) can satisfy1).

As an example, security holes could be exploited by local or remote attackers

in order to obtain sensitive information or disturb the operation of the devices

controlled by the compromised machine.

†1 Graduate School of Information Science, Nagoya University

In order to consolidate a GPOS and an RTOS on the same embedded sys-

tem, two fundamental approaches exist. One of them consists of using separated

hardware at the cost of additional hardware. A second approach is to virtual-

ize existing hardware resources through a real-time dual-OS monitor2)–5) which

allows better flexibility and reduced hardware costs. Although the main goal of

real-time virtualization is to provide memory and time isolation, communication

between both OS is still needed for many applications. For example, the GPOS

is often used to offer an improved user interface to the status of sensors and

activities managed by the RTOS. Inter-OS communication (IOC), which share

many concepts from Inter-Process Communications (IPC), has been the subject

of research of several works?),?),6). However, most of them focus on enterprise

virtualization, where the main goal is to increase the communication througput

rather than providing real-time predictability. A recent state-of-the-art survey7)

mentions the following main obstacles in current IOC mechanisms:

• Long communication overheads.

• Lack of communication awareness in the CPU scheduler.

• Absence of real-time inter-OS interactions.

Although low-overhead is considered a good property for any virtualization

solution, communication awareness in the scheduler and real-time interactions

are specially important for real-time dual-OS monitors. Regarding to that, we

observed the following issues in current real-time dual-OS approaches:

• Current IOC mechanisms often require several copies of the same message

before it is finally delivered8) causing an overhead that can be avoided if we

take into account memory access asymmetries (i.e., the RTOS has access to

all the GPOS physical memory while the inverse is forbidden).

• Most real-time dual-OS monitors schedule the GPOS as the RTOS lowest pri-

ority task2),9),10), and therefore it is hard to provide low IOC latency bounds

when the RTOS workload increases.

• IOC is often implemented inside a non-preemptable monitor which is accessed

through system calls11). The non-preemptability of the monitor increases the

worst latency of RTOS interrupt handlers and tasks. As a result, the size of

the message being transmitted must be limited or otherwise the time isolation

will be broken.

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

1

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



This paper addresses these issues through a novel approach to IOC that includes

the following contributions:

• Amechanism that takes advantage of memory asymmetries to implement low-

overhead (zero-copy in the best case) communications. Three real-time com-

munication patterns are supported: lock-free unqueued messages, priority-

based message queues and shared memory.

• A communication architecture that is preemptable by activities with higher

priority. In particular, RTOS interrupts do not need to be disabled and

priority-inversion is avoided through lock-free algorithms and priority ceiling.

• We leveraged a globally scheduled dual-OS monitor to enable specifying the

priority and bandwidth of each communication channel to enhance the la-

tency of messages with high priority. Execution overruns are controlled in

order to protect the RTOS predictability from GPOS misbehaviors.

The paper is organized as follows. Section 2 reviews briefly the architecture of

SafeG, the dual-OS monitor used by the implementation. Section 3 states the

requirements for inter-OS communications. Section 4 describes the architecture

and execution flow of the proposed approach. Finally, Section 5 compares this

study with previous work and Section 6 draws conclusions and discusses future

work.

2. SafeG: a real-time dual-OS monitor

2.1 Overview

SafeG (Safety Gate) is a high-reliability dual-OS monitor originally presented

in 12), and designed to enable efficient concurrent execution of an RTOS (TOP-

PERS/ASP) and a GPOS (GNU/Linux) on top of a single embedded processor.

SafeG takes advantage of ARM TrustZone security extensions13),14) which intro-

duce the concept of Trust and Non-Trust states to provide a virtual environment

for each OS. Trust state provides similar behavior to existing privileged and user-

mode levels as in other ARM processors. On the other hand, code running under

Non-Trust state (even in privileged mode) cannot access memory or devices which

were allocated for Trust state usage, nor can it execute certain instructions that

are considered critical. TrustZone state is controlled under a new mode called Se-

cure Monitor mode. Switching between Trust and Non-Trust state is performed

Fig. 1 SafeG: dual-OS monitor based on ARM TrustZone

under Security Monitor mode by SafeG with all interrupts disabled.

The overall organization of an embedded system based on SafeG is depicted

in Figure 1. Memory and devices that need to be used in isolation by the

RTOS are configured to be accessible only from Trust state. The remaining

resources are configured to be accessible both from Trust and Non-Trust state.

Time isolation of the RTOS is supported by carefully allocating the two existing

types of interrupt. FIQ interrupts are assigned to the RTOS and IRQ interrupts

are assigned to the GPOS. When the processor is running in Trust state, GPOS

interrupts remain disabled to avoid them disturbing the execution of the RTOS.

The GPOS can only execute once the RTOS sends an explicit request to SafeG

using a Secure Monitor Call (SMC) instruction. On the other hand, when the

processor is running in Non-Trust state, RTOS interrupts are always enabled. If

an FIQ interrupt arrives (e.g., the RTOS system tick) SafeG traps it and returns

the control of the CPU to the RTOS. ARM TrustZone is configured to prevent

the GPOS from disabling RTOS interrupts.

2.2 Global scheduling

The original implementation of SafeG12) scheduled the GPOS at the RTOS idle

priority. Although idle scheduling preserves the RTOS determinism, at the cost

of decreasing the GPOS responsiveness. In 15) a new approach that combines

global scheduling with overrun control capabilities was proposed. As Figure 2

shows, the approach allows mixing the priorities of RTOS and GPOS activities to

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

2

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



Fig. 2 Idle scheduling vs Global scheduling

provide better response times to the GPOS. For instance, the GPOS system tick

could be configured with a global priority higher than non-critical RTOS task,

such as the system logger. Figure 3 shows that the RTOS application-level is

divided in 2 parts: the user application and a latency library. This allows RTOS

and GPOS applications to be implemented independently. The library consists

of the following elements:

• BTASK : a single task running at RTOS background priority. When sched-

uled it calls SafeG to switch to the GPOS.

• LTASK : similar to the BTASK task, the main function of an LTASK task

is starting a switch to Non-Trust state. The number of LTASK tasks can

be configured by the user and each of them is mapped to a group of GPOS

interrupt handlers and/or tasks. LTASK tasks can run at any RTOS priority

and have an associated execution budget and period.

• LTASK manager : a manager task that decides which LTASK task should

be suspended or resumed depending on the current GPOS execution priority

and the availability of execution budget.

• Latency handlers: a set of RTOS handlers used to inform the LTASK man-

ager that the GPOS execution priority has changed. This may happen after

a GPOS task is switched or a GPOS interrupt arrives.

• Budget handlers: periodic time handlers to replenish the budget of each

LTASK task. This replenishment strategy, commonly known as deferrable

servers, allows for a simple and efficient implementation.

• Overrun handler : a handler executed when the running LTASK task exceeds

the execution budget assigned to it.

Fig. 3 Global scheduling architecture

The mentioned elements collaborate to accomplish global priority scheduling.

It is important to note that the architecture does not modify the priority order

at which tasks and interrupts are executed inside the GPOS. Consequently, ac-

tivities assigned to a certain LTASK task are supposed to have higher priority

than activities assigned to a lower priority LTASK task. In particular, if sev-

eral GPOS interrupts are assigned to different LTASK tasks, then they must be

configured with different hardware priorities as well. For the same reason, when

the budget of a certain LTASK task expires, the budget of the next LTASK task

in decreasing priority order is inherited. In other words, the neat mapping be-

tween GPOS activities and LTASK tasks depicted in Fig. 3 holds provided that

the GPOS activities do not overrun the budget assigned to them. Otherwise a

lower priority LTASK task is resumed to avoid disturbing the execution of higher

priority RTOS tasks.

3. SafeG Inter-OS communications requirements

This section defines the requirements that the Inter-OS communications system

must satisfy, through a formal list of statements that are feasible, testable and

consistent with each other. They are not only applicable to SafeG but to any

other real-time dual-OS monitor as mentioned in 16).

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

3

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



( 1 ) It must provide mechanisms and appropriate interfaces for the most com-

mon real-time communication patterns.

( 2 ) Ability to specify a global priority for the transmission of messages. Com-

munications must be predictable and deterministic.

( 3 ) Memory isolation and the integrity of the control structures used during

the inter-OS communications must be preserved.

( 4 ) The worst-case response time of RTOS interrupt handlers and tasks must

remain bounded even if the GPOS misbehaves.

( 5 ) The overhead incurred must be as low as possible.

( 6 ) Modifications to the RTOS and GPOS must be small and maintainable.

( 7 ) SafeG monitor modifications must be minimized.

Requirement (1) is the main functional requirement and consists of provid-

ing capabilities to communicate RTOS and GPOS tasks using communication

patterns that are suitable for real-time interactions.

Requirement (2) refers to the need of a bounded message latency and the ability

to distinguish messages with higher priority from those which are less critical.

Missing a deadline may affect the quality of the system but is not catastrophic.

Requirement (3) is defined to make sure that sharing data with the GPOS (a

Non-Trusted domain) does not compromise the security of the RTOS.

Requirement (4) is necessary to preserve the hard real-time properties of the

RTOS even when code running in Non-Trust state does not collaborate, is defec-

tive or is even trying deliberately to disturb the execution of the RTOS.

Requirement (5) means that the IOC overhead must be kept as low as possible

not to affect the overall performance of the system. Otherwise the practical

applicability of the proposed method would be negatively affected.

Requirement (6) is extremely important to reduce maintenance costs. In espe-

cial, a GPOS kernel is large and evolves very rapidly, and therefore keeping the

implementation independent from the GPOS kernel is vital for maintainability

across different versions of the kernel.

Finally, requirement (7) refers to the fact that the SafeG monitor is the cor-

nerstone of the system’s overall reliability. Its code must be very small, easy to

verify and runs with all interrupts disabled. Therefore, a solution that does not

require extensions to SafeG monitor is the most suitable.

Fig. 4 Inter-OS communications APIs and drivers

4. SafeG Inter-OS communications

4.1 Inter-OS interfaces

The proposed IOC architecture offers two asymmetric application interfaces

(see Figure 4) which provide support for the following patterns:

• Unqueued messages: these are unidirectional messages representing informa-

tion sent by a publisher task and received by several subscriber tasks. Since

they are unqueued, they are appropriate for situations where only the last

status or value of the message information is important.

• Priority message queues: they represent bidirectional channels where mes-

sages can be queued and carry a certain priority. They are useful for event-

triggered communications and synchronization.

• Shared memory (shm): these are blocks of Non-Trust memory shared by both

OS. The minimal size of one block is 1 memory page. Shared memory is useful

for transmitting a bigger amount of data and can be used in combination with

lock-free synchronization or the mentioned message queues.

Table 1 shows the main functions of the proposed IOC interface for both OS.

The interface for TOPPERS/ASP follows the µITRON17) function interface style

(operation + object) with the addition of the safeg_ prefix. The interface for

Linux tasks just reuses current POSIX IPC interfaces (POSIX message queues

and shared memory). Creation of communication objects (i.e., memory buffers

and queues) is performed through a static API in the case of ASP, and by the

Linux IOC driver at initialization time in the case of Linux. Each queued channel

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

4

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



Table 1 TOPPERS/ASP vs Linux interfaces

Pattern ASP Linux Explanation
Unqueued SAFEG_CRE_UNQ mq_open("/safeg_unq_0"..) create a message port
Unqueued safeg_wri_unq mq_send write an unqueued message
Unqueued safeg_rea_unq mq_receive read unqueued message
Queued SAFEG_CRE_PMQ mq_open("/safeg_que_0"..) create message queue
Queued safeg_snd_pmq mq_send send a message
Queued safeg_rcv_pmq mq_receive receive a message
Shm SAFEG_CRE_SHM - create a shared memory block
Shm get_shm mmap get a shared memory block

or unqueued port is identified by a string consisting of three elements: the safeg_

prefix; que or unq; and a natural number. The internal drivers are in charge of

making sure they refer to the same object. Parameters for message communica-

tion (sending and receiving) functions are the same for both OS; except Linux’s

priority parameter for unqueued messages, which is left unused. This and the

fact that messages can be overwritten make the behavior of unqueued message

queues significantly different from the standard POSIX message queues. Since

queueing message functions can block, each of them has a timeout and a polling

version (e.g., mq_timedreceive). Shared memory resides in Non-Trust memory

and is reserved by the kernel at initialization. ASP tasks just need to obtain

the physical address of the block for a given identifier. In case of Linux tasks,

they have to memory-map the corresponding block to the process virtual ad-

dress space. A shared memory block is identified by an offset though we provide

a wrapper function safeg_map_shmregion(id,&va) to simplify its usage. The

implementation must make sure that shared memory blocks are cache coherent.

4.2 Architecture elements

IOC interfaces are implemented through a driver module inside of each kernel,

as we see in Fig. 4. Figure 5 shows an overview of the architecture for bidirec-

tional inter-OS channels. We see that a message queue is defined for message

reception at each OS. Queues for sending messages are not required since we will

write directly into the reception message queues. Each OS also counts with a soft-

ware module capable of sending and waiting for inter-OS asynchronous events.

They are necessary to implement the blocking interface of message queues and

work in a similar way as software interrupts.

Fig. 5 Inter-OS communication channels

Between both OS there is an inter-OS shared memory area used to store the

communication objects (i.e., unqueued ports, message queues and shm objects)

and a few data structures. These structures are depicted in Figure 6 and include:

• Global scheduling data: these are two variables (nt_prio and ltask) required

for the implementation of global scheduling.

• Shmem block : shared memory block size and permissions.

• Unqueued buffer variables: apart from the size of each buffer, we have vari-

ables (i.e., timestamp, current_buffer and shadow_buffer) required for

lock-free synchronization (see 4.4).

• Event-related data: these are variables to indicate that a channel has a pend-

ing event or a task is waiting.

• nt2t message: this variable stores a pointer to a Linux task message being

sent to ASP. Since the Linux kernel cannot access ASP’s memory, a pointer

is placed in shared memory and an ASP handler is raised to perform the copy

instead. If a task is waiting at the queue, the message can be copied directly

into the task’s buffer to reduce the overhead (zero-copy).

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

5

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



Fig. 6 Inter-OS communications shared data structures

The configuration of all these elements is performed statically at initialization

and cannot be changed dynamically. Since inter-OS shared memory can be filled

with garbage at any time by a compromised Linux system, the range of each

variable must be checked by ASP before its use.

4.3 Queued messages flow

The key to understanding the flow of IOC queued messages is the fact that we

are just trying to emulate the flow of a local IPC message as close as possible.

The main obstacles that need to be solved are mutually exclusion (e.g., Linux

cannot disable RTOS interrupts); asymmetric memory access permissions (e.g.,

Linux cannot access to the RTOS memory queues directly); and synchronization.

Figure 7 shows the communication flow of a queuing message sent by an ASP

task to a Linux task. Transmission from several ASP tasks to the same channel

must be serialized through a local mutual exclusion mechanism. First, the status

of the reception buffer is checked (e.g., by inspecting, and range-checking, its

head and tail variables). If the buffer is full the task blocks and waits for a new

event (i.e., a message being dequeued) or alternatively, until a timeout expires.

Additionally a shared variable (i.e., t_waiting) is set to true in order to indicate

that an ASP task is waiting. In case the queue was not full, the message is

enqueued in the Linux buffer. The priority message queue is composed of several

FIFOs and is accessed by only one writer and one reader at a time. Therefore,

Fig. 7 Queuing communication flow from ASP to Linux tasks

a lock-free algorithm can be used to insert/extract messages instead of more

complex mutual exclusion algorithms. Once the message is inserted, the shared

variable nt_waiting of that channel is consulted. If it is true, we send an event

(i.e., indicate that a message was enqueued) to Linux. On the receiving end,

when a Linux task tries to receive a message we first need to evaluate whether

it is accessing an unqueued port or a message channel. This happens because

the interface is the same for both unqueued messages, which are explained in

4.4, and queued ones. After that, we check whether the queue is empty or not.

If it is empty we need to wait for an event from ASP (i.e., a message being

enqueued) and set the shared variable nt_waiting to true. The variable must be

set atomically to avoid racing conditions. Alternatively, the wait can be based on

kernel semaphores. If the queue was not empty, we just have to read the message

into the Linux task’s buffer. After the message is dequeued, the last operation is

waking up any possible task waiting in the RTOS.

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

6

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



Fig. 8 Queuing communication flow from Linux to ASP tasks

Figure 8 shows the communication flow of a queuing message sent by a Linux

task to an ASP task. The flow is quite similar to the one described above except

for the following fact: since a Linux sender cannot write to ASP’s buffer directly,

a pointer to the user’s message (physcal address) is placed in shared memory

and an event is sent to ASP. An ASP handler or task is in charge of copying

the message either to ASP’s message queue or directly to the buffer of an ASP

waiting task. Notice that in the best case, the transmission will occur with zero-

copy overhead, which paradoxically may result in certain IOC calls having less

overhead than local IPC calls.

4.4 Unqueued messages flow

Unqueued messages consist of a shared buffer where the latest value of a cer-

tain variable or information is stored. They are unidirectional, either from trust

to Non-Trust (t2nt) or viceversa (nt2t). A typical application could consist of a

task sharing periodically the value of a sensor controlled by the RTOS and an-

other task displaying it through a graphical interface in the GPOS. Our proposal

takes advante of memory and time isolation asymmetries to provide lock-free

algorithms for both directions.

Fig. 9 Unqueued communication flow from Linux to ASP tasks

Figure 9 shows the flow for a Non-Trust to Trust unqueued message. When a

Linux task needs to write a new value in the message buffer, it does it first on a

temporary ”shadow” one to avoid coherence issues (e.g., in case it was preempted

by a reader when the message were half-written). Once the message is complete

the pointers to both buffers are exchanged (this operation is not required to

be atomic). On the ASP side, when a task wants to read a message, it first

must disable the execution of Linux (for example, by rising the priority of the

task). This is necessary to avoid its preemption by a Linux task with a higher

global priority. The main advantage of this mechanism is that we do not need to

disable all interrupts, and therefore the latency of RTOS interrupt handlers and

high priority tasks is not affected.

Figure 10 shows the flow for a Trust to Non-Trust unqueued message. Since

Linux cannot disable the operation of the RTOS before reading the buffer, a

lock-free mechanism based on timestamps (e.g., a value that always increases)

has been designed. When a Linux task starts reading an unqueued message,

it first records the value of the initial timestamp. Once the read is finished, it

compares it with the current timestamp. In case they differ, then it means that an

RTOS writer task preempted Linux overwriting the message and it has to retry.

The algorithm is not wait-free for Linux tasks but that should not be a problem

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

7

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



Fig. 10 Unqueued communication flow from ASP to Linux tasks

since ASP tasks are trusted not to cause starvation. The main advantages of this

algorithm are its lock-free nature and the fact that it does not require disabling

the RTOS interrupts.

5. Related work

There is a notable amount of literature proposing different IOC mechanisms to

enable collaboration among the guest OS of a virtualized system. 7) is a good

survey of the state-of-the-art in IOC mechanisms with numerous references. Most

previous work can be classified in the following groups:

• Throughput-oriented optimizations: many works in this group study methods

to improve the performance of communications in the XEN hypervisor18).

As an example, XenSocket6) was presented to replace the Xen page-flipping

mechanism with a static circular memory buffer shared between two domains

to construct a high-throughput IOC mechanism. Similar works can be found

in 19)–21) for example. Each approach offers varying trade-offs between

performance and transparency.

• Scheduling-aware optimizations: In most virtualization approaches, the CPU

scheduler is unaware of the communication requirements or the internal pri-

ority of its guest OS, which has a major influence on the IOC latency. A few

works have addressed this problem22),23) by exploiting the statistics of the

guest OS to influence scheduling decisions. Even Xen’s credit scheduler24)

provides a mechanism to boost guest OS that are considered I/O bound.

• Communications in real-time dual-OS monitors: RTAI10) provides several

interfaces and mechanisms for IOC. This is facilitated by the fact that the

RTOS and the Linux kernel are linked together sharing the same memory

space. 9) is capable of providing better memory isolation than RTAI and

uses RTEMS message queues as the means of communication. However,

both share the problem of long IOC latency bounds because they schedule

Linux as the RTOS idle task2). XtratuM11) is a hypervisor for safety crit-

ical applications which enforces time isolation by scheduling each guest OS

following a certain cyclic pattern. Although communication through FIFO

queues has been proposed8), XtratuM currently implements sampling and

queuing ports as described in the ARINC653 standard25). The main prob-

lem in the current implementation is that XtratuM is not preemptable, and

therefore a message transmission ocurring at the end of a timeslot may break

the temporal isolation.

Compared to previous works, our proposal is based on a globally scheduled

dual-OS monitor (i.e., aware of the internal priority of its guest OS), and provides

tight integration and low-overhead without compromising the memory and time

isolation of the RTOS interrupt handlers and tasks.

6. Conclusions and future work

We proposed a novel approach to IOC focused on real-time dual-OS monitors

as opposed to throughput-oriented IOC mechanisms present in enterprise hyper-

visors. Our approach takes advantage of memory and time isolation asymmetries

in the dual-OS model to implement preemptable low-overhead communications

and three real-time communication patterns are supported: lock-free unqueued

messages, priority-based message queues and shared memory. We leveraged our

previous work on a globally scheduled real-time dual-OS monitor that enables

specifying the priority and bandwidth of each communication channel or port.

The architecture was compared to previous approaches to demonstrate its ad-

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

8

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14



vantages for hard real-time virtualized systems. As future work, we plan to

evaluate the current implementation of the system and study its application to

a multi-core version of SafeG.

References

1) Heiser, G.: The Role of Virtualization in Embedded Systems, 1st Workshop on
Isolation and Integration in Embedded Systems, Glasgow, UK, ACM SIGOPS, pp.
11–16 (2008).

2) Takada, H., Iiyama, S., Kindaichi, T. and Hachiya, S.: Linux on ITRON: A Hybrid
Operating System Architecture for Embedded Systems, SAINT-W ’02: Proceed-
ings of the 2002 Symposium on Applications and the Internet (SAINT) Workshops,
Washington, DC, USA, IEEE Computer Society, pp.4–7 (2002).

3) Cereia, M.Bertolotti, I.: Asymmetric virtualisation for real-time systems, ISIE
2008, Cambridge, pp.1680 – 1685 (2008).

4) Yoo, S., Liu, Y., Hong, C.-H., Yoo, C. and Zhang, Y.: MobiVMM: a virtual machine
monitor for mobile phones, MobiVirt ’08: Proceedings of the First Workshop on
Virtualization in Mobile Computing, New York, NY, USA, ACM, pp.1–5 (2008).

5) Heiser, G.: Hypervisors for consumer electronics, CCNC’09: Proceedings of the
6th IEEE Conference on Consumer Communications and Networking Conference,
Piscataway, NJ, USA, IEEE Press, pp.614–618 (2009).

6) Zhang, X., McIntosh, S., Rohatgi, P. and Griffin, J. L.: XenSocket: a high-
throughput interdomain transport for virtual machines, Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware, Middleware
’07, New York, NY, USA, Springer-Verlag New York, Inc., pp.184–203 (2007).

7) Wang, J.: Survey of State-of-the-art in Inter-VM Communication Mechanisms
(2009).

8) Shuwei, B., Yiqiao, P., Kairui, S., Qingguo, Z., Nicholas, M. and Lian, L.: XM-
FIFO: Interdomain Communication for XtratuM, 9th Real-Time Linux Workshop
(2007).

9) Beltrame, G., Fossati, L., Zulianello, M., Braga, P. and Henriques, L.: xLuna: a
Real-Time, Dependable Kernel for Embedded Systems, IP-SOC: IP based electron-
ics system conference and exhibition (2010).

10) RTAI: Official website. https://www.rtai.org/.
11) Masmano, M., Ripoll, I., Crespo, A. and Metge, J.: XtratuM: a Hypervisor for

Safety Critical Embedded Systems, 11th Real-Time Linux Workshop, Dresden, Ger-
many (2009).

12) Nakajima, K., Honda, S., Teshima, S. and Takada, H.: Enhancing Reliability in
Hybrid OS System with Security Hardware, The IEICE Transactions on Informa-
tion Systems, Vol.93, No.2, pp.75–85 (2010-02-01).

13) ARM Ltd.: ARM Security Technology. Building a Secure System using TrustZone

Technology, PRD29-GENC-009492C (2009).
14) ARM Ltd.: ARM1176JZF-S. Technical Reference Manual, DDI 0301G (2008).
15) Sangorrin, D., Honda, S. and Takada, H.: Real-Time Global Scheduling for a High-

Reliability Dual-OS Monitor, Technical report, University of Nagoya (2011).
16) Armand, F. and Gien, M.: A practical look at micro-kernels and virtual machine

monitors, Proceedings of the 6th IEEE Conference on Consumer Communications
and Networking Conference, CCNC’09, Piscataway, NJ, USA, IEEE Press, pp.395–
401 (2009).

17) Takada, H. and Sakamura, K.: ”µITRON for small-scale embedded systems”, IEEE
Micro, vol. 15, pp. 46-54, Dec. 1995.

18) Chisnall, D.: The definitive guide to the xen hypervisor, Prentice Hall Press, Upper
Saddle River, NJ, USA, first edition (2007).

19) Li, D., Jin, H., Shao, Y., Liao, X., Han, Z. and Chen, K.: A High-Performance
Inter-Domain Data Transferring System for Virtual Machines, JSW, Vol.5, No.2,
pp.206–213 (2010).

20) Chen, H., Shi, L. and Sun, J.: VMRPC: A high efficiency and light weight RPC
system for virtual machines, Quality of Service (IWQoS), 2010 18th International
Workshop on, pp.1 –9 (2010).

21) Diakhaté, F., Perache, M., Namyst, R. and Jourdren, H.: Euro-Par 2008 Work-
shops - Parallel Processing, Springer-Verlag, Berlin, Heidelberg, chapterEfficient
Shared Memory Message Passing for Inter-VM Communications, pp.53–62 (2009).

22) Kim, H., Lim, H., Jeong, J., Jo, H. and Lee, J.: Task-aware virtual machine schedul-
ing for I/O performance., Proceedings of the 2009 ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments, VEE ’09, New York, NY,
USA, ACM, pp.101–110 (2009).

23) Govindan, S., Nath, A.R., Das, A., Urgaonkar, B. and Sivasubramaniam, A.: Xen
and co.: communication-aware CPU scheduling for consolidated xen-based host-
ing platforms, Proceedings of the 3rd international conference on Virtual execution
environments, VEE ’07, New York, NY, USA, ACM, pp.126–136 (2007).

24) Cherkasova, L., Gupta, D. and Vahdat, A.: Comparison of the three CPU sched-
ulers in Xen, SIGMETRICS Perform. Eval. Rev., Vol.35, pp.42–51 (2007).

25) ARINC-653: Airlines Electronic Engineering Committee, 2551 Riva Road, An-
napolis, Maryland 21401-7435. Avionics Application Software Standard Interface
(1996).

c© 2011 Information Processing Society of Japan

情報処理学会研究報告 
IPSJ SIG Technical Report

9

Vol.2011-ARC-195 No.28
Vol.2011-OS-117 No.28

2011/4/14


