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Argument Filterings and Usable Rules

in Higher-order Rewrite Systems
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and Frédéric Blanqui†2

The static dependency pair method is a method for proving the termination
of higher-order rewrite systems à la Nipkow. It combines the dependency pair
method introduced for first-order rewrite systems with the notion of strong com-
putability introduced for typed λ-calculi. Argument filterings and usable rules
are two important methods of the dependency pair framework used by current
state-of-the-art first-order automated termination provers. In this paper, we
extend the class of higher-order systems on which the static dependency pair
method can be applied. Then, we extend argument filterings and usable rules
to higher-order rewriting, hence providing the basis for a powerful automated
termination prover for higher-order rewrite systems.

1. Introduction

Various extensions of term rewriting systems (TRSs) 1) for handling functional
variables and abstractions have been proposed 2)–6). In this paper, we consider
higher-order rewrite systems (HRSs) 5), that is, rewriting on β-normal η-long
simply-typed λ-terms using higher-order matching.

For example, the typical higher-order function foldl can be defined by the
following HRS:

Rfoldl =

{
foldl(λxy.F (x, y),X,nil) → X

foldl(λxy.F (x, y),X, cons(Y,L)) → foldl(λxy.F (x, y), F (X,Y ), L)

Here we suppose that the function foldl has the type (N → N → N) → L → N,
and L is a type of natural number’s list. Then, the functions sum and len,
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computing the sum of the elements and the number of elements respectively, can
be defined by the following HRSs:

Rsum = Rfoldl ∪

⎧⎪⎨
⎪⎩

add(0, Y ) → Y

add(s(X), Y ) → s(add(X,Y ))
sum(L) → foldl(λxy.add(x, y), 0, L)

Rlen = Rfoldl ∪
{

len(L) → foldl(λxy.s(x), 0, L)

In the HRS Rlen, the anonymous function λxy.s(x) is represented by using λ-
abstraction.

The static dependency pair method is a method for proving the termination
of higher-order rewrite systems. It combines the dependency pair method intro-
duced for first-order rewrite systems 7) with Tait and Girard’s notion of strong
computability introduced for typed λ-calculi 8). It was first introduced for simply-
typed term rewriting systems (STRSs) 9) and then extended to HRSs 10). The
static dependency pair method consists in showing the non-loopingness of each
static recursion component independently, the set of static recursion components
being computed through some static analysis of the possible sequences of function
calls.

This method applies only to plain function-passing (PFP) systems. In this
paper, we provide a new definition of PFP that significantly enlarges the class
of systems on which the method can be applied. It is based on the notion of
accessibility introduced in Ref. 11) and extended to HRSs in Ref. 12).

For the HRS Rsum ∪ Rlen, the static dependency pair method returns the fol-
lowing two components:{

foldl�(λxy.F (x, y),X, cons(Y,L)) → foldl�(λxy.F (x, y), F (X,Y ), L)
}

{
add�(s(X), Y ) → add�(X,Y )

}
The static dependency pair method proves the termination of the HRS Rsum∪Rlen

by showing the non-loopingness of each component.
In order to show the non-loopingness of a component, the notion of reduction

pair is often used. Roughly speaking, it consists in finding a well-founded quasi-
ordering in which the component rules are strictly decreasing and all the original
rules are non-increasing.
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2 Argument Filterings and Usable Rules in HRSs

Argument filterings, which consist in removing some arguments of some func-
tions, provide a way to generate reduction pairs. First introduced for TRSs 7), it
has been extended to STRSs 4),13). In this paper, we extend it to HRSs.

In order to reduce the number of constraints required for showing the non-
loopingness of a component, the notion of usable rules is also very important.
Indeed, a finer analysis of sequences of function calls show that not all original
rules need to be taken into account when trying to prove the termination of
a component. This analysis was first conducted for TRSs 14),15) and has been
extended to STRSs 13),16). In this paper, we extend it to HRSs.

All together, this paper provides a strong theoretical basis for the development
of an automated termination prover for HRSs, by extending to HRSs some suc-
cessful techniques used by modern state-of-the-art first-order termination provers
like for instance 15),17).

The remainder of this paper is organized as follows. Section 2 introduces HRSs.
Section 3 presents the static dependency pair method and extend the class of
systems on which it can be applied. In Section 4, we extend the argument
filtering method to HRSs. In Section 5, we extend the notion of usable rules on
HRSs. Concluding remarks are given in Section 6.

2. Preliminaries

In this section, we introduce the basic notions for HRSs according to Refs. 5),
18).

The set S of simple types is generated from the set B of basic types by the type
constructor →. A functional or higher-order type is a simple type of the form
α → β. We denote by �s the strict subterm relation on types.

A preterm is generated from an infinite set of typed variables V and a set of
typed function symbols Σ disjoint from V by λ-abstraction and λ-application.
The set of typed preterms is denoted with T pre. We denote by t↓ the η-long
β-normal form of a simply-typed preterm t. The set T of (simply-typed) terms
is defined as {t↓ | t ∈ T pre}. The unique type of a term t is denoted by type(t).
We write Vα (resp. Tα) as the set of variables (resp. terms) of type α, The α-
equivalence of terms is denoted by ≡. The set of free variables in a term t is
denoted by FV (t). We assume for convenience that bound variables in a term

are all different, and are disjoint from free variables. In general, a term t is of
the form λx1 . . . xm.at1 . . . tn where a ∈ Σ∪V. We abbreviate this by λxm.a(tn).
For a term t ≡ λxm.a(tn), the symbol a, denoted by top(t), is the top symbol
of t, and the set {tn}, denoted by args(t), is the arguments of t. We define the
set Sub(t) of subterms of t by {t} ∪ Sub(s) if t ≡ λx.s, and {t} ∪

⋃n
i=1 Sub(ti)

if t ≡ a(tn). We use t �sub s to represent s ∈ Sub(t), and define t �sub s by
t �sub s and t �≡ s. The set Pos(t) of positions in a term t is the set of strings
over positive integers inductively defined as Pos(λx.t) = {ε} ∪ {1p | p ∈ Pos(t)}
and Pos(a(tn)) = {ε} ∪

⋃n
i=1{ip | p ∈ Pos(ti)}. The prefix order ≺ on positions

is defined by p ≺ q iff pw = q for some w �= ε. The subterm of t at position p is
denoted by t|p.

A term containing a unique occurrence of the special constant �α of type α is
called a context, denoted by C[ ]. We use C[t] for the term obtained from C[ ]
by replacing �α with t ∈ Tα. A substitution θ is a mapping from variables to
terms such that θ(X) has the type of X for each variable X. We define dom(θ) =
{X | X↓ �≡ θ(X)} and assume that dom(θ) is always finite. A substitution θ is
naturally extended to a mapping from terms to terms. We use tθ instead of θ(t) in
the remainder of the paper. A substitution θ is said to be a variable permutation
if ∀X ∈ dom(θ).∃Y ∈ dom(θ).θ(X) ≡ Y ↓ and θ(X) ≡ θ(Y ) ⇒ X = Y hold.

Following Ref. 18), a higher-order rewrite rule is a pair (l, r) of terms, denoted
by l → r, such that top(l) ∈ Σ, type(l) = type(r) ∈ B and FV (l) ⊇ FV (r). Since,
by definition, terms are in η-long form, function symbols are always applied to
the same (maximal) number of arguments. Considering non-η-normal terms or
rules of functional type is outside the scope of this paper. An HRS is a set of
higher-order rewrite rules. The reduction relation −→

R
of an HRS R is defined by

s −→
R

t iff s ≡ C[lθ↓] and t ≡ C[rθ↓] for some rewrite rule l → r ∈ R, context
C[ ] and substitution θ. The transitive and reflexive-transitive closures of −→

R
are

denoted by +−→
R

and ∗−→
R

, respectively. An HRS R is said to be finitely branching
if {t′ | t −→

R
t′} is a finite set for any term t.

A term t is said to be terminating or strongly normalizing for an HRS R,
denoted by SN(R, t), if there is no infinite rewrite sequence of R starting from
t. We write SN(R) if SN(R, t) holds for any term t. A well-founded relation >

on terms is a reduction order if > is closed under substitution and context. We
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3 Argument Filterings and Usable Rules in HRSs

notice that an HRS R is terminating iff R ⊆ > for some reduction order >.
A term t is said to be strongly computable in an HRS R if SC(R, t) holds, which

is inductively defined on simple types as follows: SN(R, t) if type(t) ∈ B, and
∀u ∈ Tα.(SC(R, u) ⇒ SC(R, (tu)↓)) if type(t) = α → β. We also define the set
T args

SC (R) = {t | ∀u ∈ args(t).SC(R, u)}.
Finally, we introduce the proposition required for later proof.
Proposition 2.118) If s ∗−→

R
t and θ ∗−→

R
θ′ (i.e. ∀x ∈ V.xθ ∗−→

R
xθ′) then

sθ↓ ∗−→
R

tθ′↓.

3. Improved Static Dependency Pair Method

In this section, we introduce the static dependency pair method for plain
function-passing (PFP) HRSs 10) but extend the class of PFP systems.

The method in Ref. 10) applies only to PFP systems. From a technical view-
point, we have noticed that the unclosedness of strong computability with respect
to the subterm relation is the reason why the method is not applicable to every
HRS. Hence we can extend the applicable class for the method if more strongly
computable subterms can be acquired. From the same motivation, Blanqui in-
troduced the notion of accssibility to design a higher-order path ordering 12). By
using the notion of accessibility, we provide a new definition of PFP that enlarges
the class of systems on which the method can be applied.

Definition 3.1 (Stable subterms) The stable subterms of t are SSub(t) =
SSubFV (t)(t) where SSubX(t) = {t} ∪ SSub′X(t), SSub′X(λx.s) = SSubX(s),
SSub′X(a(tn)) =

⋃n
i=1 SSubX(ti) if a /∈ X, and SSub′X(t) = ∅ otherwise.

Lemma 3.2 (1) SSub(t) ⊆ Sub(t). (2) If u ∈ SSub(t) and dom(θ) ⊆ FV (t),
then uθ↓ ∈ SSub(tθ↓). (3) If u ∈ Sub(t) and t ∈ SN , then u ∈ SN .

Definition 3.3 (Safe subterms - New definition) The set of safe sub-
terms of a term l is safe(l) =

⋃
l′∈args(l){t↓ | t ∈ Acc(l′), FV (t) ⊆ FV (l′)}

where t ∈ Acc(l′) (t is accessible in l′) if either:
( 0 ) t = l′,
( 1 ) t ∈ SSub(l′), type(t) ∈ B and FV (t) ⊆ FV (l′),
( 2 ) λx.t ∈ Acc(l′) and x /∈ FV (l′),
( 3 ) t(x↓) ∈ Acc(l′) and x /∈ FV (t) ∪ FV (l′),
( 4 ) f(tn) ∈ Acc(l′), ti = λxk.t, type(t) ∈ B and {xk} ∩ FV (t) = ∅,

( 5 ) x(tn) ∈ Acc(l′), ti = t and x /∈ FV (tn) ∪ FV (l′).
Strictly speaking, safe(l) may not be included in Sub(l) and, because of (3),

accessible terms are β-normal preterms not necessarily in η-long form.
Definition 3.4 (Plain Function-Passing 10)) An HRS R is plain function-

passing (PFP) if for any l → r ∈ R and Z(rn) ∈ Sub(r) such that Z ∈ FV (r),
there exists k ≤ n such that Z(rk)↓ ∈ safe(l).

For example, the HRS Rfoldl displayed in the introduction is PFP, because
safe(foldl(λxy.F (x, y),X, cons(Y,L))) = {λxy.F (x, y),X, cons(Y,L), Y, L} and
F↓ ≡ λxy.F (x, y) ∈ safe(foldl(λxy.F (x, y),X, cons(Y,L))).

The definition of safeness given in Ref. 10) corresponds to cases (0) and (1).
This new definition therefore includes much more terms, mainly higher-order
patterns 19). This greatly increases the class of rules that can be handled and the
applicability of the method since it reduces the number of dependency pairs.

For instance, the new definition allows us to handle the following rule:
D(λx.sin(Fx))y → D(λx.Fx)y × cos(Fy)

Indeed, l′ = λx.sin(Fx) ∈ Acc(l′) by (0), sin(Fx) ∈ Acc(l′) by (2), Fx ∈ Acc(l′)
by (4) and F ∈ Acc(l′) by (3). Therefore, safe(l) = {l′, λx.Fx, y}. With the
previous definition, we had safe(l) = {l′, y} only.

Also, the new definition allows us to handle the following rule:
∀(λx.(Px ∧ Qx)) → ∀(λx.Px) ∧ ∀(λx.Qx)

Indeed, l′ = λx.(Px ∧ Qx) ∈ Acc(l′) by (0), Px ∧ Qx ∈ Acc(l′) by (2), Px,Qx ∈
Acc(l′) by (4), and P,Q ∈ Acc(l′) by (3). Therefore, safe(l) = {l′, λx.Px, λx.Qx}.
With the previous definition, we had safe(l) = {l′} only.

For the results presented in Ref. 10) to still hold, it suffices to check that this
new definition of safeness still preserves strong computability (Lemma 4.3 in
Ref. 10)). This can be shown by following the proof of Lemma 10 in Ref. 12).

Lemma 3.5 Let R be an HRS and l → r ∈ R. Then lθ↓ ∈ T args
SC (R) implies

SC(R, tθ↓) for any t ∈ safe(l) and substitution θ.
Proof. We first prove that tθ↓ is strongly computable whenever t ∈ Acc(l′),

l′θ↓ is strongly computable, and xθ is strongly computable for any x ∈ FV (t) \
FV (l′). Wlog we can assume that dom(θ) ⊆ FV (t). We prove the claim by
induction on the definition of Acc.
( 0 ) Immediate.
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4 Argument Filterings and Usable Rules in HRSs

( 1 ) Since l′θ↓ is strongly computable, l′θ↓ is strongly normalizing. By
Lemma 3.2, tθ↓ ∈ Sub(l′θ↓) and tθ↓ is SN. Therefore, since type(t) ∈ B,
tθ↓ is strongly computable.

( 2 ) By definition of computability.
( 3 ) We have type(t) = α → β. So, let u ∈ Tα strongly computable and

θ′ = θ�{x �→ u} (x /∈ dom(θ) since x /∈ FV (t)). Since x /∈ FV (t), we have
(tθ↓u)↓ = (t(x↓))θ′↓. By IH, (t(x↓))θ′↓ is strongly computable. Therefore,
tθ↓ is strongly computable.

( 4 ) Since strong computability on base types is equivalent to SN and {xk} ∩
FV (t)=∅.

( 5 ) The term pi = λyn.yi can easily be proved strongly computable. Then, let
θ′ = θ � {x �→ pi} (x /∈ dom(θ) since x /∈ FV (tn)). Since x /∈ FV (ti),
we have (x(tn))θ′↓ = tiθ↓. By induction hypothesis, (x(tn))θ′↓ is strongly
computable. Therefore, tθ↓ = tiθ↓ is strongly computable.

Let now u ∈ safe(l). We have u ≡ t↓ for some t ∈ Acc(l′) and l′ ∈ args(l) with
FV (t) ⊆ FV (l′). The term l′θ↓ is strongly computable since lθ↓ ∈ T args

SC (R).
Since FV (t) ⊆ FV (l′), there is no x ∈ FV (t) \ FV (l′). Therefore, uθ↓ ≡ tθ↓ is
strongly computable. �

This definition of safeness can be further improved (in case 4) by using more
complex interpretations for base types than just the set of strongly normalizing
terms, but this requires to check more properties 20). We leave this for future
work.

We now recall the definitions of static dependency pair, static recursion com-
ponent and reduction pair, and the basic theorems concerning these notions,
including the subterm criterion 10).

Definition 3.6 (Static dependency pair 10)) Let R be an HRS. All top
symbols of the left-hand sides of rewrite rules, denoted by DR, are called defined
symbols.
We define the marked term t� by f �(tn) if t has the form f(tn) with f ∈ DR;
otherwise t� ≡ t. Then, let D�

R = {f � | f ∈ DR}.
We also define the set of candidate subterms as follows: Cand(λxm.a(tn)) =
{λxm.a(tn)} ∪

⋃n
i=1 Cand(λxm.ti).

Now, a pair 〈 l�, a�(rn) 〉, denoted by l� → a�(rn), is said to be a static dependency

pair in R if there exists l → r ∈ R such that λxm.a(rn) ∈ Cand(r), a ∈ DR,
and a(rk)↓ /∈ safe(l) for all k ≤ n. We denote by SDP (R) the set of static
dependency pairs in R.

Example 3.7 Let Rave be the following PFP-HRS:

Rave = Rsum ∪ Rlen ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sub(X, 0) → X

sub(0, Y ) → 0
sub(s(X), s(Y )) → sub(X,Y )

div(0, s(Y )) → 0
div(s(X), s(Y )) → s(div(sub(X,Y ), s(Y )))

ave(L) → div(sum(L), len(L))

Then, the set SDP (Rave) consists of the following eleven pairs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

foldl�(λxy.F (x, y),X, cons(Y,L)) → foldl�(λxy.F (x, y), F (X,Y ), L)
add�(s(X), Y ) → add�(X,Y )

sum�(L) → foldl�(λxy.add(x, y), 0, L)
sum�(L) → add�(x, y)

sub�(s(X), s(Y )) → sub�(X,Y )
div�(s(X), s(Y )) → div�(sub(X,Y ), s(Y ))
div�(s(X), s(Y )) → sub�(X,Y )

len�(L) → foldl�(λxy.s(x), 0, L)
ave�(L) → div�(sum(L), len(L))
ave�(L) → sum�(L)
ave�(L) → len�(L)

Definition 3.8 (Static dependency chain 10)) Let R be an HRS. A se-
quence u�

0 → v�
0, u

�
1 → v�

1, . . . of static dependency pairs is a static depen-
dency chain in R if there exist θ0, θ1, . . . such that v�

iθi↓ ∗−→
R

u�
i+1θi+1↓ and

uiθi↓, viθi↓ ∈ T args
SC (R) for all i.

Note that, for all i, u�
iθi and v�

iθi are terminating, since strong computability
implies termination.

Proposition 3.910) Let R be a PFP-HRS. If there exists no infinite static
dependency chain then R is terminating.

Proof. By using Lemma 3.5 instead of Lemma 4.3 in Ref. 10), the proof of the
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5 Argument Filterings and Usable Rules in HRSs

correspondence theorem (Theorem 5.23 in Ref. 10)) still holds. �
Definition 3.10 (Static recursion component 10)) Let R be an HRS.

The static dependency graph of R is the directed graph in which nodes are
SDP (R) and there exists an arc from u� → v� to u′� → v′� if the sequence
u� → v�, u′� → v′� is a static dependency chain.
A static recursion component is a set of nodes in a strongly connected subgraph
of the static dependency graph of R. We denote by SRC(R) the set of static
recursion components of R.
A static recursion component C is non-looping if there exists no infinite static
dependency chain in which only pairs in C occur and every u� → v� ∈ C occurs
infinitely many times.

Proposition 3.1110) Let R be a PFP-HRS such that there exists no infinite
path in the static dependency graph. If all static recursion components are non-
looping, then R is terminating.

Example 3.12 For the PFP-HRS Rave in Example 3.7, the static depen-
dency graph of Rave is shown in Fig. 1. Then the set SRC(Rave) consists of the
following four static recursion components:

ave�(L) → div�(sum(L), len(L)) �

�

div�(s(X), s(Y )) → div�(sub(X,Y ), s(Y ))
�

��� �

div�(s(X), s(Y )) → sub�(X,Y ) � sub�(s(X), s(Y )) → sub�(X,Y )
�

ave�(L) → sum�(L) �

�

sum�(L) → add�(x, y)

�sum�(L) → foldl�(λxy.add(x, y), 0, L)

�

add�(s(X), Y ) → add�(X,Y )
�

foldl�(λxy.F (x, y),X, cons(Y,L)) → foldl�(λxy.F (x, y), F (X,Y ), L)
�

ave�(L) → len�(L) � len�(L) → foldl�(λxy.s(x), 0, L)

�

Fig. 1 The static dependency graph of Rave.

{
foldl�(λxy.F (x, y),X, cons(Y,L)) → foldl�(λxy.F (x, y), F (X,Y ), L)

}
{

add�(s(X), Y ) → add�(X,Y )
}

{
sub�(s(X), s(Y )) → sub�(X,Y )

}
{

div�(s(X), s(Y )) → div�(sub(X,Y ), s(Y ))
}

In order to prove the non-loopingness of components, the notions of subterm
criterion and reduction pair have been proposed. The subterm criterion was
introduced on TRSs 15), and then extended to STRSs 9) and HRSs 10). Reduction
pairs 21) are an abstraction of the notion of weak-reduction order 7).

Definition 3.13 (Subterm criterion 10)) Let R be an HRS and C ∈
SRC(R). We say that C satisfies the subterm criterion if there exists a function
π from D�

R to non-empty sequences of positive integers such that:
• u|π(top(u�)) �sub v|π(top(v�)) for some u� → v� ∈ C,
• and the following conditions hold for every u� → v� ∈ C:

– u|π(top(u�)) �sub v|π(top(v�)),
– ∀p ≺ π(top(u�)).top(u|p) /∈ FV (u),
– and ∀q ≺ π(top(v�)).q = ε ∨ top(v|q) /∈ FV (v) ∪ DR.

Definition 3.14 (Reduction pair, Weak reduction order 7),21)) A pair
(�, >) of relations is a reduction pair if � and > satisfy the following properties:
• > is well-founded and closed under substitutions,
• � is closed under contexts and substitutions,
• and � · > ⊆ > or > · � ⊆ >.

In particular, � is a weak reduction order if (�,� \ �) is a reduction pair.
Proposition 3.1510) Let R be a PFP-HRS such that there exists no infinite

path in the static dependency graph. Then, C ∈ SRC(R) is non-looping if C

satisfies one of the following properties:
• C satisfies the subterm criterion.
• There is a reduction pair (�, >) such that R ⊆ �, C ⊆ � ∪ > and C ∩ > �= ∅.
Example 3.16 Let π(foldl�) = 3 and π(add�) = π(sub�) = 1. Then, every

static recursion component C except the one for div (cf. Example 3.12) satisfies
the subterm criterion in the underlined positions below. Hence, these static
recursion components are non-looping.
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6 Argument Filterings and Usable Rules in HRSs{
foldl�(λxy.F (x, y),X, cons(Y,L)) → foldl�(λxy.F (x, y), F (X,Y ), L)

}
{

add�(s(X), Y ) → add�(X,Y )
} {

sub�(s(X), s(Y )) → sub�(X,Y )
}

4. Argument Filterings

An argument filtering generates a weak reduction order from an arbitrary re-
duction order. The method was first proposed on TRSs 7), and then extended to
STRSs 4),13). Since this extension has the problem that this method may destroy
the well-typedness of terms, Kusakari and Sakai improved the method so that the
well-typedness is never destroyed 13). In this section, we expand this technique
to HRSs.

Definition 4.1 An argument filtering function is a function π such that, for
every f ∈ Σ of type α1 → · · · → αn → β with β ∈ B, π(f) is either a positive
integer i ≤ n if αi = β, or a list of positive integers [i1, . . . , ik] with i1, . . . , ik ≤ n.
Then, we extend the function π to terms by taking:

π(λxm.a(tn)) ≡

⎧⎪⎨
⎪⎩

λxm.π(ti) if a ∈ Σ and π(a) = i

λxm.a(π(ti1), . . . , π(tik
)) if a ∈ Σ and π(a) = [i1, . . . , ik]

λxm.a(π(t1), . . . , π(tn)) if a ∈ V

Given an argument filtering π and a binary relation >, we define s �π t by
π(s) > π(t) or π(s) ≡ π(t), and s >π t by π(s) > π(t). We also define the
substitution θπ by θπ(x) ≡ π(θ(x)). Finally, we define the typing function typeπ

after argument filtering as typeπ(a) = αi1 → · · · → αik
→ β if a ∈ Σ, π(a) =

[i1, . . . , ik], type(a) = α1 → · · ·αn → β and β ∈ B; otherwise typeπ(a) = type(a).
In the examples, except stated otherwise, π(f) = [1, . . . , n] if type(f) = α1 →

· · · → αn → β and β ∈ B (no argument is removed).
For instance, if π(sub) = [1] then π(div�(sub(X,Y ), s(Y ))) ≡ div�(sub(X), s(Y )).
Note that our argument filtering method never destroys the well-typedness,

which is easily proved by induction on terms.
Theorem 4.2 For any argument filtering π and term t ∈ T , π(t) is well-typed

under the typing function typeπ and typeπ(π(t)) = type(t).
In the following, we prove the soundness of the argument filtering method as a

generating method of weak reduction orders. To this end, we first prove a lemma

required for showing that >π and �π are closed under substitution.
Lemma 4.3 π(tθ↓) ≡ π(t)θπ↓.
Proof. We proceed by induction on preterm tθ ordered with −→

β
∪ �sub .

• In case of t ≡ λx.u: Since tθ �sub uθ, we have π(uθ↓) ≡ π(u)θπ↓ from
the induction hypothesis. Hence we have: π((λx.u)θ↓) ≡ λx.π(uθ↓) ≡
λx.π(u)θπ↓ ≡ π(λx.u)θπ↓.

• In case of t ≡ f(tn), f ∈ Σ, and π(f) = i: Since tθ �sub tiθ, we have
∀i. π(tiθ↓) ≡ π(ti)θπ↓ from the induction hypothesis. Hence we have:
π(f(tn)θ↓) ≡ π(f(tnθ↓)) ≡ π(tiθ↓) ≡ π(ti)θπ↓ ≡ π(f(tn))θπ↓.

• In case of t ≡ f(tn) , f ∈ Σ, and π(f) is a list: Suppose that t′i ≡ ⊥↓ if
i /∈ π(f); otherwise t′i ≡ π(ti), and t′′i ≡ ⊥↓ if i /∈ π(f); otherwise t′′i ≡
π(tiθ↓). For each i, since tθ �sub tiθ, we have π(tiθ↓) ≡ π(ti)θπ↓ from the
induction hypothesis. Then t′′i ≡ t′iθπ↓ holds for each i. Hence we have:
π(f(tn)θ↓) ≡ π(f(tnθ↓)) ≡ f(t′′n) ≡ f(t′nθπ↓) ≡ f(t′n)θπ↓ ≡ π(f(tn))θπ↓.

• In case of t ≡ X ∈ V: Obvious from the definition of θπ.
• In case of t ≡ X(tn), X ∈ V and n > 0: Since type(X) = type(Xθ), we have

Xθ ≡ λyn.a(uk). For each i, since tθ �sub tiθ, we have π(tiθ↓) ≡ π(ti)θπ↓
from the induction hypothesis. Since tθ ≡ (λyn.a(uk))(tnθ) +−→

β
a(uk){ yi :=

tiθ↓ | i ∈ n }, we have π(a(uk){yi := tiθ↓ | i ∈ n}↓) ≡ π(a(uk)){yi :=
π(tiθ↓) | i ∈ n}↓ from the induction hypothesis. Hence we have:
π(X(tn)θ↓) ≡ π((λyn.a(uk))(tnθ↓)↓) ≡ π(a(uk){ yi := tiθ↓ | i ∈ n }↓) ≡
π(a(uk)){ yi := π(tiθ↓) | i ∈ n }↓ ≡ π(a(uk)){ yi := π(ti)θπ↓ | i ∈ n }↓ ≡
(λyn.π(a(uk)))(π(tn)θπ↓)↓ ≡ π(λyn.a(uk))(π(tn)θπ↓)↓ ≡ X(π(tn))θπ↓ ≡
π(X(tn))θπ↓. �

Note that the corresponding lemma in STRSs is π(tθ) ≥ π(t)θπ where > is a
given binary relation 13). This is the technical reason why the argument filtering
method on STRSs can apply to only left-firmness (left-hand side variables occurs
at leaf positions only) STRSs 4),13). This difference originates the fact that STRSs
allow partial application (i.e., foldl F , foldl F X) but HRSs does not.

Theorem 4.4 For any reduction order > and argument filtering function π,
�π is a weak reduction order.

Proof. It is easily shown that s �π t ⇒ C[s] �π C[t] by induction on C[ ].
From Lemma 4.3, we have s �π t ⇒ π(s) ≥ π(t) ⇒ π(s)θπ↓ ≥ π(t)θπ↓ ⇒
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7 Argument Filterings and Usable Rules in HRSs

π(sθ↓) ≥ π(tθ↓) ⇒ sθ↓ �π tθ↓, and s >π t ⇒ π(s) > π(t) ⇒ π(s)θπ↓ >

π(t)θπ↓ ⇒ π(sθ↓) > π(tθ↓) ⇒ sθ↓ >π tθ↓. Remaining properties are routine. �
Example 4.5 Consider the PFP-HRS Rave in Example 3.7. Every static

recursion component except {div�(s(X), s(Y )) → div�(sub(X,Y ), s(Y ))} is non-
looping (cf. Example 3.16). We can prove its non-loopingness with the argument
filtering method, by taking π(sub) = π(div�) = [1], and the normal higher-order
reduction ordering >n

rhorpo, written (>rhorpo)n in Ref. 22) defined by:
• a neutralization level Lj

f = 0 for all symbol f ∈ Σ and argument position j

(in fact, these parameters are relevant for functional arguments only),
• filtering out all arguments (a notion introduced in Ref. 22) not to be confused

with the argument filtering method) by taking Aj
f = ∅ for all f and j (again,

these parameters are relevant for functional arguments only),
• a precedence snew >Σnew

subnew (a symbol fnew with f ∈ Σ is a new symbol
introduced by the definition of >n

rhorpo in Ref. 22), with the same type as f

since neutralization levels are null),
• a multiset (or lexicographic) status for div�

new,
• a quasi-ordering on types reduced to the equality (the strict part is well-

founded since it is empty, and equality preserves functional types).
Then we have π(div�(s(X), s(Y ))) ≡ div�(s(X)) >n

rhorpo div�(sub(X)) ≡
π(div�(sub(X,Y ), s(Y ))), and Rdiv ⊆ (≥n

rhorpo)π. For instance, div�(s(X))>n
rhorpo

div�(sub(X)) since FN (div�(s(X)))↓β >rhorpo FN (div�(sub(X)))↓β and, be-
cause Lj

f = 0 and Aj
f = ∅, FN (ft1 . . . tn) = fnew FN (t1) . . . FN (tn). From

Proposition 3.15, the static recursion component for div is non-looping, and Rdiv

is terminating.

5. Usable Rules

In order to reduce the number of constraints required for showing the non-
loopingness of a component, the notion of usable rules is widely used. This
notion was introduced on TRSs 14),15) and then extended to STRSs 13),16). In this
section, we extend it to HRSs.

To illustrate the interest of this notion, we start with some example.
Example 5.1 We consider the data type heap ::= leaf | node(nat,heap,heap)

and the PFP-HRS Rheap defined by the following rules:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

add(0, Y ) → Y

add(s(X), Y ) → s(add(X,Y ))
map(λx.F (x),nil) → nil

map(λx.F (x), cons(X,L)) → cons(F (X),map(λx.F (x).L))
merge(H, leaf) → H

merge(leaf,H) → H

merge(node(X1,H11,H12),node(X2,H21,H22))
→ node(X1,H11,merge(H12,node(X2,H21,H22))

merge(node(X1,H11,H12),node(X2,H21,H22))
→ node(X2,merge(node(X1,H11,H12),H21),H22)

foldT(λxyz.F (x, y, z),X, leaf) → X

foldT(λxyz.F (x, y, z),X,node(Y,H1,H2))
→ F (X, foldT(λxyz.F (x, y, z),X,H1), foldT(λxyz.F (x, y, z),X,H2))

sumT(H) → foldT(λxyz.add(x, add(y, z)), 0,H)
hd(nil) → leaf

hd(cons(X,L)) → X

l2t(nil) → nil
l2t(cons(H,nil)) → cons(H,nil)

l2t(cons(H1, cons(H2, L))) → l2t(cons(merge(H1,H2), l2t(L)))
list2heap(L) → hd(l2t(map(λx.node(x, leaf, leaf), L)))

The static recursion components for foldT consists of

{foldT�(λxyz.F (x, y, z),X,node(Y,H1,H2)) → foldT(λxyz.F (x, y, z),X,Hi)}

for i = 1, 2, and their union. By taking π(foldT) = 3, these components satisfy
the subterm criterion. The static recursion components for add, map and merge
also satisfy the subterm criterion. Hence it suffices to show that the following
three static recursion components for l2t are non-looping:{

l2t�(cons(H1, cons(H2, L))) → l2t�(cons(merge(H1,H2), l2t(L))) · · · (1)
}

{
l2t�(cons(H1, cons(H2, L))) → l2t�(L) · · · (2)

}
{(1), (2)}
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8 Argument Filterings and Usable Rules in HRSs

The component {(2)} satisfies the subterm criterion. By taking π(cons) = [2]
and π(l2t) = π(l2t�) = 1, we can orient the static dependency pairs (1) and (2)
by using the normal higher-order recursive path ordering 22):

π(l2t�(cons(H1, cons(H2, L))))
≡ cons(cons(L)) >n

rhorpo cons(L) ≡ π(l2t�(cons(merge(H1,H2), l2t(L))))
π(l2t�(cons(H1, cons(H2, L)))) ≡ cons(cons(L)) >n

rhorpo L ≡ π(l2t�(L))

However, in contrast to Example 4.5, the non-loopingness of {(1)} and {(1), (2)}
cannot be shown with the previous techniques. Indeed, we cannot solve the
constraint Rheap ⊆ �. More precisely, we cannot orient the rule for hd, because
π(hd(cons(X,L))) ≡ hd(cons(L)) does not contain the variable X occurring in
the right-hand side.

The notion of usable rule solves this problem, that is, it allows us to ignore the
rewrite rule for hd for showing the non-loopingness of l2t.

Definition 5.2 (Usable rules) We denote f >def g if g is a defined symbol
and there is some l → r ∈ R such that top(l) = f and g occurs in r.
We define the set U(t) of usable rules of a term t as follows. If, for every X(tn) ∈
Sub(t), tn are distinct bound variables, then U(t) = {l → r ∈ R | f >∗

def

top(l) for some f ∈ DR occurs in t}. Otherwise, U(t) = R. The usable rules of a
static recursion component C is U(C) =

⋃
{U(v�) | u� → v� ∈ C}.

For each α ∈ B, we associate the new function symbols ⊥α and cα with
type(⊥α) = α and type(cα) = α → α → α. We define the HRS Ce as
Ce = {cα(x1, x2) → xi | α ∈ B, i = 1, 2}.

Hereafter we omit the index α whenever no confusion arises.
When we show the non-loopingness of a static recursion component using a re-

duction pair, Proposition 3.15 requires showing that R ⊆ �. The non-loopingness
is not guaranteed by simply replacing R with U(C). We can supplement the gap
with the HRS Ce.

Theorem 5.3 Let R be a finitely-branching PFP-HRS. Then C ∈ SRC(R)
is non-looping if there exists a reduction pair (�, >) such that U(C) ∪ Ce ⊆ �,
C ⊆ � ∪ >, and C ∩ > �= ∅.

The proof of this theorem will be given at the end of this section.
Example 5.4 We show the termination of the PFP-HRS Rheap in Exam-

ple 5.1. We have to show the non-loopingness of the components {(1)} and
{(1), (2)}. To this end, it suffices to show that the constraint U({(1), (2)})∪Ce ⊆
� can be solved (instead of Rheap ⊆ �). The usable rules of {(1), (2)} are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

merge(H, leaf) → H

merge(leaf,H) → H

merge(node(X1,H11,H12),node(X2,H21,H22))
→ node(X1,H11,merge(H12,node(X2,H21,H22))

merge(node(X1,H11,H12),node(X2,H21,H22))
→ node(X2,merge(node(X1,H11,H12),H21),H22)

l2t(nil) → nil
l2t(cons(H,nil)) → cons(H,nil)

l2t(cons(H1, cons(H2, L))) → l2t(cons(merge(H1,H2), l2t(L)))

The weak reduction order (>n
rhorpo)π orient the rules. Since Ce ⊆ (>n

rhorpo)π, we
conclude that Rheap is terminating.

In the rest of this section, we present a proof of Theorem 5.3. We assume that
R is a finitely-branching PFP-HRS, C is a static recursion component of R, and
Δ = {top(l) | l → r ∈ R \ U(C)}.

The key idea of the proof is to use the following interpretation I.
Thanks to the Well-ordering theorem, we assume that every non-empty set of

terms T has a least element least(T ).
Definition 5.5 For a terminating term t ∈ Tα, I(t) is defined as follows:

I(t) ≡

⎧⎪⎨
⎪⎩

λx.I(t′) if t ≡ λx.t′

a(I(tn)) if t ≡ a(tn) and a /∈ Δ
cα(a(I(tn)), Redα({I(t′) | t −−−−→

R\U(C)
t′})) if t ≡ a(tn) and a ∈ Δ

Here, for each α ∈ B, Redα(T ) is defined as ⊥α if T = ∅; otherwise cα(u,Redα(T \
{u})) where u ≡ least(T ). We also define θI by θI(x) ≡ I(θ(x)) for a terminating
substitution θ.

The interpretation I is inductively defined on terminating terms with respect
to �sub ∪ −→

R
, which is well-founded on terminating terms. Moreover, the set

{I(t′) | t −→
R

t′} is finite because R is finitely branching. Hence, the above
definition of I is well-defined. As for argument filterings (Theorem 4.2), this
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9 Argument Filterings and Usable Rules in HRSs

interpretation never destroys well-typedness.
Theorem 5.6 For any terminating t, I(t) is well-typed and type(I(t)) =

type(t).
Proof. It can be easily proved by induction on t ordered by �sub ∪ −→

R
. �

Lemma 5.7 Let t be a term and θ be a substitution such that tθ↓ is termi-
nating. Then, I(tθ↓) ∗−→

Ce
I(t)θI↓ ∗−→

Ce
tθI↓.

Proof. We prove the claim by induction on ({type(x) | x ∈ dom(θ)}, t) ordered
by the lexicographic combination of the multiset extension �mul

s of �s, and
�sub ∪ −→

R
.

• In case of t ≡ λx.t′: Since t �sub t′, we have I(t′θ↓) ∗−→
Ce

I(t′)θI↓ ∗−→
Ce

t′θI↓
from the induction hypothesis. Hence we have: I((λx.t′)θ↓) ≡ I(λx.t′θ↓) ≡
λx.I(t′θ↓) ∗−→

Ce
λx.I(t′)θI↓ ≡ I(λx.t′)θI↓, and I(λx.t′)θI↓ ≡ λx.I(t′)θI↓ ∗−→

Ce

λx.t′θI↓ ≡ (λx.t′)θI↓.
• In case of t ≡ a(tn) and a /∈ Δ ∪ dom(θ): For each i, since t �sub ti, we have

I(tiθ↓) ∗−→
Ce

I(ti)θI↓ ∗−→
Ce

tiθ
I↓ from the induction hypothesis. Hence we have:

I(a(tn)θ↓) ≡ I(a(tnθ↓)) ≡ a(I(tnθ↓)) ∗−→
Ce

a(I(tn)θI↓) ≡ a(I(tn))θI↓ ≡
I(a(tn))θI↓, and I(a(tn))θI↓ ≡ a(I(tn)θI↓) ∗−→

Ce
a(tnθI↓) ≡ a(tn)θI↓.

• In case of t ≡ X ∈ dom(θ): Obvious from the definition of θI .
• In case of t ≡ X(tn), X ∈ dom(θ) and n > 0: Thanks to the gen-

eral assumption type(X) = type(Xθ), we let Xθ ≡ λyn.a(uk). Since
type(X) = α1 → · · · → αn → β �s αi = type(yi) for each i, we
have I(a(uk){yi := tiθ↓ | i ∈ n}↓) ∗−→

Ce
I(a(uk)){yi := I(tiθ↓) | i ∈

n}↓ from the induction hypothesis. For each i, since t �sub ti, we have
I(tiθ↓) ∗−→

Ce
I(ti)θI↓ ∗−→

Ce
tiθ

I↓ from the induction hypothesis. Hence, by
Theorem 3.9 in Ref. 18) (if s ∗−→

R
t and θ ∗−→

R
θ′ then sθ↓ ∗−→

R
tθ′↓), we

have: I(X(tn)θ↓) ≡ I((λyn.a(uk))(tnθ↓)↓) ≡ I(a(uk){ yi := tiθ↓ | i ∈
n }↓) ∗−→

Ce
I(a(uk)){ yi := I(tiθ↓) | i ∈ n }↓ ∗−→

Ce
I(a(uk)){ yi := I(ti)θI↓ |

i ∈ n }↓ ≡ (λyn.I(a(uk)))(I(tn)θI↓)↓ ≡ X(I(tn))θI↓ ≡ I(X(tn))θI↓, and
I(X(tn))θI↓ ≡ X(I(tn))θI↓ ≡ (λyn.I(a(uk)))(I(tn)θI↓)↓ ≡ I(a(uk)){ yi :=
I(ti)θI↓ | i ∈ n }↓ ∗−→

Ce
I(a(uk)){ yi := tiθ

I↓ | i ∈ n }↓ ≡
λyn.I(a(uk))(tnθI↓)↓ ≡ I(λyn.a(uk))(tnθI↓)↓ ≡ X(tn)θI↓.

• In case of t ≡ f(tn) and f ∈ Δ: For each i, since t �sub ti, we have

I(tiθ↓) ∗−→
Ce

I(ti)θI↓ ∗−→
Ce

tiθ
I↓ from the induction hypothesis. For an ar-

bitrary t′′ such that t −−−−→
R\U(C)

t′′, we have I(t′′θ↓) ∗−→
Ce

I(t′′)θI↓ ∗−→
Ce

t′′θI↓
from the induction hypothesis. Hence we have: I(f(tn)θ↓) ≡ I(f(tnθ↓)) ≡
c(f(I(tnθ↓)), Red({ I(t′) | tθ↓ −→ t′ }))↓ ∗−→

Ce
c(f(I(tnθ↓)), Red({ I(t′′θ↓) |

t −→ t′′ }))↓ ∗−→
Ce

c(f(I(tn)θI↓), Red({ I(t′′)θI↓ | t −→ t′′ }))↓ ≡
c(f(I(tn)), Red({ I(t′′) | t −→ t′′ }))θI↓ ≡ I(f(tn))θI↓, and I(f(tn))θI↓ ≡
c(f(I(tn)), Red({ I(t′′) | t −→ t′′ }))θI↓ ≡ c(f(I(tn)θI↓), Red({ I(t′′)θI↓ | t −→
t′′ }))↓ −→

Ce
f(I(tn)θI↓) ∗−→

Ce
f(tnθI↓) ≡ f(tn)θI↓. �

For the proof of Theorem 5.3, it is enough to show that I(tθ↓) ∗−→
Ce

tθI↓. In
fact, the corresponding lemma for STRSs was the claim 16). However, the proof
of the previous lemma required the stronger claim I(tθ↓) ∗−→

Ce
I(t)θI↓ ∗−→

Ce
tθI↓

for applying the induction hypothesis.
Lemma 5.8 Let t be a term and θ be a permutation such that tθ↓ is termi-

nating. Then, I(tθ↓) ≡ I(t)θI↓.
Proof. We prove the claim by induction on t ordered by �sub ∪ −→

R
.

• In case of t ≡ λx.t′: Since t�sub t′, we have I(t′θ↓) ≡ I(t′)θI↓ from the induc-
tion hypothesis. Hence we have: I((λx.t′)θ↓) ≡ I(λx.t′θ↓) ≡ λx.I(t′θ↓) ≡
λx.I(t′)θI↓ ≡ I(λx.t′)θI↓.

• In case of t ≡ a(tn) and a /∈ Δ ∪ dom(θ): For each i, since t �sub ti, we
have I(tiθ↓) ≡ I(ti)θI↓ from the induction hypothesis. Hence we have:
I(a(tn)θ↓) ≡ I(a(tnθ↓)) ≡ a(I(tnθ↓)) ≡ a(I(tn)θI↓) ≡ I(a(tn))θI↓.

• In case of t ≡ X(tn) and X ∈ dom(θ): Since θ is a permutation, we let Xθ↓ ≡
X ′↓ for a variable X ′. For each i, since t �sub ti, we have I(tiθ↓) ≡ I(ti)θI↓
from the induction hypothesis. Hence we have: I(X(tn)θ↓) ≡ I(X ′(tnθ↓)) ≡
X ′(I(tnθ↓)) ≡ X ′(I(tn)θI↓) ≡ X(I(tn))θI↓ ≡ I(X(tn))θI↓.

• In case of t ≡ f(tn) and f ∈ Δ: For each i, since t �sub ti, we have
I(tiθ↓) ≡ I(ti)θI↓ from the induction hypothesis. For an arbitrary t′′

such that t −−−−→
R\U(C)

t′′, we have I(t′′θ↓) ≡ I(t′′)θI↓ from the induction
hypothesis. Since θ is a permutation, we have { I(t′) | tθ↓ −→ t′ } =
{ I(t′′θ↓) | t −→ t′′ }. Hence we have: I(f(tn)θ↓) ≡ I(f(tnθ↓)) ≡
c(f(I(tnθ↓)), Red({ I(t′) | tθ↓ −→ t′ })) ≡ c(f(I(tnθ↓)), Red({ I(t′′θ↓) | t −→
t′′ })) ≡ c(f(I(tn)θI↓), Red({ I(t′′)θI↓ | t −→ t′′ })) ≡ c(f(I(tn)), Red({ I(t′′) |
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10 Argument Filterings and Usable Rules in HRSs

t −→ t′′ }))θI↓ ≡ I(f(tn))θI↓. �
Lemma 5.9 Let l → r ∈ C ∪ U(C) and θ be a substitution such that rθ↓ is

terminating. Then, I(rθ↓) ≡ rθI↓.
Proof. We show the stronger property I(tθ↓) ≡ tθI↓ for any l → r ∈ C∪U(C)

and t ∈ Sub(r). We prove the claim by induction on t. Note that we have no
case that t ≡ f(tn) and f ∈ Δ.
• In case of t ≡ λx.t′: Since t �sub t′, we have I(t′θ↓) ≡ t′θI↓ from the induc-

tion hypothesis. Hence we have: I((λx.t′)θ↓) ≡ I(λx.t′θ↓) ≡ λx.I(t′θ↓) ≡
λx.t′θI↓ ≡ (λx.t′)θI↓.

• In case of t ≡ a(tn) and a /∈ Δ ∪ dom(θ): For each i, since t �sub ti, we have
I(tiθ↓) ≡ tiθ

I↓ from the induction hypothesis. Hence we have: I(a(tn)θ↓) ≡
I(a(tnθ↓)) ≡ a(I(tnθ↓)) ≡ a(tnθI↓) ≡ a(tn)θI↓.

• In case of t ≡ X(tn) and X ∈ dom(θ): Since type(X) = type(Xθ), we
have Xθ ≡ λyn.a(uk). For each i, since t �sub ti, we have I(tiθ↓) ≡ tiθ

I↓
from the induction hypothesis. If t1, . . . , tn are mutually distinct bound vari-
ables, then {yi := tiθ↓ | i ∈ n} is a permutation, and hence it follows from
Lemma 5.8 that I(X(tn)θ↓) ≡ I((λyn.a(uk))(tnθ)↓) ≡ I(a(uk){yi := tiθ↓ |
i ∈ n}↓) ≡ I(a(uk)){yi := I(tiθ↓) | i ∈ n}↓ ≡ I(a(uk)){yi := tiθ

I↓ | i ∈
n}↓ ≡ (λyn.I(a(uk)))(tnθI)↓ ≡ I(λyn.a(uk))(tnθI)↓ ≡ X(tn)θI↓. Otherwise,
I(X(tn)θ↓) ≡ X(tn)θ↓ and θ = θI , because of Δ = ∅. �

Lemma 5.10 If s −→
R

t and s is terminating, then I(s) +−−−−−→U(C)∪Ce
I(t).

Proof. From s −→
R

t, there exists a rule l → r ∈ R, a context E[ ], and a
substitution θ such that s ≡ E[lθ↓] and t ≡ E[rθ↓]. We prove the claim by
induction on E[ ].
• In case of E[ ] ≡ � and l → r ∈ U(C): From Lemma 5.7 and 5.9, we have:

I(s) ≡ I(lθ↓) ∗−→
Ce

lθI↓ −−−→U(C)
rθI↓ ≡ I(rθ↓) ≡ I(t).

• In case of E[ ] ≡ λx.E′[ ]: I(λx.E′[lθ↓]) ≡ λx.I(E′[lθ↓]) +−−−−−→U(C)∪Ce

λx.I(E′[rθ↓]) ≡ I(λx.E′[rθ↓]).
• In case of E[ ] ≡ a(. . . , E′[ ], . . .) and a /∈ Δ: I(E[lθ↓]) ≡

f(. . . , I(E′[lθ↓]), . . .) +−−−−−→U(C)∪Ce
f(. . . , I(E′[rθ↓]), . . .) ≡ I(E[rθ↓]).

• In case of s ≡ f(sn) and f ∈ Δ: I(s) ≡ I(f(sn)) ≡ c(f(I(sn)), Red({ I(v) |
s −→ v })) −→

Ce
Red({ I(v) | s −→ v }) +−→

Ce
I(t). �

Finally, we give the proof of the main theorem for usable rules:

Proof of Theorem 5.3. Assume that static dependency pairs in C generate
an infinite chain u�

0 → v�
0, u

�
1 → v�

1, . . ., in which every u� → v� ∈ C occurs
infinitely many times. Then there exist θ0, θ1, θ2, . . . such that for each i, v�

iθi↓ ∗−→
R

u�
i+1θi+1↓. Let i be an arbitrary number. From Lemma 5.7, 5.9 and 5.10, we

have: v�
iθ

I
i ↓ ≡ I(v�

iθi↓) ∗−−−−−→U(C)∪Ce
I(u�

i+1θi+1↓) ∗−→
Ce

u�
i+1θ

I
i+1↓. Hence we have

v�
iθ

I
i ↓ � u�

i+1θ
I
i+1↓ � v�

i+1θ
I
i+1↓ from U(C)∪Ce ⊆ �. Moreover, from C ⊆ �∪>

and C ∩ > �= ∅, we have u�
jθ

I
j ↓ > v�

jθ
I
j ↓ for infinitely many j. This contradicts

the well-foundedness of >. �

6. Conclusion

By using the notion of accessibility 11),12), we extended in an important way the
class of systems to which the static dependency pair method10) can be applied.
We then extended to HRSs some methods initially developed for TRSs: argu-
ments filterings 7) and usable rules 14),15). So, together with the subterm criterion
for HRSs 10) and the normal higher-order recursive path ordering 22), this paper
provides a strong theoretical basis for the development of an efficient automated
termination provers for HRSs, since all these methods have been shown quite
successful in the termination competition on TRSs 23) and are indeed the basis
of current state-of-the-art termination provers for TRSs 15),17). We now plan to
implement all these techniques, all the more so since some competition on the
termination of higher-order rewrite systems is under consideration 24). Currently,
HORPO is the only technique for higher-order rewrite systems that has been
implemented 25). One could also build over Refs. 26)–28) to provide certificates
for these techniques in the case of HRSs.

However, there are still some theoretical problems. Currently, the static de-
pendency pair method does not handle function definitions involving data type
constructors with functional arguments in a satisfactory way like, for instance,
the rule Sum5 of Van de Pol’s formulation of μCRL 29):

Σ(λd.Pd) ◦ X → Σ((λd.Pd) ◦ X)
The first reason is that these arguments are not safe (Definition 3.3). This can be
fixed by considering a more complex interpretations for base types 12). The second
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11 Argument Filterings and Usable Rules in HRSs

reason is that it gives rise to the static dependency pair Σ(λd.Pd) ◦X → Pd ◦X

the right-hand side of which contains a variable d not occurring in the left-hand
side. And, currently, no technique can prove the non-loopingness of this static
recursion component, a problem occurring also in Ref. 30).
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